搜档网
当前位置:搜档网 › 采样定理简介

采样定理简介

采样定理简介
采样定理简介

关于采样定理的介绍

一、采样定理简介

采样定理,又称香农采样定律、奈奎斯特采样定律,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker(1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样得到的离散信号经保持器后,得到的是阶梯信号,即具有零阶保持器的特性。如果信号是带限的,并且采样频率高于信号最高频率的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是非常有限的。采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。

采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。

时域采样定理频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t)。时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/2fM的采样值来确定,即采样点的重复频率f≥2fM。时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。

频域采样定理对于时间上受限制的连续信号f(t)(即当│t│>T时,f(t)=0,这里T=T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值来表示,只要这些采样点的频率间隔ω≦π/ tm 。

二、采样简介

从信号处理的角度来看,此采样定理描述了两个过程:其一是采样,这一过程将连续时间信号转换为离散时间信号;其二是信号的重建,这一过程离散信号还原成连续信号。

连续信号在时间(或空间)上以某种方式变化着,而采样过程则是在时间(或空间)上,以T为单位间隔来测量连续信号的值。T称为采样间隔。在实际中,如果信号是时间的函数,通常他们的采样间隔都很小,一般在毫秒、微秒的量级。采样过程产生一系列的数字,称为样本。样本代表了原来地信号。每一个样本都对应着测量这一样本的特定时间点,而采样间隔的倒数,1/T即为采样频率,fs,其单位为样本/秒,即赫兹。

信号的重建是对样本进行插值的过程,即,从离散的样本x[n]中,用数学的方法确定连续信号x(t)。

三、对采样定理的分析

从采样定理中,我们可以得出以下结论:

如果已知信号的最高频率fH,采样定理给出了保证完全重建信号的最低采样频率。这一最

低采样频率称为临界频率或奈奎斯特采样率,通常表示为fN。相反,如果已知采样频率,采样定理给出了保证完全重建信号所允许的最高信号频率。

以上两种情况都说明,被采样的信号必须是带限的,即信号中高于某一给定值的频率成分必须是零,或至少非常接近于零,这样在重建信号中这些频率成分的影响可忽略不计。在第一种情况下,被采样信号的频率成分已知,比如声音信号,由人类发出的声音信号中,频率超过5 kHz的成分通常非常小,因此以10 kHz的频率来采样这样的音频信号就足够了。在第二种情况下,我们得假设信号中频率高于采样频率一半的频率成分可忽略不计。这通常是用一个低通滤波器来实现的。

(一)混叠

如果不能满足上述采样条件,采样后信号的频率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号。这种频谱的重叠导致的失真称为混叠,而重建出来的信号称为原信号的混叠替身,因为这两个信号有同样的样本值。

一个频率正好是采样频率一半的弦波信号,通常会混叠成另一相同频率的波弦信号,但它的相位和幅度改变了。以下两种措施可避免混叠的发生:

1. 提高采样频率,使之达到最高信号频率的两倍以上;

2. 引入低通滤波器或提高低通滤波器的参数;该低通滤波器通常称为抗混叠滤波器

抗混叠滤波器可限制信号的带宽,使之满足采样定理的条件。从理论上来说,这是可行的,但是在实际情况中是不可能做到的。因为滤波器不可能完全滤除奈奎斯特频率之上的信号,所以,采样定理要求的带宽之外总有一些“小的”能量。不过抗混叠滤波器可使这些能量足够小,以至可忽略不计。

(二)减采样

当一个信号被减采样时,必须满足采样定理以避免混叠。为了满足采样定理的要求,信号在进行减采样操作前,必须通过一个具有适当截止频率的低通滤波器。这个用于避免混叠的低通滤波器,称为抗混叠滤波器。为了不失真地恢复模拟信号,采样频率应该不小于模拟信号频谱中最高频率的2倍,即Fs≥2Fmax。采样率越高,稍后恢复出的波形就越接近原信号,但是对系统的要求就更高,转换电路必须具有更快的转换速度。

(三)重构原信号

任何信号都可以看做是不同频率的正弦(余弦)信号的叠加,因此如果知道所有组成这一信号的正(余弦)信号的幅值、频率和相角,就可以重构原信号。由于信号测量、分解及时频变换的过程中存在误差,因此不能100%地重构原信号,重构的信号只能保证原信号误差在容许范围内。

四、带通采样定理

抽样定理指出,由样值序列无失真恢复原信号的条件是f S≥2 f h ,为了满足抽样定理,要求模拟信号的频谱限制在0~f h之内(fh为模拟信号的最高频率)。为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fh以下,如果前置低通滤波器特性不良或者抽样频率过低都会产生折叠噪声。

