搜档网
当前位置:搜档网 › 浅谈石墨烯的发展与应用

浅谈石墨烯的发展与应用

浅谈石墨烯的发展与应用
浅谈石墨烯的发展与应用

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨烯的制作工艺方法是什么

石墨烯的制作工艺方法是什么 石墨烯的制作工艺方法是什么?提到石墨烯,大部分人可能都不陌生,因为这是近两年在网络和报刊杂志上经常出现的词汇——一种功能十分强大的新型材料。不过它的制备却一直成为了阻碍的发展的重要因素。今天我们就一起来看看石墨烯的制作方法是什么。 化学气相沉积法 化学气相沉积法(Chemical Vapor Deposition,CVD)在规模化制备石墨烯的问题方面有了新的突破(参考化学气相沉积法制备高质量石墨烯)。CVD法是指反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。 麻省理工学院的Kong等、韩国成均馆大学的Hong等和普渡大学的Chen等在利用CVD法制备石墨烯。他们使用的是一种以镍为基片的管状简易沉积炉,通入含碳气体,如:碳氢化合物,它在高温下分解成碳原子沉积在镍的表面,形成石墨烯,通过轻微的化学刻蚀,使石墨烯薄膜和镍片分离得到石墨烯薄膜。这种薄膜在透光率为80%时电导率即可达到1.1×106S/m,成为透明导电薄膜的潜在替代品。用CVD法可以制备出高质量大面积的石墨烯,

但是理想的基片材料单晶镍的价格太昂贵,这可能是影响石墨烯工业化生产的重要因素。CVD法可以满足规模化制备高质量石墨烯的要求,但成本较高,工艺复杂。 先进纳米材料制造商和技术服务商——江苏先丰纳米材料科技有限公司,2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看~

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

多孔石墨烯材料的研究进展

多孔石墨烯材料的研究进展 摘要:多孔石墨烯材料同时结合了石墨烯和多孔材料的优点,具有独特的二维结构及优异的理化性质,是一种具备巨大应用潜力的新型纳米碳质材料。然而单一的石墨烯材料很难充分满足各个领域的应用需求,且石墨烯片层容易堆叠和团聚,制约了其实际应用的发展。通过掺杂、改性、组装和复合等手段制备石墨烯衍生物及石墨烯纳米复合物等石墨烯基材料可以丰富并优化石墨烯的性质,拓展并提升石墨烯的性能,对于促进石墨烯的实际应用具有重大意义。作为一种新型石墨烯衍生物,多孔石墨烯以其二维片状结构、超高比表面积、开放的能带间隙、丰富的活性位点等特性吸引了研究者的很大关注。 关键词:石墨烯;杂化;石墨烯衍生物 引言 如果以化学家的视角将人类和世界写成一本书,碳元素必将会跻身关键词之列:从碳基生命到无机碳素,从史前壁画到太空天梯,从钻木取火到蒸汽革命,再从笔墨纸砚书酒花到柴米油糖酱醋茶,碳的身影无处不在,不可替代。作为世界上最为普遍和奇妙的元素,碳变化多端的魅力归因于其电子轨道杂化方式的多样性及其特殊的成键能力和成键方式。碳原子含有四个价电子,往往以sp,sp2和sp3等杂化形式构成具有不同性质的单质或化合物。以碳单质为例,碳元素存在多种结构、性质迥异的同素异形体。其中sp杂化形式的卡宾碳异常活泼,不易单独稳定存在;sp3杂化的金刚石稳定、超硬、价高,化学修饰较困难;sp2杂化的石墨、石墨烯化学修饰较易且具有独特的电子共轭体系,此外还存在杂化形式介于sp2杂化和sp3杂化之间的富勒烯及包含多种杂化形式碳原子的无定形碳等等。碳家族的众多成员极大丰富了碳质材料的性质,为其在各领域的广泛应用奠定了基础[1]。 1石墨烯及石墨烯基材料 石墨烯即单层或少层石墨薄片,是sp2杂化碳原子按照蜂窝状六元环结构排列而成的二维平面网络结构。2004年,曼彻斯特大学的Novoselov和Geim教授研究组利用机械剥离法成功得到独立存在的单原子层石墨烯,两位物理学家因这一开创性的发现在2010年共同获得诺贝尔物理学奖。然而当我们认真地追根溯源时,会发现石墨烯并非一颗横空出世的新星,围绕石墨烯的讨论已经在科学界

