搜档网
当前位置:搜档网 › 锂离子电池硅基负极材料研究进展

锂离子电池硅基负极材料研究进展

锂离子电池硅基负极材料研究进展
锂离子电池硅基负极材料研究进展

万方数据

万方数据

万方数据

锂离子电池硅基负极材料研究进展

作者:崔清伟, 李建军, 戴仲葭, 连芳, 何向明, 田光宇, Cui Qingwei, Li Jianjun, Dai Zhongjia,Lian Fang, He Xiangming, Tian Guangyu

作者单位:崔清伟,Cui Qingwei(北京科技大学材料科学与工程学院,北京100083;清华大学核能与新能源技术研究院,北京100084), 李建军,戴仲葭,Li Jianjun,Dai Zhongjia(清华大学核能与新能源技术研究院,北京,100084)

, 连芳,Lian Fang(北京科技大学材料科学与工程学院,北京,100083), 何向明,He Xiangming(清华大学核

能与新能源技术研究院,北京100084;清华大学汽车安全与节能国家重点实验室,北京100084), 田光宇,Tian

Guangyu(清华大学汽车安全与节能国家重点实验室,北京,100084)

刊名:

化工新型材料

英文刊名:New Chemical Materials

年,卷(期):2013,41(6)

被引用次数:7次

参考文献(20条)

1.庄全超,武山,刘文元,陆兆达锂离子电池材料研究进展[期刊论文]-电池 2003(2)

2.周恒辉,慈云祥,刘昌炎锂离子电池电极材料研究进展[期刊论文]-化学进展 1998(1)

https://www.sodocs.net/doc/b88070573.html,z A;Huggins R A查看详情 2004

4.Huggins R A查看详情 1999

5.Lee K L;Jung J Y;Lee S W查看详情 2004

6.Cui L F;Ruffo R;Chan C K查看详情 2009(01)

7.Lv R;Yang J;Gao P查看详情 2009

8.Song, T.;Xia, J.;Lee, J.-H.;Lee, D.H.;Kwon, M.-S.;Choi, J.-M.;Wu, J.;Doo, S.K.;Chang, H.;Park, W.I.;Zang, D.S.;Kim,

H.;Huang, Y.;Hwang, K.-C.;Rogers, J.A.;Paik, U.Arrays of sealed silicon nanotubes as anodes for lithium ion

batteries[外文期刊] 2010(5)

9.Du C Y;Gao C H;Yin G P查看详情 2011

10.赵吉诗,何向明,万春荣,姜长印锂离子电池硅基负极材料研究进展[期刊论文]-稀有金属材料与工程 2007(8)

11.Wen Z S;Cheng M K;Sun J C查看详情 2010

12.Cui, L.-F.;Hu, L.;Choi, J.W.;Cui, Y.Light-weight free-standing carbon nanotube-silicon films for anodes of

lithium ion batteries[外文期刊] 2010(7)

13.杜萍,高俊奎锂离子电池Si基负极研究进展[期刊论文]-电源技术 2010(4)

14.Wang X Y;Wen Z Y;Liu Y查看详情 2011

15.Chen H X;Xiao Y;Wang L查看详情 2011(16)

16.Kasavajjula U;Wang C;Appleby A J查看详情 2007

17.黄可龙;王兆翔;刘素琴锂离子电池原理与关键技术 2007

18.See-How Ng;Jiazhao Wang查看详情 2006

19.Si Q;Hanai K;Ichikawa T查看详情 2010

20.Zhou Z B;Xu Y H;Hojamberdiev M查看详情 2010

引证文献(2条)

1.刘云海,吴智鑫,姬超,闫腊梅,高虹锂离子电池Si-Ni负极材料的制备研究[期刊论文]-节能 2014(04)

2.陈雪芳,黄英,黄海舰,王科锂离子电池用硅负极材料的研究进展[期刊论文]-中国科技论文 2014(9)

引用本文格式:崔清伟.李建军.戴仲葭.连芳.何向明.田光宇.Cui Qingwei.Li Jianjun.Dai Zhongjia.Lian Fang.He Xiangming. Tian Guangyu锂离子电池硅基负极材料研究进展[期刊论文]-化工新型材料 2013(6)

硅基锂离子电池负极材料

硅基锂离子电池负极材料 硅是目前已知比容量(4200mAh/g)最高的锂离子电池负极材料,但由于其巨大的体积效应(>300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层SEI,最终导致电化学性能的恶化。近年来,研究者们做了大量的研究和探索,尝试解决这些问题并取得了一定的成效,下面就由小编带着大家看看这一领域的研究进展,并提出进一步的研究方向和应用前景。 硅的脱嵌锂机理和容量衰减机制 硅不具有石墨基材料的层状结构,其储锂机制和其他金属一样,是通过与锂离子的合金化和去合金化进行的,其充放电电极反应可以写作下式: Si+xLi++xe-LiXSi 图1硅基锂离子电池原理图:(a)充电;(b)放电

