搜档网
当前位置:搜档网 › Precise Gaussian estimates of heat kernels on asymptotically flat Riemannian manifolds with

Precise Gaussian estimates of heat kernels on asymptotically flat Riemannian manifolds with

Precise Gaussian estimates of heat kernels on asymptotically flat Riemannian manifolds with
Precise Gaussian estimates of heat kernels on asymptotically flat Riemannian manifolds with

Precise Gaussian estimates of heat kernels on asymptotically ?at Riemannian manifolds with poles

Shigeki Aida

Department of Mathematical Science

Graduate School of Engineering Science

Osaka University,Toyonaka,560-8531,JAPAN

e-mail:aida@sigmath.es.osaka-u.ac.jp

Abstract

We give precise Gaussian upper and lower bound estimates on heat kernels on Riemannian man-ifolds with poles under assumptions that the Riemannian curvature tensor goes to 0su?ciently fast at in?nity.Under additional assumptions on the curvature,we give estimates on the loga-rithmic derivatives of the heat kernels.The proof relies on the Elworthy-Truman’s formula of heat kernels and Elworthy and Yor’s observation on the derivative process of certain stochastic ?ows.As an application of them,we prove logarithmic Sobolev inequalities on pinned path spaces over such Riemannian manifolds.

1.Introduction

Let p (t,x,y )be the heat kernel of a di?usion semigroup e t ?/2on a d -dimensional complete Riemannian manifold (M,g ),where ?denotes the Laplace-Beltrami operator on (M,g ).For some classes of Riemannian manifolds,the following Gaussian upper and lower bounds are valid (see [30]):For all t >0,x,y ∈M ,it holds that (1.1)C 1t ?d/2exp ?d (x,y )22(1?C 2)t ≤p (t,x,y )≤C 3t ?d/2exp ?d (x,y )22(1+C 4)t ,where d (x,y )denotes the Riemannian distance between x and y ,C 1,C 3are positive constants and C 2,C 4are nonnegative constants with C 2<1.It is natural to expect that more precise estimate holds under stronger assumptions on the Riemannian manifold.In fact,under nonnegativity of the Ricci curvature,Li-Yau’s lower bound estimate [24],(1.1)with C 1=(2π)?d/2,C 2=0,holds.Also if the sectional curvature is nonpositive and M is simply connected,the upper bound in (1.1)holds with C 3=(2π)?d/2and C 4=0by [7].Note that the lower bound in (1.1)does not hold for t ∈[0,T ]for any ?xed T in the case of hyperbolic spaces.In [2],the author proved the lower bound with C 2=0for any t ∈[0,T ]under the assumptions that x is a pole and the derivatives of Riemannian metric go to 0su?ciently fast at in?nity although negative curvature part remains.In this paper,we prove similar estimates on Riemannian manifolds with poles under the assumptions that the curvature and the derivatives go to 0su?ciently fast at in?nity.The present proof is simpler than the previous one.Also we discuss estimates on the logarithmic derivatives of heat kernels.The second derivative of log p (t,x,y )with respect to y was studied in connection with parabolic Harnack inequality [24],[32].On the other hand,it is pointed out in [18],[22]that ?2y log p (t,x,y )is related to a logarithmic Sobolev inequality (=LSI for short)on loop space over the Riemannian manifold.In [1],su?cient conditions for LSI

1

2

in terms of the heat kernel were given.Malliavin and Stroock[25]showed that the small time behavior of the second derivative of log p(t,x,y)dramatically changes if y is in the cut-locus of x.However in our case,there are no cut-locus and we can check the conditions in[1]by our main theorem.The key ingredients of our arguments are the Elworthy and Truman’s formula[15]and Elworthy and Yor’s observation on the derivative process of stochastic?ows[16].In[29],Ndumu studied derivative formulae of heat kernels by using Elworthy and Truman’s formula.However,his assumptions on the boundedness of the derivative process is too restrictive.The key point in the present paper is to use Elworthy and Yor’s observation to avoid the di?culty.

Acknowledgement:I am grateful to David Elworthy for informing me a preprint of Ndumu[29].Also I thank the referee for the comment on the heat kernel bound.

2.Elworthy and Truman’s formula and estimates on heat kernels

Let(M,g)be a d-dimensional complete Riemannian manifold with a pole o.That is, we assume that the exponential map exp:T o M→M is a di?eomorphism.Let

(2.1)θ(x)=det

(d exp o)

exp?1

o(x)

,

where(d exp o)

exp?1

o(x)denotes the derivative of the exponential map at exp?1

o

(x).Note that

θis a positive smooth function on M.This is called a Ruse’s invariant.Now,we embed M into a higher dimensional Euclidean space R N isometrically and let P(x):R N→T x M be the projection operator.Let us consider the following SDE with a singular drift at time t:

dX(s,x,w)=b s(X(s,x,w))ds+P(X(s,x,w))?dw(s)(0≤s

(2.2)

X(0,x,w)=x,

(2.3)

where

(2.4)b s(x)=?

1

t?s

?

d(o,x)2

2

?

1

2

?logθ(x).

For simplicity,we denote E(x)=d(o,x)2/2sometimes.Let p(t,x,y)be the heat kernel of e t?/2.Elworthy-Truman[15],[12]proved that

Theorem2.1.(1)X(s,x,w)(0≤s

(2)For any x,it holds that

p(t,o,x)=exp

?d(o,x)2

2t

(2πt)d/2

θ(x)?1/2h(t,o,x),

(2.5)

3

where

h (t,o,x ):=E exp t 0

V (X (s,x,w ))ds ,(2.6)

V (x )=12θ(x )1/2? θ?1/2 (x ).(2.7)To state our estimates,we recall basic notions in Riemannian geometry.Let R (X,Y )Z :=?X ?Y Z ??Y ?X Z ??[X,Y ]Z be the Riemannian curvature tensor,where X,Y,Z are vector ?elds on M .The Ricci curvature,Ric x ∈T x M ??T x M is given by Ric = d

i =1R (·,e i )e i ,where {e i }is an orthonormal frame of T x M .Let K be the sectional curvature,that is K π(x )=g (R (X,Y )(Y ),X ),where X,Y ∈T x M are orthogonal unit vectors and πis the plane spanned by X,Y .We consider the following assumption.We identify a second covariant derivative of a function with a symmetric operator below.

Assumption 2.2.(A1)The n -th covariant derivatives of log θ(x )(1≤n ≤4)are bounded continuous functions on M .

(A2)There exists a positive constant ε>0such that for all x ∈M ,

(2.8)?2x

d (o,x )22 ≥1+ε2

I T x M .(A3)There exists a constant C >0such that for all x ∈M ,

(2.9) ?3x d (o,x )22 + ?2x d (o,x )22

≤C.(A4)The Riemannian curvature tensor and the ?rst derivative of the Ricci curvature are bounded.

By using the Levi-Civita connection,the semimartingale X (s,x,w )(0≤s

Lemma 2.3.Assume (A1),(A2),(A3),(A4).Then the following formulae hold:?x h (t,o,x )(ξ)(2.10)=E

t 0 ?V (X )s ,ˉv 1(ξ,s )

ds ·exp t 0

V (X (s,x,w ))ds

4

?2x h (t,o,x )(ξ1,ξ2)(2.11)=E t

0 (?V )(X )s ,ˉv 2(ξ1,ξ2,s )? s 0R (X )u (ˉv 1(ξ2,u ),?dX (u ))ˉv 1(ξ1,s ) ds +

t 0(?2V )(X )s (ˉv 1(ξ1,s ),ˉv 1(ξ2,s ))ds

+ t 0 (?V )(X )s ,ˉv 1(ξ1,s ) ds t 0 (?V )(X )s ,ˉv 1(ξ2,s )

ds

×exp

t 0V (X (s,x,w ))ds

where ξ,ξ1,ξ2∈T x M and ˉv 1(·,s )∈T x M ??T x M ,ˉv 2(·,·,s )∈T x M ??T x M ??T x M are the solutions to the following ODEs:˙ˉv 1(ξ,s )= ?1t ?s ?2E (X )s ?12Ric(X )s ?12

?2log θ(X )s ˉv 1(ξ,s )(2.12)ˉv 1(ξ,0)=ξ

˙ˉv 2(ξ1,ξ2,s )(2.13)= ?1t ?s ?2E (X )s ?12Ric(X )s ?12?2log θ(X )s ˉv 2(ξ1,ξ2,s )+ s 0R (X )u ˉv 1(ξ2,u ),?dX (u ) ?1t ?s ?2E (X )s ?12Ric(X )s ?12s ˉv 1(ξ1,s )?1t ?s

s (ˉv 1(ξ1,s ),ˉv 1(ξ2,s ))?12?Ric(X )s (ˉv 1(ξ1,s ),ˉv 1(ξ2,s ))?12

?3log θ(X )s (ˉv 1(ξ1,s ),ˉv 1(ξ2,s ))ˉv 2(ξ1,ξ2,0)=0and X (s )= s 0τ(X )?1s ?dX (s,x,w ).Moreover,V,?V,?2V and sup 0≤s ≤t ˉv 1(t ) op are bounded functions of x and w .Also sup x E sup 0≤s ≤t ˉv 2(s ) p op <∞for all p >1.In particular,?x h (t,o,x ),?2x h (t,o,x )are bounded functions on M .