例如,话音信号的最高频率限制在3400HZ,这时满足抽样定理的最低的抽样频率应为fS=6800HZ,为了留有一定的防卫带,CCITT规定话音信号的抽样率fS=8000HZ,这样就留出了8000-6800=1200HZ作为滤波器的防卫带。应当指出,抽样频率fS不是越高越好,太高时,将会降低信道的利用率(因为随着fS升高,数据传输速率也增大,则数字信号的带宽变宽,导致信道利用率降低。)所以只要能满足fS≥2f h,并有一定频带的防卫带即可。

以上讨论的抽样定理实际上是对低通信号的情况而言的,设模拟信号的频率范围为f0~fh,带宽B=fh - f0.如果f0B,则称之为带通信号,载波12路群信号(频率范围为60~108KHZ)就属于带通型信号。

对于低通型信号来讲,应满足fS≥2fh的条件,而对于带通型信号,如果仍然按照这个抽样,虽然能满足样值频谱不产生重叠的要求,但是无疑fS太高了(因为带通信号的fh高),将降低信道频宽的利用率,这是不可取的。

设f(t)频带为(fl , fh),仍按fs=2fh 抽样,频谱图中有很多空隙,那么是否可降低抽样频率呢?经观察可发现带通信号的最高频率fh 如果是其带宽的整数倍的话,例如fh=2B,当抽样频率fs=2(fh-fl )=2B时,其频谱并不发生混叠。

如果最高频率fh不是信号带宽B的整数倍,即:fh=KB

其中K的整数部分为n,小数部分为k,即:K=n+k

我们可以假想一个比B宽的带宽B′,使正好是它的整数倍。

fh=KB’

只要我们以2B'抽样频率fh对f (t)进行抽样必然不会出现频谱混叠。因此

fs=2B’= ,

从式中可见,随着n的增大,趋向于2B,当n比较大时,式1可简化为:

fk=2B

信号与系统 抽样定理实验

信号与系统 实验报告 实验六抽样定理 实验六抽样定理 一、实验内容:(60分) 1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。 2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。 (1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形;

程序如下: dt=0.1; f0=0.2; T0=1/f0; fm=5*f0; Tm=1/fm; t=-10:dt:10; f=sinc(t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('?-á?D?D?o?oí3é?ùD?o?'); for i=1:3; fs=i*fm;Ts=1/fs; n=-10:Ts:10; f=sinc(n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 运行结果如下:

(2)求解原连续信号和抽样信号的幅度谱; 程序: dt=0.1;fm=1; t=-8:dt:8;N=length(t); f=sinc(t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-6:Ts:6; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1;

香农采样定理

香农采样定理 采样定理,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker(1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。另外,V. A. Kotelnikov 也对这个定理做了重要贡献。 采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样定理指出, 如果信号是带限的,并且采样频率高于信号带宽的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。 带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是有限的。采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。 采样简介 从信号处理的角度来看,此采样定理描述了两个过程:其一是采样,这一过程将连续时间信号转换为离散时间信号;其二是信号的重建,这一过程离散信号还原成连续信号。 连续信号在时间(或空间)上以某种方式变化着,而采样过程则是在时间(或空间)上,以T为单位间隔来测量连续信号的值。T称为采样间隔。在实际中,如果信号是时间的函数,通常他们的采样间隔都很小,一般在毫秒、微秒的量级。采样过程产生一系列的数字,称为样本。样本代表了原来地信号。每一个样本都对应着测量这一样本的特定时间点,而采样间隔的倒数,1/T即为采样频率,fs,其单位为样本/秒,即赫兹(hertz)。 信号的重建是对样本进行插值的过程,即,从离散的样本x[n]中,用数学的方法确定连续信号x(t)。 从采样定理中,我们可以得出以下结论: 如果已知信号的最高频率f H,采样定理给出了保证完全重建信号的最低采样频率。这一最低采样频率称为临界频率或奈奎斯特频率,通常表

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训 一、实验目的 1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。 二、实验原理 1.取样(抽样、采样) (1)取样 取样是把时间连续的模拟信号变换为时间离散信号的过程。 (2)抽样定理 一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽 样值完全确定。 (3)取样分类 ①理想取样、自然取样、平顶取样; ②低通取样和带通取样。 2.脉冲振幅调制电路原理(PAM) (1)脉冲幅度调制系统 系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。 图 1 脉冲振幅调制电路原理框图 (2)取样电路 取样电路是用4066模拟门电路实现。当取样脉冲为高电位时,