在与锂离子发生合金与去合金化过程中,硅的结构会经历一系列的变化,而硅锂合金的结构转变和稳定性直接关系到电子的输送。 根据硅的脱嵌锂机理,我们可以把硅的容量衰减机制归纳如下:(1)在首次放电过程中,随着电压的下降,首先形成嵌锂硅与未嵌锂晶态硅两相共存的核壳结构。随着嵌锂深度的增加,锂离子与内部晶体硅反应生成硅锂合金,最终以Li15Si4的合金形式存在。这一过程中相比于原始状态硅体积变大约3倍,巨大的体积效应导致硅电极的结构破坏,活性物质与集流体'活性物质与活性物质之间失去电接触,锂离子的脱嵌过程不能顺利进行,造成巨大的不可逆容量。(2)巨大的体积效应还会影响到SEI的形成,随着脱嵌锂过程的进行,硅表面的SEI会随着体积膨胀而破裂再形成,使得SEI越来越厚。由于SEI的形成会消耗锂离子,因而造成了较大的不可逆容量。同时SEI较差的导电性还会使得电极的阻抗随着充放电过程不断增大,阻碍集流体与活性物质的电接触,增加了锂离子的扩散距离,阻碍锂离子的顺利脱嵌,造成容量的快速衰减。同时较厚的SEI还会造成较大的机械应力,对电极结构造成进一步破坏。(3)不稳定的SEI层还会使得硅及硅锂合金与电解液直接接触而损耗,造成容量损失。 硅材料的选择与结构设计 1.无定型硅和硅的氧化物 (1)无定型硅 无定形硅在低电位下拥有较高的容量,作为锂离子电池负极材料"相比于石墨类电极材料安全性能更高。但无定形硅材料只能在有限程度上缓解颗粒的破碎和粉化,其循环稳定性仍不能满足作为高容量电池负极材料的要求。 (2)硅的氧化物 作为锂离子电池负极材料,SiO具有较高的理论比容量(1200mAh/g以上)、良好的循环性能以及较低的脱嵌锂电位,因此也是一种极具潜力的高容量锂离子电池负极材料。但氧化硅含氧量的不同也会影响其稳定性和可逆容量:随着氧化硅中氧的提高,循环性能提高,但可逆容量减小。 除此之外,硅氧化物作为锂离子电池负极材料还存在一些问题:由于首次嵌锂过程中Li2O和锂硅酸盐形成过程是不可逆的,使得首次库仑效率很低;同时Li2O和锂硅酸盐导电性差,使得电化学动力学性能较差,因而其倍率性能差;相比于单质硅,硅氧化物作为负极材料的循环稳定性更好,但是随着循环次数继续增加,其稳定性仍然很差。 2.低维硅材料

纳米硅碳负极材料研究报告

纳米硅碳负极材料研究报告 0引言 自1991年SONY公司以石油焦炭为负极材料将锂离子电池推向商业化以来,因其出色的循环寿命、较高工作电压、高能量密度等特性,锂离子电池一经推出就受到人们的广泛关注,迅速成为能源储存装置中的明星。近年来,随着新能源交通工具(如EV和HEV)的发展,对锂离子电池提出了更高的要求。作为锂离子电池关键部分的负极材料需要具备在Ii 的嵌入过程中自由能变化小,反应高度可逆;在负极材料的固态结构中有高的扩散率;具有良好的电导率;优良的热力学稳定性以及与电解质良好的相容胜等。研究者们通过开发具有新颖纳米结构的碳材料和非碳材料,来提高作为锂离子电池负极的嵌铿性能。然而,这些新颖的材料,如Sn, Si, Fe、石墨烯、碳纳米管,等,虽然其理论嵌铿容量较高(Sn和Si的理论嵌铿容量分别为994mAh/g和4 200 mAh/g ,但由于制备工艺相当复杂,成本较高,而且在充放电过程中存在较大的体积变化和不可逆容量。因此,若将其进行商业化应用还需要解决许多问题。 锂离子电池具有高电压、高能量、循环寿命长、无记忆效应等众多优点,已经在消费电子、电动土具、医疗电子等领域获得了少’一泛应用。在纯电动汽车、混合动力汽车、电动自行车、轨道交通、航空航天、船舶舰艇等交通领域逐步获得推少’一。同时,锉离子电池在大规模可再生能源接入、电网调峰调频、分布式储能、家庭储能、数据中心备用电 源、通讯基站、土业节能、绿色建筑等能源领域也显示了较好的应用前景 1不同负极材料的特点评述 天然石墨有六方和菱形两种层状品体结构同,具有储量大、成本低、安全无毒等优点。在锉离子电池中,天然石墨粉末的颗粒外表面反应活性不均匀,品粒粒度较大,在充放电过程中表面品体结构容易被破坏,存在表面SEI膜覆盖不均匀,导致初始库仑效率低、倍率性能不好等缺点。为了解决这些问题,可以采用颗粒球形化、表面氧化、表面氟化、表面包覆软碳、硬碳材料以及其它方式的表面修饰和微结构调整等技术对天然石墨进行改性处理。从成本和性能的综合考虑,目前土业界石墨改性主要使用碳包覆土艺处理。商业化应用的改性天然石墨比容量为340~ 370 mA·h/g,首周库仑效率90%~93%,100% DOD循环寿命可达到1000次以上,基本可以满足消费类电子产品对小型电池的性能要求。 2硅碳负极材料应用前景 近年来,我国锂离子电池产业发展迅速,全球市场份额不断攀升,在大规模的锂离子电池产业投资的带动下,锂离子电池负极材料的需求不断上升。硅负极相比石墨负极具有更高的质量能量密度和体积能量密度,采用硅负极材料的锉离子电池的质量能量密度可以提升8%以上,体积能量密度可以提升10%以上,同时每千瓦时电池的成本可以下降至少3%,因此硅负极材料将具有非常广阔的应用前景。新能源汽车产业是全球汽车产业的发展方向,也是我国重要的新兴战略产业之一,未来10年将迎来全球汽车产业向新能源汽车转型和升级的战略机遇。新能源汽车主要包括纯电动汽车、插电式混合动力汽车及燃料电池汽车。其中,纯电动汽车完全使用动力电池驱动,对电池容量需求最大,要求锉离子电池容量平均为30 kW /h。自2010年起,动力类锉离子电池受益于技术提升和成本降低,逐渐替代镍锅,镍氢电池,成为新能源汽车广泛使用的动力电池。根据中国汽车工业协会统计,我国新能源汽车产量由2011年的8000辆左右增至2015年的34万辆,而销量则由2011年的8000辆左右增至2015年的33万辆,年均复合增长率均超过150% o在各种利好政策的影响下,2014