Proof.Note that

V (x )=14

|?log θ(x )|2?2?log θ(x ) .Hence,(A1)implies V ,?V ,?2V are bounded.Let N (x ):R d →T x M ⊥be the projection operator.We also ?x a metric connection on the normal bundle π:N (M )→M .Let b (s )=

s 0 τ(X )?1s P (X (s,x,w ) ?dw (s )(2.14)β(s )= s 0 τ(X )?1s N (X (s,x,w ) ?dw (s )

(2.15)

5

Note that b (s )and β(s )are independent Brownian motions on T x M and T x M ⊥respec-tively.Since X (s )satis?es the following SDE,dX (s )=?1t ?s ?E (X )s ds ?12

?log θ(X )s ds +db (s ),(2.16)

X (0)=0,(2.17)X (s )and X (s,x,w )are B -measurable,where B =σ(b (s )|0≤s <1).Note that,

formally,v 1(ξ,s )=τ(X )?1s ?x X (s,x,w )(ξ)satis?es the following SDE:

dv 1(ξ,s )=A (X )s (v 1(ξ,s ),dβ(s ))?12Ric(X )s (v 1(ξ,s ))(2.18)?1t ?s ?2E (X )s (v 1(ξ,s ))?12

?2log θ(X )s (v 1(ξ,s ))v 1(ξ,0)=ξ,

where A denotes the shape operator of M in R N .The non-explosion property of X implies that X (s,x,w )exists for all 00,x →X (s,x,w )is a di?eomorphism and (2.18)holds.See [16],[4].Roughly speaking,(2.12)can be obtained by taking the conditional expectation of v 1(ξ,s )with respect to B by noting the independence of B and β.Similarly (2.10)can be proved by taking the conditional expectation with respect to B in the Wiener functional representation formula for ?x h (t,o,x )which is obtained by taking the derivative of (2.6)with the help of (2.18)and (2.12)as in [16],[4],[13].However A (X )s may not be integrable function on the Wiener space and so we should be careful to take derivative and the conditional expectation.Hence,we need consider the approximate function of h (t,o,x )to di?erentiate itself.Let

h ε,L (t,o,x )(2.19)=E exp

t ?ε0V (X (s,x,w ))ds ?L d (o,X (·,x,w ))2 2m κ,m,t ?ε .

Here ?L is a smooth cut-o?function whose support is in [?L 2,L 2]and ?(u )=1for u ∈[?L,L ]and all derivatives of ?L goes to 0uniformly on R when L →∞. κ,m,t is given by γ 2m κ,m,t = γ 2m L 2m ([0,t ])+ t 0 t 0

|γ(u )?γ(s )|2m |u ?s |1+2mκduds,where 0<κ<1/2,2κm >1and m is an integer.Note that the norm κ,m,t can be de?ned for positive real number m satisfying the above relation on m and κ.Then lim ε→0,L →∞h ε,L (t,o,x )=h (t,o,x ).In (2.19),we may assume X (s,x,w )is smooth with respect to x because we may assume X (·,x,w )moves in a compact subset thanks to the existence of the cut-o?function.Thus we can di?erentiate both sides of (2.19)and we may assume that the equation (2.18)is valid up to the exit time of X (s,x,w )from a

6

compact set.Consequently,we have

(?h ε,N (t,o,x ),ξ)(2.20)=E t ?ε0

?V (X )s ,v 1(ξ,s ) ds exp

t ?ε0

V (X (s,x,w ))ds ×?L d (o,X (·,x,w ))2 2m κ,m,t ?ε +E exp

t ?ε0V (X (s,x,w ))ds ? L ( d (o,X (·,x,w ))2 2m κ,m,t ?ε)Φ1(ξ,w ) ,

where Φ1(ξ,w )=4m

t ?ε0d (o,X (s,x,w ))4m ?1 ?d (o,X )s ,v 1(ξ,s ) ds (2.21)+4m t ?ε0 t ?ε

0{d (o,X (u,x,w ))2?d (o,X (s,x,w ))2}2m ?1|u ?s |1+2mκ· u ,v 1(ξ,u ) ? s ,v 1(ξ,s )

duds.If X (s,x,w )moves in a compact subset in (2.20),(2.21),s are bounded and so it holds that for all 1≤p <∞and 0

d (o,X (s,x,w ))

<∞.

Therefore sup 0≤s ≤t ?ε v 1(ξ,s ) p is integrable in (2.20)and (2.21)for all 1≤p <∞.Since

Φ1(ξ,w )≤4m d (o,X (·,x,w )) 4

m ?1L 4m ?1([0,t ?ε])sup 0≤s ≤t ?ε

v 1(ξ,s )

+4Cm d (o,X (·,x,w ))2 2m 2mκ/(2m ?1),m ?(1/2),t ?εsup 0≤s ≤t ?ε

v 1(ξ,s ) ,

we can take conditional expectation with respect to B in (2.20).Then we can replace v 1(ξ,s )by ˉv 1(ξ,s )in (2.20)which we call equation (2.20)’.If the boundedness of ˉv 1can be proved,by taking the limit ε→0,L →∞,we obtain (2.10).By taking derivative with respect to x in (2.20)’,(2.11)follows from the same argument as (2.10)noting that

(2.23) ?x T (X )s ,ξ = ?T (X )s ,v 1(ξ,s ) + s 0

R (X )u v 1(ξ,u ),?dX (u ) T (X )s .

Now we need only to prove the boundedness of ˉv i .Let

(2.24)C (X )s =s ?αI T x M ,

where αis a positive number such that 12<α<1+ε2.Note that C (X )s is a positive symmetric operator.Let N (X )s be the T x M ??T x M -valued process such that ˙N (X )s = ?C (X )s t ?s ?12Ric(X )s ?12

?2log θ(X )s N (X )s (2.25)N (X )0=I

(2.26)

7

Then ˉv 1(ξ,s )=(t ?s )αs ξ.Also explicitly,we have ˉv 2(ξ1,ξ2,s )=(t ?s )α s 0

(t ?u )?αN (X )s N (X )?1u ?1t ?u ?3E (X )u (ˉv 1(ξ1,u ),ˉv 1(ξ2,u ))?12?Ric(X )u (ˉv 1(ξ1,u ),ˉv 1(ξ2,u ))?12?3log θ(X )u (ˉv 1(ξ1,u ),ˉv 1(ξ2,u ))+ u 0τ ˉv 1(ξ2,τ),?dX (τ) ?1t ?u u ?12u ?12

?2log θ(X )u ˉv 1(ξ1,u ) du.Since sup 0≤u ≤s ≤t N (X )s N (X )?1u ≤C (see Lemma 3.2in [1]), ˉv

1(ξ,s ) ≤C (t ?s )α.Also by the boundedness of the Riemannian curvature tensor and ?2E ,we can complete the proof of the uniform boundedness of L p -norm of ˉv 2.

We introduce a function ?a (t )for a ≥0such that ?a (t )= e √at ?1√a if a >0t if a =0

The following are our main estimates.

Theorem 2.4.We assume that

(2.27)

?a :=inf x,πK π(x )>?∞and a ≥0.We denote

R n (t )=sup ?k R (x ) d (o,x )=t,0≤k ≤n .

(2.28)(1)Further we assume that δ:=

∞0?a (t )R 0(t )dt <1.(2.29)

Then for any x ∈M ,

(2.30)

1?δ1+δI T x M ≤?2x d (o,x )22 ≤1+δ1?δI T x M .(2)Assume (2.29)and

(2.31)

∞0?a (t )t 2R 2(t )dt <∞.

Then it holds that 0

?3x d (o,x )22 <∞.

8

(3)Assume the same assumptions as in (2).Set (2.33)f (t,x )=(2πt )d/2exp d (o,x )22t

p (t,o,x ).Then for ?xed 0

(2.34)C 1(T )≤f (t,x )≤C 2(T ).

(4)Assume (2.29)with δ<1/3and ∞

?a (t )t 4R 4(t )dt <∞.

(2.35)Then there exists positive constant C 3(T )such that

(2.36)

sup 0

where k =1,2.

When a =0,that is,M is a nonnegative curvature manifold,by the results in [7,24],the lower bound estimate in (2.34)holds with C 1(T )=1.Note that inf x,πK π(x )≤0because M is noncompact.If M is a nonpositive curvature manifold,all points of M are poles and we can prove the following.