取出信号样值;当取样脉冲为低电位,输出电压为0。 图 2 抽样电路 图 3 低通滤波电路 三、实验步骤 1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs; 2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc; 3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形; 4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声 器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入 时钟信号频率,听辨音乐信号的质量. 四、实验内容及现象 1.测量点波形 图 4 TP301 模拟信号输入 图 5 TP302 抽样时钟波形(555稍有失真) fc=38.8kHz ①fc>>2fs,使fs=5KHz: 图 6 TP303 抽样信号输出1 图7 TP304 模拟信号还原输出1 ②fc=2fs,使fs=20KHz: 图8 TP303 抽样信号输出2 图9 TP304 模拟信号还原输出2 ③fc<2fs,使fs=25KHz: 图10 TP303 抽样信号输出3 图11 TP304 模拟信号还原输出3 2.电路Multisim仿真 图12 PAM调制解调仿真电路 图13 模拟信号输入 图14 抽样脉冲波形 图15 PAM信号 图16 低通滤波器特性 图17 还原波形 更多学习资料请见我的个人主页:

通信原理抽样定理实验报告

通信原理实验(五) 实验一抽样定理实验 项目一、抽样信号观测及抽样定理实验 1、观测并记录抽样前后的信号波形,分别观测music和抽样输出 由分析知,自然抽样后的结果如图,很明 显抽样间隔相同,且抽样后的波形在其包 络严格被原音乐信号所限制加权,与被抽 样信号完全一致。 2、观测并记录平顶抽样前后信号的波形。 此结果为平顶抽样结果,仔细观察可发现 与上一实验中的自然抽样有很大差距,即 相同之处,其包络也由原信号所限制加 权,但是在抽样信号的每个频率分量呈矩 形,顶端是平的。 3、观测并对比抽样恢复后信号与被抽样信 号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。

(2)7.7KHZ 在频率为9HZ 时的波形如上图,低通滤 波器恢复出的信号与原信号基本一致, 只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右, 恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。 上述现象验证了抽样定理,即,在信号 的频率一定时,采样频率不能低于被采 样信号的2倍,否则将会出现频谱的混 叠,导致恢复出的信号严重失真。 实验二PCM 编译码实验 实验项目一 测试W681512的幅频特性 1、将信号源频率从50HZ 到4000HZ 用示波器接模块21的音频输出,观测信号 的幅频 特性。 ⑴、4000HZ (2)、3500HZ (1)9.0KHZ (3)7.0KHZ

(3)120HZ⑷ 50HZ 在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。 实验项目二PCM编码规则实验 1、以FS为触发,观测编码输入波形。示波器的DIV档调节为100微秒 图中分别为输入被抽样信号和抽样脉冲, 观察可发现正弦波与编码对应。 2、保持示波器设置不变的情况下,以FS 为触发观测PCM量化输出,记录波形

matlab验证时域采样定理实验报告

通信原理实验报告实验名称:采样定理 实验时间: 201211日年12月 指导老师:应娜 学院:计算机学院 级:班 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); 由采样信号恢复原信号fh=fz*sinc(fs*TMN); %. (2)原信号的波形与幅度频谱:

通信原理实验

通信原理实验报告 学院:信息工程学院 专业:电子信息科学与技术 学号: 姓名:

实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 (2)观测并记录平顶抽样前后的信号波形:设置开关S13#为“平顶抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

通信原理实验-抽样定理实验

电子与信息工程系《通信原理实验》任务及报告书 实验名称抽样定理实验指导教师 班级姓名学号总成绩 一、实验目的 1.掌握抽样定理的概念; 2.掌握模拟信号抽样与还原的原理与实现方法; 3.了解模拟信号抽样过程的频谱。 二、实验内容 1.采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号与还原信号的波形和 频谱; 2.采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号与还原 信号的波形和频谱。 三、所需设备 1.信号源模块; 2.模拟信号数字化模块; 3.20MHz双踪示波器; 4.频谱分析仪(可用数字存储示波器代替)。 四、实验原理 1.简述抽样定理的概念及实现方法 …… 2.抽样信号的还原 …… 五、实验步骤 1.将所用模块固定在机箱中,确保电源接触良好; 2.连线: 信号源模块模拟信号数字化模块 2K正弦基波—————————————抽样信号 DDS-OUT —————————————抽样脉冲 模拟信号数字化模块模拟信号数字化模块 PAM输出—————————————解调输入 3.接通电源(220V AC输入开关、模块电源开关要全部打开); 4.调节信号源模块“2K调幅”旋钮,使“2K正弦基波”输出3V左右; 5.不同频率方波抽样: a.信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋钮,使其峰峰值为 3V左右; b.示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波A的频率为4KHz、8KHz、 1