锂离子电池硅基负极材料研究现状与发展趋势

XX大学 毕业论文 题目锂离子电池硅基负极 材料研究现状与发展趋势 姓名XX 教育层次大专 学号XX 省级电大XX 专业应用化工技术分校 XX 指导教师 XX 教学点XX 目录

一、 (4) 二、 (4) 三、 (5) 四、 (6) 五、 (6) (一) (6) (二) (7) 参考文献 (7) 致谢 (8) 锂离子电池硅基负极材料研究现状与发展趋势

摘要: 硅基负极材料因具有高电化学容量是一种极具发展前景的锂离子电池负极材料. 评述单质硅、硅-金属合金、硅-碳复合材料以及其他硅基复合材料作为锂离子二次电池负极材料的最新研究成果, 分析锂离子电池硅负极材料存在问题, 探讨硅基负极材料的合成、制备工艺以及未来硅基材料的研究方向和应用前景. 分析结果表明, 通过硅的纳米化、无定形化、合金化及复合化等技术手段, 实现硅基负极材料同时兼备高容量、长寿命、高库伦效率和倍率性能, 是未来的主要发展方向. 关键词: 应用化学; 锂离子电池; 负极材料; 硅基复合材料。 锂离子二次电池因具有比能量高、充放电寿命长、无记忆效应、自放电率低、快速充电、无污染、工作温度范围宽和安全可靠等优点, 已成为现代通讯、便携式电子产品和混合动力汽车等的理想化学电源. 在制造锂离子二次电池的关键材料中, 负极材料是决定锂离子电池工作性能和价格的重要因素. 目前商业化的负极材料主要是石墨类碳负极材料, 其实际容量已接近理论值(372 mA·h / g), 因此不能满足高能量密度锂离子微电池的要求. 另一方面, 石墨的嵌锂电位平台接近金属锂的沉积电势, 快速充电或低温充电过程中易发生“析锂” 现象从而引发安全隐患. 此外, 石墨材料的溶剂相容性差, 在含碳酸丙烯酯等的低温电解液中易发生剥离导致容量衰减[1] . 因此, 寻求高容量、长寿命、安全可靠的新型负极材料来代替石墨类碳负极, 是锂离子电池发展的迫切需要. 在各种新型合金化储锂的材料中, 硅容量最高, 能和锂形成Li 12 Si 7 、Li 13 Si 4、Li7Si3 、Li15Si4 和Li22Si5等合金, 理论储锂容量高达4212mA·h / g, 超过石墨容量的10倍[2-3] ; 硅基负极材料还具有与电解液反应活性低和嵌锂电位低(低于0.5 V) 等优点[4-5] . 硅的嵌锂电压平台略高于石墨, 在充电时难以引起表面锂沉积的现象, 安全性能优于石墨负极材料[6] . 此外, 硅是地壳中丰度最高的元素之一, 其来源广泛, 价格便宜, 没有毒性, 对于硅负极材料的商业化应用具有极大的优势. 本文评述了近年来单质硅、硅-金属合金以及硅-碳复合材料和其他硅基复合体系作为锂离子二次电池负极材料最新研究成果, 并对今后研究方向和应用前景作了展望. 一、硅脱嵌锂时的结构变化