多孔石墨烯技术调研及研发方案

多孔石墨烯制备技术调研

1.光蚀刻法 利用高能的电子束、离子束或光子束轰击石墨烯片层,把碳原子从晶格中轰击出来,形成孔洞缺陷的方法。 缺点:操作成本高,高能粒子会破坏周围碳原子的排列,影响其对导电离子的运输能力。 有研究将石墨粉在异丙醇里超声处理48h,然后离心去上层清液在微珊上自然晾干,通过扫描电子显微镜对石墨烯进行蚀刻,可在石墨烯表面形成直径小于10nm的孔。

其中:1.常规石墨烯造孔条件苛刻(高温、高压、催化剂)且常涉及强氧化剂(HNO 3和KMnO 4),后续处理仍高温退火或还原剂(N 2H 4、H 2、NH 3、NaBH 4 等),制备效率低下,且对环境造成严重污染。 2.制备一种硼氮共掺杂多孔石墨烯的制备方法,水蒸气的弱氧化性对孔 边缘进行功能化修饰,从而制备多孔石墨烯,可实现精准的孔调控和规 模化制备。丰富的纳米孔结构能够提供大量活性位点,促进B、N双原子 掺杂的同时提高电解液离子(H +/SO 42-)和溶解小分子(N 2/NH 3)的传递, 从而制备出高效的硼氮掺杂多孔石墨烯催化剂用于N 2 还原催化。 3.国家纳米科学中心的韩宝航研究员课题组将石墨烯氧化物和金属氧酸 盐或多金属氧酸盐在高温条件下产生石墨烯与金属氧化物纳米颗粒,两 者之间发生类似于焦炭高炉炼铁过程中的碳热还原反应,金属氧化物被 石墨烯上的碳还原成金属或形成金属碳化物,而参与碳热还原反应的碳 原子以二氧化碳或一氧化碳形式离开石墨烯片层,从而在石墨烯片层上 刻蚀出纳米级的孔隙,即形成多孔石墨烯 2.碳热还原法 将氧化石墨烯中的碳作为还原剂,还原金属氧化物的 到金属单质,而碳原子被蚀刻。

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

“石墨烯电池”技术

传说中的“石墨烯电池”技术,难道是一场弥天大谎? 近几年来,石墨烯这种获过诺奖的材料一直广受社会关注,在相关媒体上也充满了各种“石墨烯电池”等方面的新闻。 广大群众此时可能会好奇:石墨烯这种材料到底有多少用处,能不能依靠它来解决目前材料、电池等方面遇到的一系列技术瓶颈,帮助电动汽车、储能等行业实现飞跃? 首先上一下结论:“石墨烯电池”这个技术接近于不存在,石墨烯只有在理论上能够提高充放电速率,而对于容(能)量的提升基本没有任何帮助(期望“石墨烯电池”可以解决手机/电动汽车续航的人要失望了),其噱头意义远大于实用价值。 而且石墨烯材料本身纳米材料的高比表面积等性质与现在的锂离子电池工业的技术体系是不兼容的,应用的希望十分渺茫。

在本文中,笔者将结合石墨烯的具体特性,来重点分析石墨烯相关技术,即所谓的“石墨烯电池”在锂电池/储能行业中的发展情况和应用前景。 定义问题:“石墨烯电池”是否存在? 此处,首先援引知乎用户@土豆泥同学的一篇关于石墨烯的文章,其中对于“石墨烯”电池的定义介绍如下: “事实上,国际锂电学术界和产业界并没有“石墨烯电池”这个提法。维基百科里也没有发现“graphene battery”或者“graphene Li-ion battery”这两个词条的解释。根据美国Graphene-info这个比较权威的石墨烯网站的介绍,“石墨烯电池”的定义是在电极材料中添加了石墨烯材料的电池。这个解释显然是误导。 根据经典的电化学命名法,一般智能手机使用的锂离子电池应该命名为“钴酸锂-石墨电池”。之所以称为“锂离子电池”,是因为SONY在1991年将锂离子电池投放市场的时候,考虑到经典命名法太过复杂一般人记不住,并且充放电过程是通过锂离子的迁移来实现的,体系中并不含金属锂,因此就称为“Lithium ion battery”。最终“锂离子电池”这个名称被全世界广泛接受,这也体现了SONY在锂电领域的特殊贡献。 目前,几乎所有的商品锂离子电池都采用石墨类负极材料,在负极性能相似的情况下,锂离子电池的性能很大程度上取决于正极材料,所以现在锂离子电池也有按照正极来称呼的习惯。比如,磷酸铁锂电池(BYD所谓的“铁电池”不在笔者讨论范畴)、钴酸锂电池、锰酸锂电池、三元电池等,都是针对正极而言的。那么以后如果负极用硅材料会不会叫做硅电池?也许可能吧。但不管怎么样,谁起主要作用就用谁命名。” 从此文可以看出,在电池中,以主要作用的成分(磷酸铁锂锂电池)、机理(液流电池等)来命名是一般通用的规则,那么对于“石墨烯电池”呢?