16KHz、32KHz等典型频率值时“PAM输出”测试点的波形和频谱; c.示波器双踪观测“抽样信号”与“解调输出”测试点波形,对比各典型频率值时抽样信号 还原的效果。 6.同频率但不同占空比方波抽样: a.信号源模块“DDS-OUT”测试点输出选择“方波B”,调节“DDS调幅”旋钮,使其峰峰值为 3V左右、输出频率为4KHz; b.示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波B的占空比为5%、20%、 35%、50%、80%等值时“PAM输出”测试点的波形和频谱; c.示波器双踪观测“抽样信号”与“解调输出”测试点波形,对比各占空比值时抽样信号还 原的效果。 d.改变方波B的频率,重复上述步骤。 六、实验结果记录 记录各测试点的波形。 七、心得体会 …… 实验报告成绩教师签名年月日 2

抽样定理的理论证明与实际应用分析

信号与线性系统分析综合练习题目:抽样定理的理论证明与实际应用

一、抽样和抽样定理 数字信号处理技术的优势和快速发展使得数字设备和数字媒体广泛应用,如手机、MP3、CD 和DVD 等。抽样定理是通信理论中的一个重要定理,是模拟信号数字化的理论依据,包括时域抽样定理和频域抽样定理两部分,又称取样定理、采样定理,是由奈奎斯特(Nyquist)和香农(Shannon)分别于1928年和1949年提出的,故又称为奈奎斯特抽样定理或香农抽样定理。 “抽样”就是利用周期抽样脉冲p(t)从连续信号f(t)中抽取离散样值的过程,得到的离散信号为抽样信号,也称为抽样信号,以?s (t )表示。抽样过程的数学模型就是连续信号与抽样脉冲序列相乘。 抽样过程所应遵循的规律,称抽样定理。抽样定理说明抽样频率与信号频谱之间的关系,是连续信号离散化的基本依据。在进行模A/D 转换过程中,当抽样频率f s.max 大于信号中最高频率f max 的2倍时(f s.max >2f max ),抽样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证抽样频率为信号最高频率的5~10倍。 抽样定理描述了在一定条件下,一个连续的信号完全可以用该信号在等时间间隔上的瞬时样本值表示,这些样本值包含了该连续时间信号的全部信息,利用这些样本值可以恢复原来的连续信号。也就是说,抽样定理将连续信号与离散信号之间紧密的联系起来,为连续信号与离散信号的相互转换提供了依据。通过观察抽样信号的频谱,发现它只是原信号频谱的线性重复搬移,只要给它乘以一个门函数,就可以在频域恢复原信号的频谱,然后再利用频域时域的对称关系,就能在时域上恢复原信号。 二、时域抽样定理的理论证明 时域抽样定理的完整描述是这样:一个频谱在区间(-ωm ,ωm )以外为零的频带有限信号?(t),可唯一地由其在均匀间隔T s (T s<1/2?m )上的样点值?s (t )=?(nT s )确定。以下为理论证明过程: 根据傅里叶变换和离散傅里叶变换定义,有 ΩΩ=Ω∞∞-?d e j X t x t j a a )(21)(π (1) ωπωππ ωd e e X n x n j j ?-=)(21)( (2) 将抽样过程的时域关系x (n )=x a (nT )带入(1)式,有 ΩΩ=Ω∞∞ -?d e j X n x nt j a )(21)(π (3) 比较(2)(3)式,可以得到 ωωπ πωd e e X d e j X n j j nT j a ??-Ω∞ ∞-=ΩΩ)()( 将模拟角频率Ω和数字角频率ω的关系ω=ΩT 带入上式,得

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

PAM实验报告

信息工程学院实验报告 实验课名称通信原理实验实验内容 PAM编译码器系统成绩 班级、专业 09级通信工程一班姓名兰慧敏学号 0938033 组别 实验日期 2011 年11月 23日实验时间 18:30—21:30 指导教师雷老师合作者吴迪