硅负极材料在锂离子电池中的应用

新型硅负极材料在锂离子电池中的应用研究 吴孟涛 天津巴莫科技股份有限公司 当今社会便携式可移动电子设备的高速发展极大的刺激了市场对重量轻体积小容量和能量密度更高的锂离子电池的需求。目前商业化锂离子电池都是以碳基材料作为负极的,但由于石墨负极的可逆容量只有372mAh/g (LiC6),严重限制了未来锂离子电池的发展,所以研发下一代锂离子电池负极材料成为新的热点。人们发现在Li22Si5中硅的恒流理论容量达到了4200mAh/g,是极具开发潜力的锂离子负极材料。但这种材料的缺点也很突出:在嵌锂和脱锂过程中材料体积会发生膨胀,微观结构发生改变而导致在嵌锂脱嵌过程中电极的断裂和损耗[1]。虽然不少文献提出了很多改进方法但由于制备出的硅薄膜材料厚度较薄,不适宜商业化生产。为了使硅负极可以应用于实际生产,我公司以无定形硅薄膜溅射在铜箔上成功制备出了厚度大于1μ的硅薄膜负极材料并与市场上的LiCoO2制成电池进行了一系列循环和倍率性能测试。 1 实验: 硅薄膜是以物理溅射的方法在表面粗糙的铜箔上的[2]。表面形貌分析应用的是HRTEM(FEI Tecnai20).制备出的硅薄膜材料在80℃下真空干燥24h,与市场上销售的LiCoO2在手套箱中组成2025扣式全电池。电解液为1M LiPF6/EC+DMC(体积比1:1);隔膜使用的是Celgard-2300。所有倍率试验和循环性能试验都是在电脑控制的25±1℃恒温系统中进行的。 2结果与讨论: 图1是循环前硅薄膜材料的HRTEM图和SAED图,从图中可以清楚看出涂在铜箔上的硅薄膜是无定形状态的。 图1 硅薄膜材料的HRTEM图和SAED图

常见发光材料

一.常见发光种类 光致发光 灯用材料 日光灯,节能灯,黑光灯,高压汞灯,低压汞灯,LED转换组合白光 长余辉材料 放射性永久发光,超长余辉,长余辉 紫外发光材料 长波3650发光,短波2537发光,真空紫外发光,量子点发光…… 红外线发光材料 上转换发光,红外释光,热释发光, 多光子材料 荧光染料\颜料 稀土荧光,有机荧光 电致发光 高场发光 直流粉末DCEL,交流粉末ACEL,薄膜发光,厚膜发光,有机发光 低场发光 发光二极管(LED),有机发光(OEL-OLED),硅基发光,半导体激光 阴极射线发光 彩色电视发光材料 黑白电视发光材料 像素管材料 低压荧光材料 超短余辉材料 放射线发光 α射线发光材料,β射线发光材料,γ射线发光材料,氚放射发光材料,闪烁晶体材料 X射线发光 X存储发光材料 X增感发光材料 CT扫描发光材料 摩擦发光 单晶发光,微晶发光 化学发光 有机化合物发光(荧光染料) 液体发光 有机稀土发光 生物发光 酶发光,有机发光, 反射发光(几何光学) 光学镀膜反射材料,玻璃微珠反射材料 二.常见发光材料成份 物质发光过程有激励、能量传输和发光三个过程。激励方式主要有电子束激发,光激发和电场激发。电子束激发有阴极射线(CRT)发光材料,真空荧光(VFD)材料,场发射(FED)显示材料;光激发有荧光灯用发光材料,等离子显示(PDP)发光材料,X射线激发光材料等;电场激发有电致发光(EL)材料,发光二极管(LED)材料。 1 .阴极射线(CRT)稀土发光材料

表1 阴极射线稀土发光材料 组份发光色余辉用途 Y2O2S:Eu3+ 红 M 彩电,终端显示 Y2O2S:Eu3+ 红 M 投影电视 Y3(Al,Ga)5O12:Tb3+ 绿 M 投影电视 Y2SiO5:Tb3+ 绿 M 投影电视 InBO3:Tb3+ 绿 M 终端显示 InBO3:Eu3+ 红 M 终端显示 Y2SiO5:Ce3+ 415nm S 束电子引示管 (Beam index tube) Y3Al3Ga2O12:Ce3+ 520nm S 束电子引示管 (Beam index tube) YAlO3:Ce3+ 370nm S 束电子引示管 (Beam index tube) Y3Al5O12:Ce3+ 535nm S 飞点扫描管 2 .真空荧光显示(VFD)稀土发光材料 VFD用稀土发光材料较少,效率也不高,如SnO2:Eu3+, Y2O2S:Eu3+,很少使用。 3. 场发射显示(FED)稀土发光材料 FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度(寻址时间)非常快,而功耗仅是LCD的1/3,其应用前景令人关注。FED稀土发光材料如表2所示。 表2 FED稀土发光材料 组成颜色发光效率 SrTiO3:Pr 红 0.4 Y2O3:Eu 红 0.7 Y2O2S:Eu 红 0.57 Y3(Al,Ga)5O12:Tb 绿 0.7 Y2SiO5:Tb 绿 1.1 SrGa2S4:Eu[1] 绿 4.0 ZnS:Cu,Al 绿 2.6 Y2SiO5:Ce 兰 0.4 SrGa2S4:Ce[1] 兰 1.5 ZnS:Ag,Cl 兰 0.75 4 .灯用稀土发光材料 使用稀土三基色荧光粉的节能灯流明效率高,显色性好,是欧美、日和我国大力推广的绿色照明。灯用稀土发光材料如表3所示。 表3 灯用稀土发光材料 组成颜色用途 Y2O3:Eu 红节能灯 Y(V,P)O4:Eu 红高压汞灯 MgAl11O19:Ce,Tb 绿节能灯 LaPO4:Ce,Tb 绿节能灯 GdMgB5O10:Ce,Tb 绿节能灯 BaMgAl10O17:Eu,Mn 兰绿节能灯