浅谈石墨烯的发展与应用

浅谈石墨烯的发展与应用 碳元素广泛存在于自然界,其独特的物性和多样的形态随着人类文明的进步而逐渐被发现。自1985年富勒烯和1991年碳纳米管被科学家发现以后,三维的金刚石、一维的碳纳米管、零维的富勒球组成了碳系家族。碳的零维、一维、三维结构材料已经被实验证实可以稳定存在的,那二维的理想石墨烯(Graphene)片层能自由存在吗?关于准二维晶体的存在性,科学界一直存在争论。早先科学家认为,准二维晶体材料由于其本身的热力学不稳定性,在室温环境下会迅速分解或拆解,长程有序结构在无限的二维体系中无法维持。但单层Graphene作为研究碳纳米管的理论模型得到了广泛的关注。直到2004年,英国曼彻斯特大学的物理学教授Geim等用一种极为简单的方法剥离并观测到了自由且稳定存在的单层Graphene,掀起了一场关于Graphene理论与实验的研究新热潮。Graphene 是材料科学和凝聚态物理学领域的一颗迅速上升的新星。尽管一般的材料要等到商业产品的出现,其应用价值才能被肯定,但是Graphene在基础科学中的重要性却无需更多的证明。虽然Graphene走过的历史很短,但是这种严格的二维材料具有特殊的晶体学和电学性质,并且在应用方面有可预见的价值。 一、Graphene的结构 Graphene是由碳原子六角结构(蜂窝状)紧密排列的二维单层石墨层。每个碳原子通过σ键与其它三个碳原子连接,由于每个碳原子有四个价电子,所以每个碳原子又会贡献出一个未成键的π电子。这些π电子在晶体中自由移动赋予了Graphene良好的导电性。同时,Graphene还可以包成0维富勒烯,卷成1维碳纳米管,叠成3维石墨,它是众多碳质材料的基元,如果对Graphene有更深入的了解,就有可能依照人们的意愿定向制备某种需要的碳质材料。在此有一点需要说明,Graphene层并不是完全平整的,它具有物质微观状态下固有的粗糙性,表面会出现起伏如波浪一般。这种褶皱会自发的产生并且最大厚度可达到0.8nm,也有一种观点认为褶皱是由于衬底与Graphene相互作用导致的,具体原因还在进一步研究中。 在回顾关于Graphene早先的工作之前,定义什么是2维晶体是很有用的。很显然,单原子薄层是2维晶体,100个单原子层的叠加可以认为是一个薄的3维材料。但是具体多少层才算是3维材料?对于Graphene,这个问题变得比较明朗。众所周知,电子结构随着层数的变化而迅速演变,10层的厚度就可以达到3维石墨的限制要求。在很好的近似下,单层和双层Graphene都有简单的电子光谱:它们都是具有一种电子和一种空穴的零带隙的半导体(亦即零交叠半金属)。对于三及三以上数目的薄层,光谱将变得复杂:许多电荷载体出现,导带和价带也明显的交叠。这一条件就将Graphene区分成三类:单、双、多(3到<10)层Graphene,更厚的结构可以被认为是薄层的石墨。 二、Graphene的性质 虽然有很多新的2维材料,但是目前几乎所有的试验和理论的成果都集中在Graphene上,而忽略了其它2维晶体的存在。对Graphene的这种偏爱是否公