的低通滤波器;当K702设置在NF 位置时(右端),信号不经过抗混迭滤波器直接送到抽样电路,其目的是为了观测混迭现象。 设置在交换模块内的跳线开关KQ02为抽样脉冲选择开关:设置在H 位置为平顶抽样(左端),平顶抽样是通过采样保持电容来实现的,且τ=Ts ;设置在NH 为自然抽样(右端),为便于恢复出的信号观测,此抽样脉冲略宽,只是近似自然抽样。平顶抽样有利于解调后提高输出信号的电平,但却会引入信号频谱失真 2 /) 2/(ωτωτSin , τ为抽样脉冲宽度。通常在实际设备里,收端必须采用频率响应为) 2/(2 /ωτωτSin 的滤波器来进行频谱校准,抵消 失真。这种频谱失真称为孔径失真。 该电路模块各测试点安排如下: 1、 TP701:输入模拟信号 2、 TP702:经滤波器输出的模拟信号 3、 TP703:抽样序列 TP704:恢复模拟信号 四、实验内容 准备工作:将交换模块内的抽样时钟模式开关KQ02设置在NH 位置(右端),将测试信号选择开关KQ01设置在外部测试信号输入2_3位置(右端)。 1. 近似自然抽样脉冲序列测量 (1) 首先将输入信号选择开关K701设置在T (测试状态)位置,将低通滤波器选择开关K702设置在F (滤波位置),为便于观测,调整函数信号发生器正弦波输出频率为200~1000Hz 、输出电平为2Vp-p 的测试信号送入信号测试端口J005和J006(地)。 (2) 用示波器同时观测正弦波输入信号(J005)和抽样脉冲序列信号(TP703),观测时以TP703做同步。 调整示波器同步电平和微调调整函数信号发生器输出频率,使抽样序列与输入测试信号基本同步。测量抽样脉冲序列信号与正弦波输入信号的对应关系。 2. 重建信号观测 TP704为重建信号输出测试点。保持测试信号不变,用示波器同时观测重建信号输出测试点和正弦波输入信

(三)采样定理实验

实验三采样定理实验 一、实验目的 (4) 通过数据采集加深对采样定理的理解; (5) 熟悉DSP 对AD 采样频率的控制方法; (6) 熟悉数字信号到模拟信号的转换方法; 二、实验内容 本试验要求使用AD 将模拟信号变换成数字信号,使用DSP 对转换后的数字信号读取保存,并利用CCS 对这些采集到的数据进行分析,然后从DA 将采集到的数据送出。根据分析的结果确定适合信号频率的AD 的采样频率,对同一信号设置不同的采样频率来验证香农采样定理。 三、实验原理 香农采样定理指出:如果AD 转换器的输入信号具有有限带宽,并且有直到ωk 的频率分量,则只需要AD 转换器的采样周期T 满足如下条件:T ≤π/ωK,信号就可以完全从采样信号中恢复出来。反之,如果采样频率低于信号频率的 2 倍,基本上不能恢复原始信号。根据采样定理,对于一个单正弦的模拟信号,假设其频率为f0 ,当采样率fs≥2 f0 时就可保证采样后的信号无失真地保持原模拟信号的信息,即可重现原模拟信号;如果采样率低于2 f0 就会发生频域的混叠失真。在实际的情况中,一般的情况下首先要使模拟信号通过一个截止频率不高于0.5 f0 的低通滤波器,使其成为一个限带信号。然后,对其采样就可以保证信号无混叠失真。该低通滤波器又叫抗混叠滤波器。 实验中,我们选择对一个确定的信号进行采样,然后将采样后的数据从DA 输出,从DA 的输出使用示波器查看输出后的波形。如果满足采样定理,可以从示波器看到和原始信号一样的波形;反之,如果不满足采样定理,就不能从示波器看到和原始信号一样的波形。实验中,我们调整AD 转换器的采样频率,将以上两种情况分别进行,以验证采样定理。 四、实验方法 本实验的主要内容是设置AD 的采样频率,对于不同的AD 有不同的设置方法。DSP 提供一个采样时钟发生电路,通过设置DSP 内部的寄存器来设置不同的时钟信号以供AD 选择。图3.1 是DSP 时钟发生器,对于使用DSP 的缓冲串口的AD 都可以使用该时钟发生电路设置AD 的采样频率。 图3.1 DSP 时钟发生器 从图3.1 可以看出,基本的时钟信号可以来自CPU 时钟,也可以来自晶振的时钟,这是在DSP 寄存器SRGR2 中的第13 位设置。基本时钟输入后,经过CLKGDV(寄存器SRGR1 的第0 位到第7 位)所设置的值进行第一次分频,得到位时钟信号。注意的是,位时钟信

通信原理实验七

实验七抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关

S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 MUSIC主控&信号源抽样输出3#

频谱分析与采样定理

数字信号处理实验报告实验一:频谱分析与采样定理 班级:10051041 姓名: 学号:

一实验目的 1.观察模拟信号经理想采样后的频谱变化关系。 2.验证采样定理,观察欠采样时产生的频谱混叠现象 3.加深对DFT算法原理和基本性质的理解 4.熟悉FFT算法原理和FFT的应用 二、实验原理 根据采样定理,对给定信号确定采样频率,观察信号的频谱 奈奎斯特抽样定律:为了避免发生混叠现象,能从抽样信号无失真的恢复出原信号,抽样频率必须大于或等于信号频谱最高频率的2倍。 三、实验内容 在给定信号为: 1.x(t)=cos(100*π*at) 2.x(t)=exp(-at) 3.x(t)=exp(-at)cos(100*π*at) 其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。 四、实验步骤 1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。 2.复习FFT算法原理和基本思想。 3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验设备 计算机、Matlab软件 六、实验程序和结果 1、学号为57,原信号频率为2850Hz,根据抽样定理,取采样频率大于2倍的原最大频率,即大于5700Hz,采样间隔小于0.00018s,取T=0.0002s进行抽样,程序为: %实验一:频谱分析与采样定理 %褚耀欣 T=0.00001; %采样间隔T=0.00001 F=1/T; %采样频率为F=1/T L=0.001 %记录长度L=0.001 N=L/T; t=0:T:L; a=57; f1=0:F/N:F; f2=-F/2:F/N:F/2; %%%%%%%%%%%%%%%%%%%%%%%%%

通信原理实验-抽样定理

学生实验报告

) 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语言信号,通常采用8KHz 抽样频率,这样可以留出1200Hz的防卫带。见图4。如果fs<fH,就会出现频谱混迭的现象,如图5所示。 在验证抽样定理的实验中,我们用单一频率fH的正弦波来代替实际的语音信号。采用标准抽样频率fs=8KHZ。改变音频信号的频率fH,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。 验证抽样定理的实验方框图如图6所示。在图8中,连接(8)和(14),就构成了抽样定理实验电路。由图6可知。用一低通滤波器即可实现对模拟信号的恢复。为了便于观察,解调电路由射随、低通滤波器和放大器组成,低通滤波器的截止频率为3400HZ

2、多路脉冲调幅系统中的路际串话 ~ 多路脉冲调幅的实验方框图如图7所示。在图8中,连接(8)和(11)、(13)和(14)就构成了多路脉冲调幅实验电路。 分路抽样电路的作用是:将在时间上连续的语音信号经脉冲抽样形成时间上离散的脉冲调幅信号。N路抽样脉冲在时间上是互不交叉、顺序排列的。各路的抽样信号在多路汇接的公共负载上相加便形成合路的脉冲调幅信号。本实验设置了两路分路抽样电路。 多路脉冲调幅信号进入接收端后,由分路选通脉冲分离成n路,亦即还原出单路PAM信号。 图7 多路脉冲调幅实验框图 冲通过话路低通滤波器后,低通滤波器输出信号的幅度很小。这样大的衰减带来的后果是严重的。但是,在分路选通后加入保持电容,可使分路后的PAM信号展宽到100%的占空比,从而解决信号幅度衰减大的问题。但我们知道平顶抽样将引起固有的频率失真。 PAM信号在时间上是离散的,但是幅度上趋势连续的。而在PAM系统里,PAM信只有在被量化和编码后才有传输的可能。本实验仅提供一个PAM系统的简单模式。 3、多路脉冲调幅系统中的路标串话 路际串话是衡量多路系统的重要指标之一。路际串话是指在同一时分多路系统中,某一路或某几路的通话信号串扰到其它话路上去,这样就产生了同一端机中各路通话之间的串话。 在一个理想的传输系统中,各路PAM信号应是严格地限制在本路时隙中的矩形脉冲。但是如果传输PAM信号的通道频带是有限的,则PAM信号就会出现“拖尾”的现象。当“拖尾”严重,以至入侵邻路时隙时,就产生了路标串话。 在考虑通道频带高频谱时,可将整个通道简化为图9所示的低通网络,它的上截止频率为:f1=1/(2

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t) 2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df;