阐述硅基负极材料粘结剂的研究进展并对不同类型粘结剂进行优缺点对比

阐述硅基负极材料粘结剂的研究进展并对不同类型粘结剂进行优缺点对比硅(Si)基负极材料的理论比容量(4200 mAh/g)高、嵌脱锂平台较适宜,是一种理想的锂离子电池用高容量负极材料。在充放电过程中,Si的体积变化达到300%以上,剧烈的体积变化所产生的内应力,容易导致电极粉化、剥落,影响循环稳定性。 在锂离子电池中,粘结剂是影响电极结构稳定性的重要因素之一。根据分散介质的性质,锂离子电池粘结剂可分为以有机溶剂为分散剂的油性粘结剂和以水为分散剂的水性粘结剂。刘欣等综述了髙容量负极用粘结剂的研究进展,认为聚偏氟乙烯(PVDF)改性粘结剂和水性粘结剂的应用,可使高容量负极电化学的性能得到提高,但没有针对硅基负极用粘结剂进行论述或比较。 本文作者就硅基负极材料粘结剂的研究进展进行了综述并对不同类型粘结剂的优缺进行了比较。 1、油性粘结剂 在油性粘结剂中,PVDF的均聚物和共聚物应用得最为广泛。 1.1 PVDF均聚物粘合剂 在锂离子电池的规模化生产中,普遍以PVDF作为粘结剂,有机溶剂N-甲基吡咯烷酮(NMP)等作为分散剂。PVDF 具备良好的粘性和电化学稳定性,但电子和离子导电性较差,有机溶剂易挥发、易燃易爆且毒性大;而且PVDF只以弱范德华力与硅基负极材料相连,不能适应Si剧烈的体积变化。传统型PVDF并不适用于硅基负极材料[3 -5]。 1.2 PVDF改性粘结剂 为改善PVDF应用于硅基负极材料的电化学性能,有学者提出共聚和热处理等改性方法。Z. H. Chen等发现:三元共聚物聚偏氟乙烯-四氟乙烯-乙烯共聚物[P(VDF- TFE-P)]可增强PVDF的机械性能和粘弹性。J. Li等发现:在300℃、氩气保护的条件下热处理,可提高PVDF 的分散性和粘弹性。改性PVDF/Si电极以150 mA/g在0.17 ~ 0_ 90 V循环50次,比容量为600 mAh/g。PVDF/Si电极经改性处理,循环性能虽然有所改善,但循环稳定性仍不理

锂电池负极材料大体分为以下几种

锂电池负极材料大体分为以下几种: 第一种是碳负极材料: 目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。 第二种是锡基负极材料: 锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。目前没有商业化产品。 第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。 第四种是合金类负极材料: 包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金,目前也没有商业化产品。 第五种是纳米级负极材料:纳米碳管、纳米合金材料。 第六种纳米材料是纳米氧化物材料:目前合肥翔正化学科技有限公司根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂电池的冲放电量和充放电次数。 锂金属电池 锂-二氧化锰电池是一种以锂为阳极(负极)、以二氧化锰为阴极(正极),并采用有机电解液的一次性电池。该电池的主要特点是电池电压高,额定电压为3V(是一般碱性电池的2倍);终止放电电压为2V;比能量大(金属锂的理论克容量为3074mAh);放电电压稳定可靠;有较好的储存性能(储存时间3年以上)、自放电率低(年自放电率≤10%);工作温度范围-20℃~+60℃。 该电池可以做成不同的外形以满足不同要求,它有长方形、圆柱形及纽扣形(扣式)。 锂离子电池 可充电锂离子电池是目前手机、笔记本电脑等现代数码产品中应用最广泛的电池,但它较为“娇气”,在使用中不可过充、过放(会损坏电池或使之报废)。因此,在电池上有保护元器件或保护电路以防止昂贵的电池损坏。锂离子电池充电要求很高,要保证终止电压精度在±1%之内,目前各大半导体器件厂已开发出多种锂离子电池充电的IC,以保证安全、可靠、快速地充电。 现在手机已十分普遍,基本上都是使用锂离子电池。正确地使用锂离子电池对延长电池寿命是十分重要的。它根据不同的电子产品的要求可以做成扁平长方形、圆柱形、长方形及扣式,并且有由几个电池串联并联在一起组成的电池组。锂离子电池的额定电压,因为近年材料的变化,一般为3.7V,磷酸铁锂(以下称磷铁)正极的则为3.2V。充满电时的终止充电电压一般是4.2V,磷铁3.65V。锂离子电池的终止放电电压为2.75V~3.0V(电池厂给出工作电压范围或给出终止放电电压,各参数略有不同,一般为3.0V,磷铁为2.5V)。低于2.5V(磷铁2.0V)继续放电称为过放,过放对电池会有损害。