Corollary 2.5.Assume

(2.37)?∞

(1)Further we assume that

∞0?a (t )S 0(t )dt <∞.

(2.39)

Then there exists a positive constant C such that for any x,y ∈M ,(2.40)I T y M ≤?2y d (x,y )22

≤C ·I T y M .(2)Assume

(2.41)

∞0?a (t )t 2S 2(t )dt <∞.

Then it holds that 0

?3y d (x,y )22 <∞.Here θx (y )denotes the Ruse’s invariant in the case where the pole is x .

9

(3)Assume the same assumptions as in (2).Set (2.42)f (t,x,y )=(2πt )d/2exp d (x,y )22t

p (t,x,y ).Then for ?xed 0

(2.43)

D 1(T )≤f (t,x,y )≤D 2(T ).(4)Assume

∞0?a (t )t 4S 4(t )dt <∞.

(2.44)

Then there exists positive constants D 3(T )such that

(2.45)

sup 0

where k =1,2.

In the above corollary,if a =0,then M is a Euclidean space and all estimates are trivial.Note that assumptions (2.39),(2.41),(2.44)does not depend on the choice of p .Now we prove the above theorem and the corollary.

Proof of Theorem 2.4.Below,we proceed as if a >0.When a =0,the proof works by replacing a by a positive number ε?rst and taking the limit ε→0.Take ξ∈T o M and let l ξ(s )=exp o (sξ).For v 1,v 2∈T o M ,let J (s,v 1,v 2)be the solution to the following Jacobi equation:

(2.46)¨J (s )=?R (l ξ)s (J (s ),ξ)(ξ),J (0)=v 1,˙J (0)=v 2.J (s,0,v )has the following explicit form:

(2.47)J (s,0,v )=s ·τ(l ξ)?1s (d exp o )sξ(v ) .

Here we use the identi?cation T sξ(T o M )=T o M .By the de?nition,we have θ(l ξ(1))=det J (1,0,·)and we see (2.48)?2E (l ξ)1(J (1,0,v ),J (1,0,v ))= ˙J (1,0,v ),J (1,0,v )

.

Thus if v →J (s,0,v )is invertible,then ?2E (l ξ)1=˙J (1,0,J ?1(1,0,·)).Hence,we give

estimates on J,˙J .Let U (s )=J (s,0,v )and V (s )=˙U (s )√a ξ .Then ρ(s )= U (s ) 2+ V (s ) 2satis?es ˙ρ(s )=2√a ξ (U (s ),V (s ))? a ?1R (l ξ)t (U (s ),ξ ξ )ξ ξ

,V (s ) .(2.49)Since T (X,Z )=(R (X,Y )Y,Z )is a symmetric form of X,Z ,(R (X,Y )Y,Z )≥?a X Z holds when Y =1.Therefore,we have ˙ρ(s )≤2√a ξ ρ(t )and (2.50)max { U (s ) , V (s ) }≤ ρ(s )≤exp(√a ξ s )√a ξ

v .

10

Also by the de?nition of U (s ),we have

(2.51) J (s,0,v ) = U (s ) =√a ξ

s 0 V (u ) du ≤exp(√a ξ s )?1√a ξ

v .Moreover by the de?nition,we have ˙J (s,0,v )?v ≤ s

0 R (l ξ)s (U (s ),ξ)(ξ) ds (2.52)

≤ s 0R 0( ξ u ) ξ 2exp(√a ξ u )?1√a ξ v du ≤ ξ s

R 0(u )?a (u )du v .

This implies (1?δ) v ≤ ˙J (s,0,·) ≤(1+δ) v .By this,we have for all s >0, J (s,0,v )?sv ≤s ∞

R 0(u )?a (u )du v

(2.53)and J (s,0,v )?sv ≤sδ v .This implies {s (1+δ)}?1≤ J (s,0,·)?1 ≤{s (1?δ)}?1.These prove (2.30).Since θ(l ξ(1))=det J (1,0,·),θ(·)is bounded from below and above by positive constants.Next we prove the bound on ?θ,?2θin (2).To this end,di?erentiating the Jacobi equation for U (s )with respect to ξ,we get an equation for U 1(s ):=?ξU (s )such that

¨U 1(s )(·)=?R (l ξ)s

(U 1(s )(·),ξ)(ξ)+W (s,v ),(2.54)where U 1(0)=˙U

1(0)=0and W (s,v )=??R (l ξ)s (J (s,0,·),U (s ),ξ)(ξ)? s 0

R (l ξ)u (J (u,0,·),ξ)du

R (l ξ)s (U (s ),ξ)(ξ)

?R (l ξ)(U (s ),·)(ξ)?R (l ξ)(U (s ),ξ)(·).

We represent U 1(s )by the method of constant variation.To this end,for t,τ≥0,let K τ(t )= 0I ?R (l ξ)t +τ(·,ξ)ξ0

.(2.55)Let us consider the following ODE:

˙Q

(t )=K τ(t )Q (t )(2.56)Q (0)=I.

(2.57)We denote the solution by Q τ(t ).Noting that Q 0(t )Q ?10(s )=Q s (t ?s )for t ≥s ,we have U 1(s )˙U 1(s ) =Q 0(t ) t 0Q 0(s )?1 0W (s,v ) ds (2.58)= t 0

Q s (t ?s ) 0W (s,v ) ds

11

We denote the ?rst component of Q s (t )t (0,v )by J s (t,0,v ).Then,by the same method as in the case of J (s,0,v ),we have

(2.59) J s (t,0,v ) ≤Ct v .

Note that there exists a constant C which is independent of ξsuch that 1

0|W (s,v )|ds ≤C v .For example,

10 ?R (l ξ)s (J (s,0,·),U (s ),ξ)(ξ) ds ≤ 10R 1(s ξ )·Cs ·e √a ξ s ?1√a ξ ds (2.60)= ξ

0sR 1(s )?a (s )ds.

Other terms are also estimated in similar way.This implies sup 0≤s ≤1 U 1(s ) ≤C v ,where C does not depend on ξ.Noting U 1(s )=?J (s,0,v )(J (s,0,)),we get for any 0≤s ≤1,sup ξ ?J (s,0,v ) <∞.This implies ?θis bounded.By the calculation similar to this,we obtain the boundedness of ?2θunder (2.31).We prove (2.32).Noting

?ξ?2E (l ξ)1=?3E (l ξ)1(·,·,J (1,0,·)),we need only to prove sup ξ ?ξ ˙J (1,0,J ?1(1,0,·)) <∞.This follows from the formula

for ˙U

1and estimates on W (s,v ),˙J s (t ?s,0,v ).The estimate on ˙J s (t ?s,0,v )is similar to that of ˙J (t ?s,0,v ).We prove (3).If (2.29)holds with δ<1/3,then (A2)holds.By

(2)and the explicit expression of V in terms of θ,(3)is obvious.For the proof (2.36),it su?ces to prove that ?3θ,?4θare bounded.To this end,it is su?cient to prove that

U i (s )=?i ξU (s )are matrices valued functions for i =3,4satisfying that

(2.61) ?i ξU (s ) ≤C ·min e s √a ξ ?1√a ξ

,s v .The proof is essentially the same as the estimate on U 1by the assumption.So we omit it. Proof of Corollary 2.5Since M is negatively curved manifold,?2y d (x,y )22

≥I T y M and J (1,0,v ) ≥ v .See,for example,Corollary 4.6.1and Theorem 4.6.1in [23].Therefore,θx (y )≥1.By using these estimates,the proof in Theorem 2.4works.We omit the details.

Let P x,y (M )=C ([0,1]→M |γ(0)=x,γ(1)=y )and we denote the pinned Brownian motion measure by νx,y .On P x,y (M ),a Dirichlet form is naturally de?ned by the H -derivative D on P x,y (M ).See [1].Let F C ∞b be the set of all smooth cylindrical functions on P x,y (M ).The following inequality is called a logarithmic Sobolev inequality(=LSI):There exists C >0such that for all F ∈F C ∞b (2.62) P x,y (M )F 2(γ)log

F 2(γ)/ F 2L 2(νx,y ) dνx,y (γ)≤C

P x,y (M )

|DF (γ)|2dνx,y (γ).When M is a Euclidean space,(2.62)holds with C =2by Gross’result [17].Driver and Lohrenz [8]proved LSI on loop group for the heat kernel measure which is equivalent to the pinned Brownian motion measure [3,9].On the other hand,Eberle [10]proved that

12

Poincar′e ’s inequality does not hold on a loop space with pinned measure over certain simply connected compact Riemannian manifold.Therefore,LSI does not hold in such a case.But the validity of LSI for pinned measure is still an open problem generally.In the case of Riemannian manifolds with poles,we can prove the following.