石墨烯复合材料应用最新研究进展

2019年3月第46卷第3期 云南化工 Yunnan Chemical Technology Mar.2019 Vol.46,No.3 doi:10.3969/j.issn.1004-275X.2019.03.062 石墨烯复合材料应用最新研究进展 程扬帆 (湖北科技学院,湖北咸宁,437000) 摘要:介绍了石墨烯复合材料在国内外的应用前景及应用进展,着重介绍了利用石墨烯特性应用于电容储能、环境治理、导热散热性能和导电等多领域的研究。石墨烯复合材料的应用潜力巨大,具有非常广阔的市场前景。 关键词:石墨烯;复合材料;应用前景 中图分类号:TQ04文献标志码:A文章编号:1004-275X(2019)03-157-02 Recent Research Progress in the Application of Graphene Composites at Home and Abroad Cheng Yangfan (Hubei Institute of Science and Technology,Xianning,Hubei,437000) Abstract:This paper introduces the application p rospects and progress of graphene composites at home and abroad.It focuses on the application of graphene characteristics in capacitance energy storage, environmental management,thermal conductivity and heat dissipation,conductivity and other fields. Graphene composites have great potential and broad market prospects. Key words:Graphene;Compound material;Application prospect 1石墨烯复合材料及其应用前景 1.1定义与特性 石墨烯被称为“单层石墨片”。它是一种二维的结构,密集的碳原子与石墨的单原子层十分类似,是一种新型碳材料。石墨烯的多种优点造就它多种用途,比如它的比表面积大,可以用于吸附和环境治理;机械强度高可以用于航空航天等;载流子迁移率高可以用于半导体与电容等设备。应用的环境非常广泛,随着石墨烯新型材料国内外发展,石墨烯不但可以显著提升传统产业,还可以为高端制造业的发展提供推力。1.2国内外石墨烯复合材料发展趋势及应用前景 目前,世界上有很多关于石墨烯的讨论。2012年,有近2万篇关于石墨烯研究的论文被纳 入科学研究。中国和美国是前两个国家。与此同时,其他国家也积极参与石墨烯相关专利申请的布局。截至2013年6月,它已申请了3,000多项相关发明专利。从2006-2017年,国内和国际研究呈上升趋势。在“十一五”期间,石墨烯复合技术的发展还处于起步阶段,国内外研究的数量相对较少。在“十二五”期间,国外开展了研究,主要集中在石墨烯的制备和化合物的研究上。随后,石墨烯复合材料的研究进入了快速发展阶段。在过去两年中,研究数量已超过以前的总数。其中,国外研究数量急剧增加,工业化进程不断推进,国内则在重点领域不断扩展提升。 由于石墨烯的重要特性和巨大应用价值,全球多个国家将其定义到发展战略高度。比如亚太地区的日本和中国,美国、以及欧洲欧盟等区域国家。这其中不少国家投入的研究和开发金额达到十亿美元,专门用来研究用于石墨烯材料。美国科技发展战略同样包括石墨烯技术。各国企业也积极进行石墨烯产业的布局,相关开发和研究涉及多家公司,像比如洛克希德·马丁、波音、三星、IBM、杜邦、陶氏化学、索尼等巨头均在公司名单中[1]。 2石墨烯复合材料国内外应用进展 由于石墨烯具有多种独特的优点,将它作为复合材料的填充相,就可以增强材料的相应性能,这就为它的应用提供了多种方向。比如国内外相关研究应用于能量储存、液晶器件、电子器件,而在其他领域比如生物材料、传感材料和催化剂载体等也有较多的报道。随着对石墨烯复合材料研究的不断深入,它应用也越来越受到人们的重视。 2.1石墨烯储能复合材料应用 锂电池是当前用途最广泛的电池能源,锂电池整体性能提升的关键是开发新的电极材料。石墨烯作为一种新型碳质材料,加入到锂离子电池中能够大幅提高其导电性,因为它为锂离子电池解决了两个问题,大幅度提高能量密度与大幅度提高功率密度。相对应的,石墨烯就可以作为电池导电的添加剂了。国内也有报道将它作为复合电极材料的正负极[2]。 157--