硅基光电器件研究进展

半导体技术 Semiconductor Technology 1999年 第1期 No.1 1999 硅基光电器件研究进展 郭宝增 摘要 在信息处理和通信技术中,光电子器件起着越来越重要的作用。然而,因为硅是间接带隙半导体,试图把光电子器件集成在硅微电子集成电路上却遇到很大困难。为解决这一困难,人们发展了多种与硅微电子集成电路兼容的光电子器件制造技术。本文介绍最近几年这方面技术的发展情况。 关键词 多孔硅 光电子器件 硅集成电路 Research Development of Silicon-Based Optoelectronic Devices Guo Baozeng (Department of Electronic & Informational Hebei University,Baoding 071002) Abstract Silicon-based optoelectronic devices are increasingly important in information and communication technologies.But attempts to integrate photonics with silicon-based microelectronics are hampered by the fact that silicon has an indirect band gap,which prevents efficient electron-photon energy conversion.In order to solve this problem,many technologies to make optoelectronic devices which can be compatible with conventional silicon technology have been developed.In this article,we review the deve-lopment of these thchnologies. Keywords Porous silicon Optoelectronic devices Silicon integrated circuit 1 引 言 硅是微电子器件制造中应用得最广泛的半导体材料。硅集成电路的应用改变了当代世界的面貌,也改变了人们的生活方式。但是,一般硅集成电路只限于处理电信号,对光信号的处理显得无能为力。然而,光电器件的应用却是非常广泛的,光纤通信、光存储、激光打印机及显示设备都 要用到各种光电器件。从更广的意义上说,我们所处的世界实际上是一个光的世界。据心理学家分析,人们通过眼睛所接收的信息占总接收信息量的83%,即人们接收的信息83%是光信号。因此可以想象,在未来信息化社会里,对光电子器件的需求决不亚于对微电子器件的需求。目前采用的光电子器件,主要是Ⅲ-Ⅴ族材料,这些器件与广泛使用的硅技术不兼容,而且制造成本高,因

锂离子电池硅_碳复合负极材料的研究进展_张瑛洁

第34卷第4期 硅酸盐通报Vol.34No.42015年4月BULLETIN OF THE CHINESE CERAMIC SOCIETY April ,2015 锂离子电池硅/碳复合负极材料的研究进展 张瑛洁,刘洪兵 (东北电力大学化学工程学院,吉林132012) 摘要:负极材料是制约锂离子电池发展的重要因素之一。硅/碳复合材料储锂容量高、循环稳定性好,是目前制备 新型锂离子电池负极材料的研究热点。介绍了硅/碳复合材料的不同制备方法和复合结构以及优良的电化学性 能,综述了硅/碳复合材料的研究进展,并对未来的发展方向进行了展望。 关键词:锂离子电池;硅/碳复合材料;制备方法;复合结构;电化学性能 中图分类号:TQ152文献标识码:A 文章编号:1001- 1625(2015)04-0989-06Research Progress on Si /C Composite Anode Materials for Lithium-ion Battery ZHANG Ying-jie ,LIU Hong-bing (School of Chemical Engineering ,Northeast Dianli University ,Jilin 132012,China ) Abstract :Anode materials is a major factor that restricts the development of lithium-ion batteries.Si /C composite materials ,which possesses high capacity and cycling stability ,becomes the hot spot to preparation of new type lithium-ion battery anode materials at present.Different preparation methods of Si /C composite materials ,composite structures ,and excellent electrochemical performance were introduced.And the research progress of Si /C composites was summarized.Subsequently ,the future development direction of Si /C composite materials was prospected as well. Key words :lithium ion battery ;Si /C composite materials ;preparation method ;complex structure ; electrochemical performance 基金项目:吉林省科技厅产业技术创新战略联盟项目(20130305017GX );吉林省教育厅吉教科合字[ 2014]第103号作者简介:张瑛洁(1969-),女,教授, 博士.主要从事水的深度处理方面的研究.1引言 负极材料储锂容量是制约锂离子电池应用范围的关键因素,硅/碳复合材料作为一类应用潜力巨大的负 极材料, 成为近年来研究的热点。碳与硅相近似的化学性质,为两者的紧密结合提供了理论依据,所以碳常用作与硅复合的首选基质。硅通常与石墨、石墨烯、无定型碳和碳纳米管等不同的碳基质制备复合材料,在硅碳复合的体系中硅主要作为活性物质,提供容量 [1-3];碳材料一般作为分散基质,限制硅颗粒的体积变化,并作为导电网络维持电极内部良好的电接触[4-6]。理论上,硅/碳复合材料储锂容量高,导电性能好,但要成为可商用的锂离子电池负极材料,面临着两个基本的挑战:循环稳定性差和可逆循环容量保持率低。不同的制备方法以及复合结构都会对复合材料的电化学性能产生影响,开发强附着性、紧密电接触、耐用的新型硅碳复合材料,对促进硅/碳复合材料实际应用的进程具有重大意义。本文着重从制备方法、复合结构及电化学性能等方面综述了硅/碳复合材料近年来的研究进展,以期对后续的研究人员的相关实验提供理论依据。DOI:10.16552/https://www.sodocs.net/doc/b88070573.html,ki.issn1001-1625.2015.04.018