取样定理的证明及其应用

取样定理及其应用 测控五班穆可汗 学号:3013-202-136 引言: 取样定理论述了在一定条件下,一个连续信号完全可以用离散样本值表示、这些样本值包含了该连续信号的全部信息,利用这些样本值可以恢复原信号、可以说,取样定理在连续信号与离散信号之间架起了一座桥梁、为其互为转换提供了理论依据。 所谓“取样”就是利用取样脉冲序列s(t)从连续信号f(t)中“抽取”一系列离散样本值的过程、这样得到的离散信号称为取样信号fs(t) 、它是对信号进行数字处理的第一个环节。 一、定理证明: 设的频谱为离散信号x(n)的频谱为,由连续信号傅立叶变换和序列傅立叶变换可知: 在(1)式中令t=nT (T为时域取样周期,取样频率fs=1/T),可得: 对(3)式作变量代换,令,可得:

令对(4)整理可得, 对比(2)式和(5)式可得 上式给出了连续信号频谱与离散信号频谱的关系式从中可以看出,由连续信号的频谱可以通过以下两步得到离散信号的频谱:第一步,对连续信号的频谱进行换元、水平轴上的尺度展缩,信号的最高角频率由变化到;第二步,对频谱图以2π的整数倍为间隔进行平移,然后进行叠加,其幅值变为原来的1/T。由以上过程可知,只要,即原连续信号的最高频率,则频谱平移叠加后不会发生频谱的混叠,可以无失真地换原出原连续信号,取样定理得证。 二、取样定理的应用:基于带通取样定理的高速数据采集系统的硬件电路设计 数据采集是获得信息的一种基本手段。随着信息科学技术的迅速发展,它已经成为信息领域中不可缺少的部分。随着科技的不断进步,人们对数据采集系统的要求也越来越高,不仅要求取样的精度高,数据转换速度快,还要求具有抗干扰能力。

system_view抽样定理、PCM实验报告

信息学院 现代交换实验报告 姓名:王磊 学号: 2012080331140 专业:通信工程 2015年6月30日

实验一:抽样定理仿真 一、实验目的 1、掌握Systemview 软件的使用 2、熟练使用软件的图符库,能够构建简单系统 二、实验内容 1、熟悉软件的工作界面; 2、用Systemview 软件建立仿真电路 3、进行参数设置 4、观测过程中各关键点波形 5、对仿真结果进行分析 三、实验原理 所谓抽样。就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。 在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h 时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。根据这一特性,可以完成信号的模-数转换和数-模转换过程。 四、实验结果

结果没有还原。

结果还原。 参数: 1.幅度 2.频率 3.相位 功能: 产生一个正弦波:y(t)=Asin(2PIfct+*) 参数: 1.幅度 2.频率(HZ) 3.脉冲宽度(秒) 4.偏置 5.相位 功能: 产生具有设定幅度和频率的周期性脉冲串,脉宽由设置决定。 y(t)=+-A*PT(t)+Bias 有方波选项。 实时显示 Real Time 功能: 能在系统仿真运行同时,实时地在系统窗口显示接收到的波形。 加法器 Adder 参数: 1.寄存器大小N 2.分数大小F 3.指数大小K 4.输出类型T 5.整型数转换选择 功能: 将输入的一个或多个值求和,并给出适当的标志。 结论:由此证明了证明了抽样定理的正确性,抽样信号在fs>=2fh时可以还原,抽样频率越 高效果越好。

实验一 低通采样定理和内插与抽取实现

实验报告 哈尔滨工程大学教务处制

实验一:低通采样定理和内插与抽取实现一.实验目的 1. 连续信号和系统的表示方法,以及仿真方法。 2.用MATLAB实现连续信号采用与重构的方法, 3. 采样信号的插值和抽取等重采样实现方法。 4. 用时域采样信号重构连续时域信号的原理和方法。 5. 用MATLAB绘图函数表示信号的基本方法,实验数据的可视化表示。二.原理 1 、时域抽样定理 令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为: 故可以推得p(t)的傅里叶变换为: 其中: 根据卷积定理可知: 得到抽样信号x(t)的傅里叶变换为: 其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn

加权。因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。 假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。显然,若在抽样的过程中Ωs<2Ωm,则X^(jΩ)将发生频谱混叠现象,只有在抽样的过程中满足Ωs>=2Ωm条件,X^(jΩ)才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。 2、信号的重建 从频域看,设信号最高频率不超过折叠频率: Xa(jΩ)=Xa(jΩ) |Ω|<Ωs/2 Xa(jΩ)=0 |Ω|>Ωs/2 则理想取样后的频谱就不会产生混叠,故有: 让取样信号x^(t)通过一带宽等于折叠频率的理想低通滤波器: H(jΩ)=T |Ω|<Ωs/2 H(jΩ)=0 |Ω|>Ωs/2 滤波器只允许通过基带频谱,即原信号频谱,故: Y(jΩ)=X^(jΩ)H(jΩ)=Xa(jΩ) 因此在滤波器的输出得到了恢复的原模拟信号: y(t)=xa(t) 从时域上看,上述理想的低通滤波器的脉冲响应为: 根据卷积公式可求得理想低通滤波器的输出为: 由上式显然可得:

信号与系统通信原理抽样定理实验报告

新疆师范大学 实验报告 2020年4月20日课程名称通信原理实验项目实验三:抽样定理实验物理与电子工程学院电子17-5 姓名赵广宇 同组实验者指导教师 一、实验目的 了解抽样定理在通信系统中的重要性。 掌握自然抽样及平顶抽样的实现方法。 理解低通采样定理的原理。 理解实际的抽样系统。 理解低通滤波器的幅频特性对抽样信号恢复的影响。 理解低通滤波器的相频特性对抽样信号恢复的影响。 理解带通采样定理的原理。 二、实验器材 主控&信号源 3号信源编译模块 示波器 三、实验原理 2、实验框图说明

抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证

基带信号+抽样脉冲输出 模拟滤波器恢复出的信号 数字滤波器恢复出的基带信号

五.心得与体会 1.通过本次实验进一步了解了抽样定理的内容 2.通过本次实验将理论与实践联系在了一起,不仅提高了动手实践能力,更加深了对课程的理解 3.通过实验现象可以更加深入的认识到,数字滤波器比模拟滤波器的恢复波形能力要强. 教师签字

带通采样定理证明

带通信号的采样与重建 一、带通采样定理的理论基础 基带采样定理只讨论了其频谱分布在(0,H f )的基带信号的采样问题。作为接收机的模数转换来说:接收信号大多为已调制的射频信号。射频信号相应的频率上限远高于基带信号的频率上限。这时如果想采用基带采样就需要非常高的采样速率!这是现实中的A/D 难以实现的。这时,低通采样定理已经不能满足实际中的使用要求。 带通采样定理是适用于这样的带通信号的采样理论基础,下面给出定理。 带通采样定理:设一个频率带限信号()x t 其频带限制在(,)L H f f 内,如果其采样速率s f 满足式: s f = 2()21L H f f n ++ (2-1) 式中, n 取能满足2()s H L f f f ≥-的最大整数(0,1,2…),则用s f 进行等间隔采样所得到的信号采样值()s x nT 能准确的确定原信号()x t 。 带通采样定理使用的前提条件是:只允许在其中一个频带上存在信号,而不允许在不同的频带同时存在信号,否则将会引起信号混叠[1]。如图所示,为满足这一条件的一种方案,采用跟踪滤波器的办法来解决,即在采样前先进行滤波[1] ,也就是当需要对位于某一个中心频率的带通信号进行采样时,就先把跟踪滤波器调到与之对应的中心频率0n f 上,滤出所感兴趣的带通信号()n x t ,然后再进行采样,以防止信号混叠。这样的跟踪滤波器称之为抗混叠滤波器。 图 带通信号采样

式(2-1)用带通信号的中心频率0f 和频带宽度B 也可用式(2-2)表示: 0214s n f f += (2-2) 式中,()0L H f f f =+,n 取能满足2s f B ≥(B 为频带宽度)的最大正 整数。 当频带宽带B 一定时,为了能用最低采样速率即两倍频带宽度的采样速率(2s f B =),带通信号的中心频率必须满足0212 n f B +=。也即信号的最高或最低频率是信号的整数倍。 带通采样理论的应用大大降低了所需的射频采样频率,为后面的实时处理奠定了基础。但是从软件无线电的要求来看,带通采样的带宽应是越宽越好,这样对不同基带带宽的信号会有更好的适应性,在相同的工作频率范围内所需要的“盲区”采样频率数量减少,有利于简化系统设计。另外,当对于一个频率很高的射频信号采样时,如果采样频率设的太低,对提高采样量化的信噪比是不利的。所以在可能的情况下,带通采样频率应该尽可能选的高一些,使瞬时采样带宽尽可能宽。但是随着采样速率的提高带来的一个问题是采样后的数据流速率很高。因此一个实际的无线电通信带宽一般为几千赫兹到几百赫兹。实际对单信号采样时采样率是不高的。所以对这种窄带信号的采样数据流降速是完全可能的。多速率信号处理技术为这种降速处理实现提供了理论依据。 二、带通采样过程 待采样信号为中频是100MHz ,带宽为2MHz 的带通信号: fc0=100e6; //中频频率 fc1=99e6; //信号一的频率

相关主题