Theorem 2.6.(1)Assume that (2.27),(2.29)with δ<1/3and (2.35)hold.Then (2.62)holds in the case where x =o and for all y .The constant C depends only on a and δ.

(2)Assume (2.37),(2.39),(2.41)and (2.44).Then (2.62)holds for any x and y .Proof.This follows from Theorem 3.6in [1]immediately.

3.Rotationally symmetric case

In this section,we consider rotationally symmetric Riemannian manifolds.We ?x an

orthonormal frame {e i }d i =1?T o M and identify T o M with R d .Let Φ:R +×S d →T o M be

the natural map,Φ(r,ω)=rω,where r =d (o,x ),x =exp(rω),(r ≥0,ω∈S d ?1),S d ?1is the unit sphere centered at the origin in T o M .g is called a rotationally symmetric if the pull back of g by Φcan be expressed as

(3.1)(Φ·exp)?g =dr 2+f (r )2dω2,

dω2denotes the standard Riemannian metric on the sphere.We introduce ?(r )by f (r )=re ?(r ).Then by the de?nition of θ,

Lemma 3.1.

(3.2)θ(x )=e (d ?1)?(r ).

Under the assumption of the rotationally symmetry,there exists a smooth function of r ,p (t,r )such that p (t,o,x )=p (t,d (o,x )).Note that f is a C ∞function on [0,∞)satisfying f (0)=0,f (0)=1([19]).Since f (0)=1,note that ?(0)=0.Let K (r )be the radial curvature at x .Then the following Jacobi equation holds (see page 30in [19]).(3.3)f (r )=?K (r )f (r ).

In Section 2,we have given estimates on heat kernels under assumptions on the Riemann-ian curvature.In this section,we will give similar type estimates on heat kernels in terms of ?(r ).In rotationally symmetric case,we can go further than general cases.To explain it,let us consider the hyperbolic space with constant negative curvature.In that case,it holds that for any ?xed T >0,(3.4)sup 0

where f (t,x )is de?ned in (2.33)although inf x f (t,x )=0which is excluded under the assumption (2.41).Also sup x ?2x d (o,x )22

=∞.In rotationally symmetric case,we can prove (3.4)under an assumption (Assumption 3.2)which is valid for hyperbolic space.Of course,the similar estimate should hold without rotationally symmetry under suitable assumptions.We study this in future papers.We use the following assumption on ?.

Assumption 3.2.The k -times derivative ?(k )(r )is a bounded function on [0,∞)for all k ≥1.Moreover there exists a C ∞function φon [0,∞)such that ?(r )=φ(r 2).

13

Remark 3.3.(1)When M is the hyperbolic space with sectional curvature ?a ,then K (t )≡?a and f (r )=sinh √ar √a .Thus (3.5)?a (r )=log sinh √ar √ar

,where we write subscript a to denote the dependence of the curvature.Since the following Taylor expansion holds for all r ≥0,sinh √ar √ar =1+∞ n =1(ar )n (2n +1)!,?a (√r )is a smooth function on [0,∞).Also (3.6)? a (r )=√a coth(√ar )?1√ar

.It is easy to see that this function and its all derivatives are bounded functions on [0,∞).Therefore Assumption 3.2holds for hyperbolic spaces.

(2)By the Jacobi equation,we have K (r )=? ? (r )2+? (r )+2? (r )r ,(3.7)=? 4r 2φ (r 2)2+6φ (r 2)+4r 2φ (r 2) .

Therefore,by the lemma below,under Assumption 3.2,it holds that

sup r>0

|K (r )|<∞.

Lemma 3.4.Under Assumption 3.2,for any k ≥1,

(3.8)sup r ≥0

r k/2|φ(k )(r )|<∞.

Proof.We prove this by induction on k .Because ?(r )=φ(r 2),? (r )=2rφ (r 2)holds.Since ? is a bounded function,we have r 1/2φ (r )is also bounded.We assume that (3.8)holds up to k .Taking (k +1)-times derivative,we have

?(k +1)(r )=(2r )k +1φ(k +1)(r 2)+G k (r ).

Here G k (r )is the sum of the function r m φ(l )(r 2),where nonnegative integers m and l satisfy that m

The following follows from a formula in page 30in [19].

Lemma 3.5.Let F be a C 2-function on R .Then we have (3.9)?2x F (r )=F (r ) 1r

+? (r ) P ⊥x +F (r )P x .(r =0),where P x denotes the projection operator onto the 1-dimensional subspace in T x M spanned

by v x ∈T x M where exp x v x =o and P ⊥x

denotes the orthogonal projection.

14

When M is rotationally symmetric,Elworthy and Truman’s formula reads the follow-ing simple one.

Lemma3.6.Assume Assumption3.2.Then V in Theorem2.1is given by V(x)=?V(r2),where

?V(z2)=?d?1

4

? (z)+(d?1)

? (z)

z

+

d?1

2

? (z)2

.

(3.10)

Consequently,we have the following representation of h(t,r)=h(t,o,x)using the pinned standard Brownian motion{W s}0≤s≤t on R d with W0=W t=0:

(3.11)h(t,r)=E

exp

t

?V(|W

s

+

t?s

t

rη|2)ds

,

whereηdenotes a unit vector in R d and the expectation is independent ofη.Moreover,?V is a smooth function and?V(z),?V (z)z1/2,?V (z)z are bounded functions on[0,∞).

Proof.(3.11)follows from Theorem2.1.Boundedness of?V and its derivatives follows from Lemma3.4.

Comparing to general cases,we do not encounter with the di?erentiability problem with respect to the initial point of the solution of SDE and we obtain

Theorem3.7.Assume Assumption3.2.We have the following explicit expression and an estimate for the Hessian of the logarithm of the heat kernel.

?2

x log p(t,o,x)=?

1

t

I+r? (r)P⊥

x

?

d?1

2

? (r)?

?2

?r2

log h(t,r)

P x ?

1

r

+? (r)

d?1

2

? (r)?

?

?r

log h(t,r)

P⊥

x

and for any T>0,

sup

x∈M,0

?x log p(t,o,x)?

v x

t

<∞,

(3.12)

sup

x∈M,0

?2x log p(t,o,x)+

1

t

(I+r? (r)P⊥

x

)

<∞,

(3.13)

where v x is de?ned in Lemma3.5(1).The estimates in(3.12)and(3.13)depends only on?and T.

Proof.This follows from Lemma3.5and Lemma3.6.

The following theorem also follows from Theorem3.6in[1]and Theorem3.7.

Theorem3.8.Assume Assumption3.2and inf r≥0r? (r)>?1

2,sup r≥0|r? (r)|<∞.

Then(2.62)holds in the case where x=o and any y∈M.

15

References

[1]S.Aida,Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded

di?usion coe?cients on loop spaces,J.Funct.Anal.174(2000)No.2430–477.

[2]S.Aida,Precise Gaussian lower bound on heat kernels,“Stochastics in?nite and in?nite dimensions”,

1–28,Birkh¨a user,Boston,2001.

[3]S.Aida and B.K.Driver,Equivalence of heat kernel measure and pinned Wiener measure on loop

groups,C.R.Acad.Sci.Paris,S′e r.I331(2000),709–712.

[4]S.Aida and D.Elworthy,Di?erential calculus on path and loop spaces,I.Logarithmic Sobolev

inequalities on path spaces,C.R.Acad.Sci.Paris S′e r,I.321(1995),97–102.

[5]M.Capitaine,E.Hsu,and M.Ledoux,Martingale representation and a simple proof of logarithmic

Sobolev inequalities on path spaces,https://www.sodocs.net/doc/bb7792932.html,m.in Probab.2(1997),71–81.

[6]E.B.Davies,Heat Kernels and Spectral Theory,1989,Cambridge University Press.

[7]A.Debiard,B.Gaveau,and E.Mazet,Th′e or`e ms de comparison en g′e ometrie Riemannienne,Re-

search Inst.Math.Sci.,Kyoto Univ.12(1976),391–425.

[8]B.K.Driver and T.Lohrenz,Logarithmic Sobolev inequalities for pinned loop groups,J.Funct.Anal.

140(1996),381–448.

[9]B.K.Driver and V.Srimurthy,Absolute continuity of heat kernel measure with pinned Wiener

measure on loop groups,Ann.Prob.29(2001),no.2,691–723.

[10]A.Eberle,Absence of spectral gaps on a class of loop spaces,J.Math.Pures Appl.(9)81(2002),

no.10,915–955.

[11]K.D.Elworthy,Stochastic Di?erential Equations on Manifolds,London Mathematical Society,Lec-

ture Note Series70,1982.

[12]K.D.Elworthy,Geometric Aspects of Di?usions on Manifolds,Lecture Notes in Math.1362Springer-

Verlag,277–425,1988.