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

石墨烯技术产业发展现状与趋势

摘要:2013年1月,石墨烯入选欧盟两项“未来和新兴技术旗舰项目”之一(另一项为“人类大脑工程”),欧盟委员会计划在未来十年投入10亿欧元开展石墨烯应用技术研发与产业化,再一次激起了各界对这一革命性材料的关注。 关键字:石墨烯;态势;趋势;技术转移;石墨烯;态势;趋势;技术转移;石墨烯;技术转化;产业化 石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,也是目前发现的硬度最高、韧性最强的纳米材料。因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。英国两位科学家因发现从石墨中有效分离石墨烯的方法而获得2010年诺贝尔奖,引起了科学界和产业界的高度关注,石墨烯相关专利开始呈现爆发式增长(2010年353件,2012年达1829件)。世界各国纷纷将石墨烯及其应用技术研发作为长期战略予以重点关注,美国、欧盟各国和日本等国家相继开展了大量石墨烯研发计划和项目。总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成,但总体竞争格局还未完全形成。具体发展态势如下: 态势一:制备与改性的突破为产业化提供了技术支撑 一方面,石墨烯制备技术取得突破。石墨烯制备技术与设备是石墨烯生产的基础。一直以来,石墨烯大规模制备技术是阻碍其产业化的最重要因素。近来,石墨烯制备技术取得了若干突破,目前已形成自上而下(Top-Down)和自下而上(Bottom-Up)两种途径,开发出了从简易低成本制造到大面积量产工艺的多种方法,包括:机械剥离、氧化还原法、化学气象沉积(CVD)、外延生长、有机合成、液相剥离等。这些方法各有优缺点,需要根据不同的需求进行选择(表1)。其中,氧化还原法因成本低且易实现,有望成为最具发展前景的制备方法之一。同时,各种方法

解读石墨烯四大应用领域

石墨烯四大应用领域全解读 石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,是目前发现的硬度最高、韧性最强的纳米材料。因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。石墨烯相关专利开始呈现爆发式增长(2010 年353 件,2012年达1829 件)。总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成。 石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈;杰姆和克斯特亚;诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。因此,两人在2010年获得诺贝尔物理学奖。 石墨烯应用领域 中科院近期发布的一份报告指出,石墨烯的研究和产业化发展持续升温,从石墨烯专利领域分布来看,其应用技术研究布局热点包括:石墨烯用作锂离子电池电极材料、太阳能电池电极材料、薄膜晶体管制备、传感器、半导体器件、复合材料制备、透明显示触摸屏、透明电极等。主要集中在如下四个领域: (一)传感器领域。 石墨烯因其独特的二维结构在传感器中有广泛的应用,具有体积小、表面积大、灵敏度高、响应时间快、电子传递快、易于固定蛋白质并保持其活性等特点,能提升传感器的各项性能。主要用于气体、生物小分子、酶和DNA 电化学传感器的制作。新加坡南洋理工大学开发出了敏感度是普通传感器1000 倍的石墨烯光传感器;美国伦斯勒理工学院研制出性能远超现有商用气体传感器的廉价石墨烯海绵传感器。 (二)储能和新型显示领域。 石墨烯具有极好的电导性和透光性,作为透明导电电极材料,在触摸屏、液晶显示、储能电池等方面有很好的应用。石墨烯被认为是触摸屏制造中最有潜力替代氧化铟锡的材料,三星、索尼、辉锐、3M、东丽、东芝等龙头企业均在此领域作了重点研发布局。美国德州大学奥斯汀分校研究人员利用KOH对石墨烯进行化学修饰重构形成多孔结构,得到的超级电容的储能密度接近铅酸电池。密歇根理工大学科学家研发出一种独特蜂巢状结构的三维石墨烯电极,光电转换效率达到7.8%,且价格低廉,有望取代铂在太阳能电池中的应用。东芝公司研发出石墨烯与银纳米线复合透明电极,并实现了大面积化。 (三)半导体材料领域。

石墨烯的结构、制备、性能及应用研究进展

石墨烯的结构、制备、性能及应用研究进展

姓名:学号: 20150700 密封线 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准

姓名:学号: 20150700 密封线

姓名:学号: 20150700 密封线 2. 报告结构合理,表述清晰 20分 3. 石墨烯的结构、性能、制备方法概述正确、 新(查阅5篇以上的文献) 20分 4. 石墨烯的应用研究进展概述(文献)全、新 (查阅5篇以上的文献) 20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象 20分 三、教师评语 请根据写作内容给定成绩,填入“成绩”部分。

密封线 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规范。注3:不符合规范试卷需修改规范后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元 素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的 三维晶体结构,属于天然矿石。除石墨和金刚石外,碳材料还包括活性炭、 碳黑、煤炭和碳纤维等非晶形式。煤是重要的燃料。碳纤维在复合材料领域 有重要的应用。20 世纪80 年代,纳米材料与技术获得了极大的发展。纳米 碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原子构成 的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继 出现,为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构, 它们的出现开启了富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学 奖。1991 年,由石墨层片卷曲而成的一维管状纳米结构:碳纳米管被发现。 如今,碳纳米管已经成为一维纳米材料的典型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨烯,出现在碳材料的“家 谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和 康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理 学奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石

相关主题