硅碳负极研究发展现状

硅碳负极研究发展现状 (姜玉珍山东青岛青岛华世洁环保科技有限公司) 锂离子电池以能量密度高、循环寿命长和对环境友好等优点正在逐步取代镍氢电池,成为最有前途的储能装置。特别在最近几年,随着新能源汽车、便携式电子产品的高速发展,锂离子电池得到了更广泛的关注和更为深入的研究。 负极材料是锂离子电池的重要组成部分,它直接影响着电池的能量密度、循环寿命和安全性能等关键指标。未来的锂离子电池负极材料必须向高容量方向发展,才能解决现有电池能量密度低的问题。硅材料是一种具有超高比容量(理论容量4200 mAh/g)的负极材料,是传统碳系材料容量的十余倍,且放电平台与之相当,因此被视作下一代锂离子电池负极材料的首选。 然而,纯硅在充放电过程中会发生巨大的体积变化(体积膨胀率300%),导致其粉化,进而影响到电池的安全性。另一方面,纯硅的电子导电率较低,很难提升锂离子电池的大电流充放电能力。针对上述两方面问题,国内外学者展开了大量的研发工作,本文就硅碳负极的研究发展现状进行综述。 1、硅碳负极目前存在的主要问题 在锂离子电池首次充电过程中,锂离子嵌入硅碳负极造成硅的体积膨胀,放电时,随着锂离子的脱出,硅碳负极体积收缩,硅的这种体积上的变化会产生大量的不可逆容量损失。造成首次放电效率低。随着充放电循环次数的增加,硅的体积膨胀会使得初次形成的SEI膜不断遭到破坏,同时体积膨胀会露出新鲜的负极表面,新鲜表面又会与电解液、锂离子反应再次形成SEI膜,如此循环往复,锂离子电池的容量不断降低,循环衰减严重,导致寿命降低。此外,纳米级的硅粉价格较高,硅碳负极成本问题也是制约其发展的又一因素。针对首次效率低、循环容量衰减严重的问题,专家学者们通过复合改性、纳米化等各种方式进行研究。 2、硅碳负极制备方法 2.1、静电纺丝 吉林师范大学的曲超群等人通过静电纺丝制备出了硅碳负极粉料。其过程为:将PVP溶于乙醇制备0.5KG/L的溶液,按照Si:PVP=1:5加入硅粉,磁力搅拌、超声分散均匀,以静电纺丝方式制备前驱体,所得纺丝前驱体在马弗炉中以5 ℃/min的速率升温至230℃预氧化30 min,然后置于通有氩气保护的管式炉中650℃烧结7 h随炉冷却后即得Si/C复合材料。材料首次0.1C 放电容量为1156.8mAh/g,库伦效率74.5%,第20次循环时材料的放电容量仍能够维持在783.2 mAh/g。 图1、Si/C 复合负极材料在0.1C 倍率下的充放电曲线

探析硅光学技术的原理、种类及优势

探析硅光学技术的原理、种类及优势 当互联网流量在用户和数据中心之间传递时,越来越多数据通信发生在数据中心,让现有数据中心交换互联变得更加困难,成本越来越高,由此技术创新变得十分重要与紧迫。 现在有一种半导体技术——硅光子,具有市场出货量与成本成反比的优势,相比传统的光子技术,硅光器件可以满足数据中心对更低成本、更高集成、更多嵌入式功能、更高互联密度、更低功耗和可靠性的依赖。 微电子技术按照“摩尔定律”飞速发展已有五十几年了,但随着器件的特征尺寸减小到十几个纳米以下,微电子产业能否再依照“摩尔定律”前进已面临挑战。器件的速度、功耗和散热已经成为制约微电子技术发展的瓶颈。另一方面,基于计算机与通信网络化的信息技术也希望其功能器件和系统具有更快的处理速度、更大的数据存储容量和更高的传输速率。仅仅利用电子作为信息载体的硅集成电路技术已经难以满足上述要求。因此,应用“硅基光电子技术”,将微电子和光电子在硅基平台上结合起来,充分发挥微电子先进成熟的工艺技术,大规模集成带来的低廉价格,以及光子器件与系统所特有的极高带宽、超快传输速率、高抗干扰性等优势,已经成为了信息技术发展的必然和业界的普遍共识。 什么是硅光技术? 硅光子是一种基于硅光子学的低成本、高速的光通信技术,用激光束代替电子信号传输数据,她是将光学与电子元件组合至一个独立的微芯片中以提升路由器和交换机线卡之间芯片与芯片之间的连接速度。 硅光子技术是基于硅和硅基衬底材料(如SiGe/Si、SOI 等),利用现有CMOS 工艺进行光器件开发和集成的新一代技术,结合了集成电路技术的超大规模、超高精度制造的特性和光子技术超高速率、超低功耗的优势,是应对摩尔定律失效的颠覆性技术。这种组合得力于半导体晶圆制造的可扩展性,因而能够降低成本。 硅光子架构主要由硅基激光器、硅基光电集成芯片、主动光学组件和光纤封装完成,使用