[13]K.D.Elworthy,Y.Le Jan and Xue-Mei Li,On the geometry of di?usion operators and stochastic

?ows,Lecture Notes in Math.1720,Springer,1999.

[14]K.D.Elworthy,M.N.Ndumn,and A.Truman,An elementary inequality for the heat kernel on a

Riemannian manifold and the classical limit of the quantum partition function,From local times to global geometry,control and physics,edited by K.D.Elworthy,Pitman Research Notes in Mathe-matical Series150(1986),84–99.

[15]K.D.Elworthy and A.Truman,The di?usion equation and classical mechanics:an elementary

formula.Stochastic Processes in Quantum Theory and Statistical Physics,edited by S.Albeverio etal.,Lecture Notes in Physics173(1982),Springer-Verlag,136–146.

[16]K.D.Elworthy and M.Yor,Conditional expectations for derivatives of certain stochastic?ows,

S′e m.Probab.XXVII,Lecture Notes in Math.,1557(1992),Springer-Verlag,159–172.

[17]L.Gross,Logarithmic Sobolev inequalities,Amer.J.Math.97(1975),1061-1083.

[18]F-Z.Gong and Z-M.Ma,The log-Sobolev Inequality on Loop Space Over a Compact Riemannian

Manifold,J.Funct.Anal.157(1998),599–623.

[19]R.E.Greene and H.Wu,Function thorey on manifolds which possess a pole,Lecture Notes in

Mathematics,699(1979),Springer,Berlin.

[20]E.Hsu,Logarithmic Sobolev Inequalities on Path Spaces,New Trends in Stochastic Analysis(Char-

ingworth,1994),168–181,edited by K.D.Elworthy,S.Kusuoka and I.Shigekawa,(1997),World Sci.Publishing,River Edge,NJ.

[21]E.Hsu,Analysis on Path and Loop Spaces,“Probability Theory and Applications”LAS/PARK

CITY Mathematics Series,6(1999),279–347,edited by Elton P.Hsu,S.R.S.Varadhan,American Mathematical Society,Institute for Advanced Study.

[22]E.Hsu,A lecture in the conference at l’institut Henri Poincar′e in Paris,June,1998.

[23]J.Jost,Riemannian geometry and geometric analysis,Universitext,Springer-Verlag,1995.

[24]P.Li and S.T.Yau,On the parabolic kernel of the Schr¨o dinger operator,Acta Math.156(1986),153–

201.

16

[25]P.Malliavin and D.W.Stroock,Short time behavior of the heat kernel and its logarithmic derivative,

J.Di?.Geom.44(1996),550–570.

[26]M.N.Ndumu,An elementary formula for the Dirichlet heat kernel on Riemannian manifolds,From

local times to global geometry,control and physics,edited by K.D.Elworthy,Pitman Research Notes in Mathematical Series150(1986),320–328.

[27]M.N.Ndumu,The heat kernel formula in a geodesic chart and some applications to the eigenvalue

problem of the3-sphere,Probab.Th.Rel.Fields88(1991),343–361.

[28]M.N.Ndumu,An integral formula for the heat kernel formula of tubular neighborhoods of complete

(connected)Riemannian manifolds,Potential Analysis5(1996),311–356.

[29]M.N.Ndumu,Estimates of heat kernel derivatives in vector bundles,Preprint.

[30]L.Salo?-Coste,Aspects of Sobolev Type Inequalities,LMS Lecture Note Series289,Cambridge

University Press,2002.

[31]D.W.Stroock,An estimate on the Hessian of the heat kernel,It?o’s Stochastic Calculus and Proba-

bility Theory,1996,355–371,Springer,Tokyo.

[32]D.W.Stroock,An Introduction to the analysis of paths on a Riemannian manifolds,Mathematical

Surveys and Monographs74(2000)AMS.

[33]X-M.Li,Strong p-completeness of stochastic di?erential equations and the existence of smooth?ows

on noncompact manifolds,Probab.Theory Related Fields100(1994),no.4,485–511.

瀑布水景工程计算方式

15米宽,6米高的人工瀑布,泵的流量要多大,怎样计算? 上水池32方,下水池是一个大湖南 假设瀑布的厚度为A米。那么可以算一下瀑布停止不动是瀑布的体积:15x6xA=90A,那么我们姑且算厚度A=1cm=0.01m,那么此时的体积是0.9立方。 根据瀑布的高度,水从6m处留下来的时间大约是0.6秒,那么此时的流量大概就是0.9x0.6=0.54立方/秒,即1944立方/小时。此时选泵就选流量2000吨/小时,扬程10m左右的泵,此时水泵的功率大概是110Kw左右。 当A=1mm=0.001m的时候,也根据这种算法,那么水泵的流量是194吨/小时。此时选泵就选流量200吨/小时,扬程10m左右的泵,此时水泵的功率大概是11-15Kw左右。 具体选什么泵可根据实况选择潜水泵,或者离心泵(选离心泵是应注意泵不能放在瀑布上方,因为离心泵没有那么高的吸程,放在上方时吸不上水的)。

水景园林给排水:浅谈景观瀑布设计 俗话说“水为庭院灵魂”,由此可见水在园林景观中的重要作用。水与周围景物结合,便会表现出或悠远宁静,或热情昂扬,或天真质朴,或灵动飞扬的意境.艺术地再造自然之魂.从而产生特殊的艺术感染力,使城市景观更添迷人的魅力。因此.景观瀑布作为水景形态之一,在城市景观设计中运用较多。这里,笔者仅就景观瀑布设计谈几点体会。 1 景观瀑布的分类 1.1 自然式瀑布.即模仿河床陡坎的形式,让水从陡坡处滚落下跌形成恢弘的瀑布景观。此类瀑布多用于自然景观与情趣的环境中 1.2 规则式瀑布.即强调落水的规则与秩序性,有着规整的人工构筑落水E1.可形成一级或多级跌落形式的瀑布景观此类瀑布多用于较为规整的建筑环境中。 1.3 斜坡瀑布,即落水由斜面滑落的瀑布景观。它的表面受斜坡表面质地、结构的影响.体现出较为平静、含蓄的意趣,适用于较为安静的场所。 2 景观瀑布的构成 一个完整的景观瀑布一般由背景、上游水源、落水口、瀑身、承瀑潭及溪流构成。其中,瀑身是观赏的主体。 3 景观瀑布的设计要素 3.1 水量 景观瀑布的形式与其上游水源的水量有着密切的关系,瀑布水量应满足景观瀑布的方案设计要求。供水量在lms/s左右时,瀑身可形成重落、离落、布落等形式;供水量在0.1m3/s左右时,瀑身可形成丝落、线落等形式。 3.2 水泵的选择 3.2.1 流量的选择 首先.根据前面提到的瀑布用水量估算表计算流量,再根据《建筑给水排水设计规范》GB50015—2003第3.1 1.9条计算设计循环流量。即:Qs=1.2Qc 式中:Qc-景观瀑布的设计循环流量,m3/h;

跌水水景流量设计

跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点.跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景??跌水跌水水景 在水景设计中,跌水水景是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。 与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰. 根据δ和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式: 当δ/H<0.67,为薄壁堰流;0.67<δ/H<2.5,为实用堰流;2.5<δ/H<10,为宽顶堰流; δ/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。 当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰顶以一定的初速度v0落下时,它会产生一个长度为ld的水舌。若ld大于跌水台阶宽度lt,则水景水流会跃过跌水台阶;若ld太小,则有可能出现水景水舌贴着水景跌水墙而形成壁流。这两种情况的出现主要与跌水水景流量Q的大小有关,设计时应尽量选择一个恰当的跌水水景流量以避免上述现象的发生。 水景中的跌水水景设计(二) 跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点.跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景??跌水跌水水景 1.1跌水水景流量计算 根据水力学计算公式,一般宽顶堰自由出流的流量计算式为: Q=σc·m·b·(2g)0.5·H1.5=σc·M·b·H1.5 式中b——堰口净宽H——包括行进流速水头的堰前水头, H=H0+υ02/2g 式中υ0——行进流速m——自由溢流的流量系数,与堰型、堰高等边界条件有关σc——侧收缩系数 M=m·(2g)0.5当堰口为矩形时,侧收缩系数σc为1,上述计算式即简化为《给水排水设计手册》中的流量计算式: Q=m·b·(2g)0.5·H1.5=M·b·H1.5

跌水水景中设计中的计算

跌水水景中的计算实例 某宾馆根据其地形条件在大堂内设计一溢流式跌水景,为扇形结构,第一级跌水高度P为2.1 m,堰口为弧线形,长度b=14.65 m,堰顶宽δ=0.15 m,跌水台阶宽度l t =0.7m。 2.1 计算跌水流量Q 根据宾馆大堂环境的要求,跌水流量不须太大,因此,初始选定堰前水头H=0.2 kPa,根据堰流的出口形式,流量系数M=1 417.4,因此试算流量: 2.2 校核跌水水舌 l d 根据试算流量Q可求出跌水景溢流口的单宽流量: q=Q/b=4.007×10-3 m3/(s·m) 由此得 D=q2/(g·p3)=1.767 3×10-7 跌水水舌长度: l d =4.30×D0.27×P=0.136m 0.1

根据δ和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式: 当δ/H<0.67,为薄壁堰流;0.67<δ/H<2.5,为实用堰流;2.5<δ/H<10,为宽顶堰流; δ/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。 当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰 顶以一定的初速度v 0落下时,它会产生一个长度为l d 的水舌。若l d 大于跌水台 阶宽度l t ,则水景水流会跃过跌水台阶;若l d 太小,则有可能出现水景水舌贴 着水景跌水墙而形成壁流。这两种情况的出现主要与跌水水景流量Q的大小有关,设计时应尽量选择一个恰当的跌水水景流量以避免上述现象的水景中的跌水水景设计(二) 1.1 跌水水景流量计算 根据水力学计算公式,一般宽顶堰自由出流的流量计算式为: Q=σ c ·m·b·(2g)0.5·H1.5=σ c ·M·b·H1.5 式中b——堰口净宽H——包括行进流速水头的堰前水头,H=H0+υ 2/2g 式中υ ——行进流速m——自由溢流的流量系数,与堰型、堰高等边界条件有关σc——侧收缩系数 M=m·(2g)0.5 当堰口为矩形时,侧收缩系数σc为1,上述计算式即简化为《给水排水设计手册》中的流量计算式: Q=m·b·(2g)0.5·H1.5=M·b·H1.5 上式中,M(或m)为流量系数,与堰的进口边缘形式有关;b为堰口净宽,为已知,因此要求出水景流量Q,关键要确定出堰前水景水头H,堰前水景水头一般先凭经验选定、试算。通常H的初试值可选为0.2~0.4 kPa,当水景堰口为直角时宜取上限,堰口为斜角或圆角时取下限。H初值选定后,根据上述计算式算

跌水水景流量设计

水景中的跌水水景设计(一) 跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点.跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景跌水跌水水景 在水景设计中,跌水水景是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。 与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1 跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰. 根据δ和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式:当δ/H<0.67,为薄壁堰流;0.67<δ/H<2.5,为实用堰流;2.5<δ/H<10,为宽顶堰流; δ/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。 当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰顶以一定的初速度v0落下时,它会产生一个长度为ld的水舌。若ld大于跌水台阶宽度lt,则水景水流会跃过跌水台阶;若ld太小,则有可能出现水景水舌贴着水景跌水墙而形成壁流。这两种情况的出现主要与跌水水景流量Q的大小有关,设计时应尽量选择一个恰当的跌水水景流量以避免上述现象的发生。 水景中的跌水水景设计(二) 跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点.跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景跌水跌水水景 1.1 跌水水景流量计算 根据水力学计算公式,一般宽顶堰自由出流的流量计算式为: Q=σc·m·b·(2g)0.5·H1.5=σc·M·b·H1.5 式中b——堰口净宽H——包括行进流速水头的堰前水头, H=H0+υ02/2g 式中υ0——行进流速m——自由溢流的流量系数,与堰型、堰高等边界条件有关σc——侧收缩系数 M=m·(2g)0.5当堰口为矩形时,侧收缩系数σc为1,上述计算式即简化为《给水排水设计手册》中的流量计算式: Q=m·b·(2g)0.5·H1.5=M·b·H1.5 上式中,M(或m)为流量系数,与堰的进口边缘形式有关;b为堰口净宽,为已知,因此要求出水景流量Q,关键要确定出堰前水景水头H,堰前水景水头一般先凭经验选定、试算。通常H的初试值可选为0.2~0.4 kPa,当水景堰口为直角时宜取上限,堰口为斜角或圆角时取下限。H初值选定后,根据上述计算式算出跌水水景流量Q,由于Q值为试算结果,还须根据跌水水景水舌的长度对Q的大小作进一步的校核和调整。 1.2 校核水景水舌长度 根据水力学的计算公式,溢流堰的跌落水景水舌长度为:

景观水景工程计算书

水景工程

第五章水景工程 导言:园林中最主要的造景法之一是什么? 水景工程中都包含哪些内容? 第三章水景工程 第一节水的功能及分类 ,涉及的内容有水体的类型,各种水景的布置,驳岸、护坡、喷泉等。 一、水体的功能 1.造景:水有三态液态:喷泉、瀑布、跌水。 气态:喷雾泉、创造仙境舞台。 固态:滑冰场、冰雕 2.改善小气吸收粉尘,改善环境卫生 3.有利于动植物的生长,特别是水生植物。 4.灌溉与消防 5.水上游乐,划船、游泳、垂钓、漂流 6.组织交通,水上游览 7.水能陶冶人的情操,提高人的修养 二、水系的构成 自然降雨→地表径流(泉水)→涧、溪→瀑布→潭→河→江→海 三、水源种类:

⑴市政给水,自来水(水质好) ⑵地下水 ⑶地表水 四、水体的形式与分类 1.按水体的形式分:水的形式与其所在环境有关。 ⑴自然式水体:边缘不规则,变化自然的水体。例如:河、湖、池、溪、涧等。 ⑵规则式水体:边缘规则,具有明显的轴线的水体,一般是几何形。 ⑶混合式水体:是规则式与不规则式两种交替穿插形成的水环境。 2.按水体的功能分: ⑴观赏性水体:叶饺装饰性水池,面积较小。 ⑵开展活动性水体:游泳馆、游船、垂钓。大规模综合性公园都属此类。 3.按水流状态分: ⑴静态水景:园林中成片汇集的水面,湖、塘、池等。 ⑵动态水景:流动的水,具有动感,溪、涧、瀑布、跌水等。

小结:本次课讲了三个方面 1.水的功能。 2.水的构成。 3.水体的分类。 思考题:1.水体的构成。 2.水体的分类。 引言:上节课我们学习了水景工程的基本知识,也就是水体的分类和功能,下面我们来学习水体中的重要水工措施: 驳岸与护坡。 第二节驳岸与护坡 园林水体要求有稳定、美观的水岸来维持陆地和水面有一定的面积比例,防止陆地被淹或水岸塌陷而扩大水面。因此在水体边缘必须建造驳岸与护坡。同时,作为水景组成的驳岸与护坡直接影响园景,必须从实用、经济、美观几个方面一起考虑。

跌水水景流量设计

跌水水景流量设计 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点.跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景??跌水跌水水景 在水景设计中,跌水水景是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。 与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰. 根据δ和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式: 当δ/H<0.67,为薄壁堰流;0.67<δ/H<2.5,为实用堰流; 2.5<δ/H<10,为宽顶堰流; δ/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。 当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰顶以一定的初速度v0落下时,它会产生一个长度为ld的水舌。若ld大于跌水台阶宽度lt,则水景水流会跃过跌水台阶;若ld太小,则有可能出现水景水舌贴着水景跌水墙而形成壁流。这两种情况的出现主要与跌水水景流量Q的大小有关,设计时应尽量选择一个恰当的跌水水景流量以避免上述现象的发生。 跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点.跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景??跌水跌水水景 1.1跌水水景流量计算 根据水力学计算公式,一般宽顶堰自由出流的流量计算式为:

跌水设计

一、概述 (一)定义 1、跌水:跌落的水,由于地形突然的高差变化而产生的水流现象。 2、瀑布:地形较大的落差变化,使平面的水流呈现直落或斜落的立面水流。 3、叠水:地形呈阶梯状的落差和地貌的凹凸变化,使水流呈现层叠流落而成水流现象 (二)跌水景观的功能 1、跌落的水携带空气中大量的氧进入河流,给水流中的动植物和微生物提供良好的生长条件。 2、飞溅的水花增加了空气湿度,过滤空气中的尘埃。 (三)跌水景观的形式种类 1、水立面形式:线状、点状、帘状、片状、散落状 2、落水方式:直落、飞落、叠落、滑落 3、跌落形式:直接入水式、溅落入水式、可视、可听,具有独特的景观效果。(四)不同形式的形成原因 1、地形的落差决定瀑布形成的高低和水声。 2、地貌的凹凸决定瀑布流落的形状。 3、水流量的多少决定瀑布落水的形式。 4、出水口的大小决定瀑布规模的宽窄。 二、跌水景观的设计要素 1、蓄容 蓄容水流的流量在1m3/s左右的瀑布可行成帘状,片状,和散落状;当仅有0.1m3/s的水流时,则呈现线状、点状。

蓄容分上下两个部位----底池蓄水和堰顶蓄水 2、出水口 (1)隐蔽式:将出水口隐藏在景观环境之中,让水流呈现自然瀑布的形状。(2)外露式:将出水口突显于景观之外,形成明显的人工瀑布造型。 (3)单点式:水流从单一出口跌落,形成单体瀑布。 (4)多点式:出水口以多点或阵列的方式布局,形成规模较大的瀑布景观。

3、瀑布水面 通过控制背景的凹凸肌理加强水面的细节表现,形成造型丰富、形式多样的瀑布景观。 三、叠水景观形式 1、叠水景观以水立面的变化为主要的表现形式。 2、叠水的形式 (1)水帘 水帘是由较大的落差和较宽水流面形成的叠水,控制水流量与出水口的形状将得到不同的水帘形态。 (2)洒落 流量较小的叠水,在较低水压下呈点状或线状跌落。 (3)涌流 涌流是有多层蓄水池不断被注满涌溢而出形成,水流量较大,叠水面呈面状跌落。 (4)管流 由外露式出水管以多种陈列方式形成叠水,水流呈线状。 (5)壁流 流水顺池壁流下,水面可随池壁呈多角度流落。 (6)阶梯式 由多层阶梯造型构成叠水景观。 (7)塔式 多层蓄水池由上至下,由小到大,呈环状倾流而下。 (8)错落式

跌水水景中设计中的计算

跌水水景中设计中的计 算 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

跌水水景中的计算实例 某宾馆根据其地形条件在大堂内设计一溢流式跌水景,为扇形结构,第一级跌水高度P为2.1 m,堰口为弧线形,长度b=14.65 m,堰顶宽δ=0.15 m,跌水台阶宽度 l t =0.7m。 计算跌水流量Q 根据宾馆大堂环境的要求,跌水流量不须太大,因此,初始选定堰前水头H= kPa,根据堰流的出口形式,流量系数M=1 ,因此试算流量: 校核跌水水舌 l d 根据试算流量Q可求出跌水景溢流口的单宽流量: q=Q/b=×10-3 m3/(s·m) 由此得 D=q2/(g·p3)= 3×10-7 跌水水舌长度: l d =××P=0.136m

在水景设计中,跌水水景是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。 与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1 跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰. 根据δ和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式: 当δ/H<,为薄壁堰流;<δ/H<,为实用堰流;<δ/H<10,为宽顶堰流; δ/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。 当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰顶以 一定的初速度v 0落下时,它会产生一个长度为l d 的水舌。若l d 大于跌水台阶宽度l t ,则 水景水流会跃过跌水台阶;若l d 太小,则有可能出现水景水舌贴着水景跌水墙而形成壁流。这两种情况的出现主要与跌水水景流量Q的大小有关,设计时应尽量选择一个恰当的跌水水景流量以避免上述现象的 水景中的跌水水景设计(二)

跌水水景流量设计

跌水水景流量设计 Revised by Petrel at 2021

水景中的跌水水景设计(一) 跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点.跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景?跌水跌水水景 在水景设计中,跌水水景是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰. 根据δ和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式: 当δ/H<0.67,为薄壁堰流;0.67<δ/H<2.5,为实用堰流;2.5<δ/H<10,为宽顶堰流;δ/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰顶以一定的初速度v0落下时,它会产生一个长度为ld的水舌。若ld大于跌水台阶宽度lt,则水景水流会跃过跌水台阶;若ld太小,则有可能出现水景水舌贴着水景跌水墙而形成壁流。这两种情况的出现主要与跌水水景流量Q的大小有关,设计时应尽量选择一个恰当的跌水水景流量以避免上述现象的发生。 水景中的跌水水景设计(二) 跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点.跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景?跌水跌水水景 1.1跌水水景流量计算根据水力学计算公式,一般宽顶堰自由出流的流量计算式为: Q=σc·m·b·(2g)0.5·H1.5=σc·M·b·H1.5式中b——堰口净宽H——包括行进流速水头的堰前水头,

水景设计中跌水水景的设计

水景设计中跌水水景的设计及计算 在水景设计中,跌水是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。 与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1 跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰。 根据δ和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式: 当 δ/H<0.67,为薄壁堰流; ( δ:堰顶宽;H:堰前水头) 0.67<δ/H<2.5,为实用堰流; 2.5<δ/H<10,为宽顶堰流; δ/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。  当跌水水景的土建尺寸确定以后,首先要确定跌水流量Q,当水流从堰顶以一定的初速度v0落下时,它会产生一个长度为l d的水舌。 若l d 大于跌水台阶宽度l t ,则水流会跃过跌水台阶;若l d 太小,则有

可能出现水舌贴着跌水墙而形成壁流。这两种情况的出现主要与跌水流量Q的大小有关,设计时应尽量选择一个恰当的流量以避免上述现象的发生。 1.1 跌水流量计算 根据水力学计算公式,一般宽顶堰自由出流的流量计算式为: Q=σc·m·b·(2g)0.5·H1.5=σc·M·b·H1.5 式中 b——堰口净宽 H——包括行进流速水头的堰前水头, 2/2g H=H0+υ ——行进流速 式中 υ m——自由溢流的流量系数,与堰型、堰高等边界条件有关 σc——侧收缩系数 M=m·(2g)0.5 当堰口为矩形时,侧收缩系数σc为1,上述计算式即简化为《给水排水设计手册》中的流量计算式: Q=m·b·(2g)0.5·H1.5=M·b·H1.5 上式中,M(或m)为流量系数,与堰的进口边缘形式有关;b为堰口净宽,为已知,因此要求出流量Q,关键要确定出堰前水头H,堰

跌水水景中设计中的计算定稿版

跌水水景中设计中的计 算 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

跌水水景中的计算实例 某宾馆根据其地形条件在大堂内设计一溢流式跌水景,为扇形结构,第一级跌水高度P为2.1 m,堰口为弧线形,长度b=14.65 m,堰顶宽δ=0.15 m,跌水台阶宽度l t=0.7m。 2.1 计算跌水流量Q 根据宾馆大堂环境的要求,跌水流量不须太大,因此,初始选定堰前水头H=0.2 kPa,根据堰流的出口形式,流量系数M=1 417.4,因此试算流量: 2.2 校核跌水水舌 l d根据试算流量Q可求出跌水景溢流口的单宽流量: q=Q/b=4.007×10-3 m3/(s·m) 由此得 D=q2/(g·p3)=1.767 3×10-7 跌水水舌长度: l d=4.30×D0.27×P=0.136m 0.1

水景中的跌水水景设计(一) 在水景设计中,跌水水景是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。 与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1 跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰. 根据δ和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式: 当δ/H<0.67,为薄壁堰流;0.67<δ/H<2.5,为实用堰流;2.5<δ/H<10,为宽顶堰流; δ/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。 当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰顶以一定的初速度v0落下时,它会产生一个长度为l d的水舌。若l d大于跌水台阶宽度l t,则水景水流会跃过跌水台阶;若l d太小,则有可能出现水景水舌贴着水景跌水墙而形成壁流。

跌水水景流量设计

跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点?跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景??跌水跌水水景 在水景设计中,跌水水景是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。 与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰. 根据S和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式: 当S /HvO.67为薄壁堰流;0.67< S /H<2.5为实用堰流;2.5< S /H<10为宽顶堰流; S /H>10为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。 当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰顶以一定的初速度vO落下时,它会产生一个长度为Id的水舌。若Id大于跌水台阶宽度It,则水景水流会跃过跌水台阶;若Id太小,则有可能出现水景水舌贴着水景跌水墙而形成壁流。这两种情况的出现主要与跌水水景流量Q的大小有关, 设计时应尽量选择一个恰当的跌水水景流量以避免上述现象的发生。 水景中的跌水水景设计(二) 跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点?跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景??跌水跌水水景 1.1跌水水景流量计算 根据水力学计算公式,一般宽顶堰自由出流的流量计算式为: Q=c c ? m- b ? (2g)0.5 ? H1.5= c c ? M- b ? H1.5 式中b——堰口净宽H ——包括行进流速水头的堰前水头, H=H0u 02/2g 式中u 0―-亍进流速m――自由溢流的流量系数,与堰型、堰高等边界条件有关 c c艸攵缩系数 M=m (2g)0.5当堰口为矩形时,侧收缩系数cc为1,上述计算式即简化为《给

各类水景计算

A景区一水力计算 ①跌泉流量计算Q=σc·m·b·(2g)0.5·H1.5 m取0.36,σc取1,初选H=0.2kpa,测量得L=9.0m,L t=1.6m,b=0.4m 则Q1=0.36*0.4*4.43*0.09=0.057 m3/s 单宽流量q=6.3*10-3 m3/(s·m),则D=40.11*10-6/0.63=6.37*10-5 L d=4.30*D0.27*p=0.127m,0.1< L d <2/3L t,,经校核,跌水景水舌长度lt在合理范围内,因此,选定的流量可作为选用跌水景循环水泵的依据。 ②同理求Q2 m取0.37,σc取1,初选H=0.2kpa,测量得L=8.4m,L t=1.6m,b=0.4m 则Q2=0.37*0.4*4.43*0.09=0.059 m3/s 单宽流量q=0.059/8.4=7.0 *10-3m3/(s·m),则D=4.9*10-5/0.63=7.78*10-5 水蛇L d=4.30*0.078*0.4=0.134m,可取 故Q=Q1+Q2=0.057+0.059=0.116 m3/s,考虑到二级跌泉接收部分一级的水量,故取Q=0.1 m3/s 即Q=100L/s,H0=21.65-20.84+1=1.81m h=0.065+0.025=0.09m,故扬程为1.9m ③同上求泵二,m取0.36,σc取1,初选H=0.2kpa,测量得L=6.0m,L t=1.6m,b=0.4m Q=0.057 m3/s 单宽流量q=0.057/6=0.0095=9.5*10-3 m3/(s·m),则D=14.33*10-5 L d=4.30*D0.27*p=0.158m可取,扬程H=1.81+0.045=1.86m A 景区二水力计算 同上L=7.8m,初选Q=0.057 m3/s 单宽流量q=7.3*10-3 m3/(s·m),则D=5.3*10-5/0.63=8.48*10-5 L d=4.30*D0.27*p=0.137m,符合要求 扬程H=1.29+0.045=1.33m 选泵IS100-80-125,流量60m3/h,扬程4m,功率1.5kw/h 跌水池 m取0.36,σc取1,初选H=0.2kpa,测量得L=5.5m,L t=1.5m,b=0.6m,p=0.85 Q=0.36*0.6*0.43*0.09=8.61*10-2 单宽流量q=1.56*10-2 m3/(s·m) ,则D=2.45*10-4/0.63=3.9*10-4 L d=4.30*D0.27*p=0.44m 0.1< L d <2/3L t故可取Q=86 L/s,Dn=200mm,h=0.09m,扬程H=1.62+0.09=1.71m,选泵为离心清水泵;XA65/13B 流量86.5 m3/s,扬程13.7m,功率7.5kw/h 卵石涌泉 涌泉高度0.4m,喷头选用YQ-201,额定流量6 m3/h,喷头直径DN25,个数15个,管材:钢衬塑复合管,总流量90 m3

跌水水景中设计中的计算

跌水水景中设计中的计 集团文件发布号:(9816-UATWW?MWUB?WUNN?INNUL?DQQTY?

跌水水景中的计算实例 某宾馆根据其地形条件在大堂内设计一溢流式跌水景,为扇形结构,第一级跌水高度 P为2. 1 m,堰口为弧线形,长度b=14. 65 m,堰顶宽6 =0. 15 m,跌水台阶宽度h二0. 7m。2.1计算跌水流量Q 根据宾馆大堂环境的要求,跌水流量不须太大,因此,初始选定堰前水头 H二0.2kPa,根据堰流的出口形式,流量系数M二1417. 4,因此试算流量: 2. 2校核跌水水舌 h根据试算流量Q可求出跌水景溢流口的单宽流量: q=Q/b=4. 007Xl(r ^/(s . m) 由此得 D=q7(g ? p5)=l. 7673 X10'7 跌水水舌长度: la=4. 3OXD O :7XP=O. 136m 0. Kl d<2/31t 经校核,跌水景水舌长度It在合理范围内,因此,选定的流量可作为选用跌水景循环水泵的依据。 水景中的跌水水景设计(一)

在水景设计中,跌水水景是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。

与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰. 根据S和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式:当6/H<0.67,为薄壁堰流;0. 67〈§/H〈2.5,为实用堰流;2. 5< 6/H<10,为宽顶堰流; 8/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。 当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰顶以一定的初速度v。落下时,它会产生一个长度为b的水舌。若b大于跌水台阶宽度X,则水景水流会跃过跌水台阶;若b太小,则有可能出现水景水舌贴着水景跌水墙而形成壁流。这两种情况的出现主要与跌水水景流量Q的大小有关,设计时应尽量选择一个恰当的跌水水景流量以避免上述现象的 水景中的跌水水景设计(二) 1. 1跌水水景流量计算 根据水力学计算公式,一般宽顶堰自由出流的流量计算式为: Q= o e? m ? b ? (2g)0:? H15= o c? M ? b ? H1 °

冯晓东水景计算书

水景计算书编制人:冯晓东2014年5用10日

一、景观水钵专项计算 依据跌水花钵外形可确定水钵为溢流式跌水水景景,上下两级,由甲方购买成品及提供数据可知,第一级跌水高度P 为0.6 m ,堰口为矩形,单个堰宽0.05m ,堰口个数共计38个,第二级跌水高度P 为1.2m ,堰口为弧线形,堰口个数为30个,跌水台阶宽度l t =0.45m 。 根据水力学计算公式,宽顶堰自由出流的流量计算式为: 3c 3c 2H b M H g b m Q ???=????=σσ 式中 b ——堰口净宽 H ——包括行进流速水头的堰前水头, H=H0+υ02/2g 式中 υ0——行进流速

m ——自由溢流的流量系数,与堰型、堰高等边 界条件有关 =H σc ——侧收缩系数 g m M 2?=当堰口为矩形时,侧收缩系数σc 为1,上述计 算式简化为《给水排水设计手册》中的流量计算式: 332H b M H g b m Q ??=???= 校核水景水舌长度 P D l d 27 .030.4= 式中 D=q2/(g·p3) q--堰口单宽流量,q=Q/b ,m3/(s·m) p--跌水高度,1m g--重力加速度,9.81 m/s2 一、计算跌水流量Q 根据方案效果设计要求及现场情况环境的要求,跌水流量不须太大,因此,初始选定堰前水头H=0.15 kPa ,根据堰流的出口形式,流量系数M=1420,因此试算流量: 332H b M H g b m Q ??=???= =17.8m 3 /h 二、校核跌水水舌 l d 根据试算流量Q 可求出跌水景溢流口的单宽流量:

跌水水景中的计算实例

跌水水景中的计算实例 标签:水景跌水跌水水景2007-08-16 23:32 简介:为了更好的理解跌水水景中的水理计算,现以一工程为例. 关健字:水景跌水跌水水景 某宾馆根据其地形条件在大堂内设计一溢流式跌水景,为扇形结构,第一级跌水高度P 为2.1 m,堰口为弧线形,长度b=14.65 m,堰顶宽δ=0.15 m,跌水台阶宽度l t=0.7m。 2.1计算跌水流量Q 根据宾馆大堂环境的要求,跌水流量不须太大,因此,初始选定堰前水头H=0.2 kPa,根据堰流的出口形式,流量系数M=1 417.4,因此试算流量: 2.2校核跌水水舌 l d根据试算流量Q可求出跌水景溢流口的单宽流量: q=Q/b=4.007×10-3 m3/(s·m) 由此得 D=q2/(g·p3)=1.767 3×10-7 跌水水舌长度: l d=4.30×D0.27×P=0.136m 0.1

标签:水景跌水跌水水景2007-08-16 23:30 简介:跌水水景在小区水景中为常见的一种表现形式,水量控制是其中的一个关健点.跌水水景水量过大则能耗大,长期运转费用高;跌水水景水量过小则达不到预期的设计效果。 关健字:水景跌水跌水水景 在水景设计中,跌水水景是构成溪流、叠流、瀑布等水景的基本单元,具有动态和声响的效果,因而应用较广。 与静态水景不同,动态水景的水是流动的,其流动性一般用循环水泵来维持,水量过大则能耗大,长期运转费用高;水量过小则达不到预期的设计效果。因此,根据水景的规模确定适当的水流量十分重要。 1 跌水水景的水力学特征及计算 跌水水景实际上是水力学中的堰流和跌水在实际生活中的应用,跌水水景设计中常用的堰流形式为溢流堰. 根据δ和H的相对尺寸,堰流流态一般分为薄壁堰流、实用堰流、宽顶堰流等三种形式:当δ/H<0.67,为薄壁堰流;0.67<δ/H<2.5,为实用堰流;2.5<δ/H<10,为宽顶堰流; δ/H>10,为明渠水流,不是堰流。 跌水水景设计中,常用堰流形态为宽顶堰流。 当跌水水景的土建尺寸确定以后,首先要确定跌水水景流量Q,当水流从堰顶以一定的初速度v0落下时,它会产生一个长度为l d的水舌。若l d大于跌水台阶宽度l t,则水景水流会跃过跌水台阶;若l d太小,则有可能出现水景水舌贴着水景跌水墙而形成壁流。这两种情况的出现主要与跌水水景流量Q的大小有关,设计时应尽量选择一个恰当的跌水水景流量以避免上述现象的 水景中的跌水水景设计(二)

相关主题