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 摘要:随着时代的进步,能源与人类社会的生存和发展密切相关,持续发展是全人类的、共同愿望与奋斗目标。矿物能源会很快枯竭,解决日益短缺的能源问题和日益严重的环境污染是对国家经济和安全的挑战也是对科学技术界地挑战。电池行业作为新能源领域的重要组成部分,已经成为全球经济发展的一个新热点本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料以及这两种材料形成的复合材料作为锂离子电池负极材料的研究及开发应用现状。 关键词:锂离子电池负极材料碳/硅复合材料 引言:电极是电池的核心,由活性物质和导电骨架组成正负极活性物质是产生电能的源泉,是决定电池基本特性的重要组成部分。本文就锂离子电池的负极材料进行研究。锂离子电池是目前世界上最为理想的可充电电池。它不仅具有能量密度大、无记忆效应、循环寿命长等特点,而且污染小,符合环保要求。随着技术的进步,锂离子电池将广泛应用于电动汽车、航空航天、生物医学工程等领域,因此,研究与开发动力用锂离子电池及其相关材料有重大意义。对于动力用锂离子电池而言,关键是提高功率密度和能量密度,而功率密度和能量密度提高的根本是电极材料,特别是负极材料的改善。 1、锂离子负极材料的基本特性 锂离子电池负极材料对锂离子电池性能的提高起着至关重要的作用。锂离子电池负极材料应具备以下几个条件: (1) 应为层状或隧道结构,以利于锂离子的脱嵌且在锂离子嵌入和脱出时无结构上的变化,以使电极具有良好的充放电可逆性和循环寿命; (2) 锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量。在锂离子的脱嵌过程中,电池有较平稳的充放电电压; (3) 首次不可逆放电比容量较小; (4) 安全性能好; (5) 与电解质溶剂相容性好; (6) 资源丰富、价格低廉; (7) 安全、不会污染环境。 现有的负极材料很难同时满足上述要求。因此,研究和开发新的电化学性能更好的负极材料成为锂离子电池研究领域的热门课题。 2、选材要求 一般来说,锂离子电池负极材料的选择主要要遵循以下原则:1、插锂时的氧化还原电位应尽可能低,接近金属锂的电位,从而使电池的输出电压高;2、锂能够尽可能多地在主体材料中可逆的脱嵌,比容量值大;3、在锂的脱嵌过程中,主体结构没有或很少发生变化,以确保好的循环性能;4、氧化还原电位随插锂数目的变化应尽可能的少,这样电池的电压不会发生显著变化,可以保持较平稳的充放电:5、插入化合物应有较好的电子电导率和离子电导率,这样可以减少极化并能进行大电池充放电;6、具有良好的表面结构,能够与液体电解质形成良好的固体电解质界面膜;7、锂离子在主体材料有较大的扩散系数,便于快速的充放电;8、价格便宜,资源丰富对环境无污染 3、负极材料的主要类型用作锂离子电池负极材料的种类繁多,根据主体相

硅基发光材料与光互连的基础研究

硅基发光材料与光互连的基础研究 ★项目简介: 建立在硅材料基础之上的微电子技术对人类社会的进步发挥了巨大的作用,对我国国民经济的发展,工业、科技和国防的现代化也起着至关重要的作用。在进入21世纪以后,我国正大力发展微电子工业,有望成为新兴的国际微电子工业基地,是国家发展的重大需求所在。随着信息产业的发展,信息数据将海量增加,对信息计算、传输等技术在今后的发展也提出了更高的要求和挑战。其主要的解决途径之一就是将现有成熟的微电子和光电子结合,实现硅基光电集成,这将成为信息产业发展的重要方向之一。近十年来,由于重大的工业意义,硅基光电集成关键材料和器件的研究引起了国际科学界(如美国MIT、哈佛大学)和工业界(如Intel,ST)的严重关注,仅Intel公司对硅基光电子的研发就投入数十亿美元巨资。一旦突破,不仅可以实现芯片光互连、光电集成以及将来的光计算,而且在光通讯、光显示等领域具有重大的潜在应用前景,对我国的信息产业的发展具有重大意义。本项目的主要目标是:探索硅基发光和光互连的新材料、新原理和新器件。采用能带工程、缺陷工程等途径,对硅基发光材料进行人工改性,发展新的硅基发光材料;提高硅基电致发光效率,实现硅基电泵激光。研究硅基微纳尺度下光的传输与控制,解决硅基芯片光互连和光电集成的关键问题。为我国硅基光电子产业的发展提供坚实的理论基础和技术、人才贮备,促进高速、大容量计算机技术的重大突破。本项目拟解决的关键科学问题是:(1)硅基高效率发光微结构体系的构建原理、可控制备和表征,以及硅基发光材料表面、界面结构的调控。(2)硅基发光材料的载流子注入、输运与复合过程,硅基电致发光的内、外量子效率增强和电泵激光的机制。 (3)微纳尺度下,硅基光波导中的光传输和控制,硅基光互连和单片集成中的光电融合。围绕科学问题,我们研究(1)硅基纳米材料的发光原理和技术,(2)硅基化合物半导体材料的发光原理及技术,(3)硅基材料杂质和缺陷的发光原理和技术,(4)硅基SiGe量子阱材料的发光原理和技术,(5)硅基光电子光互连和光电集成的关键原理和工艺。针对上述主要研究内容,为解决关键科学问题,我们设立五个课题,分别为:(1)硅基纳米材料的构建、调控及发光原型器件,(2)纳米化合物半导体/硅异质结构发光材料及原型器件,(3)基于缺陷工程的硅基发光材料及原型器件,(4)基于能带工程的硅基发光材料及光电子原型器件,(5)硅基微纳光波导传输与单片光电集成技术。前四个课题是通过不同的技术途径研究硅基发光来解决硅基光源问题,重点放在硅基纳米硅、硅基铒离子注入和硅基纳米硫化镉/硒化镉化合物异质结这三种材料体系中实现光放大和光增益。在此基础上,结合实际的器件或集成工艺,形成电致发光器件,并力争实现真正的硅基电致激光。而在实现硅基发光的基础上,最后一个课题则研究硅基光互连和光电集成。我们充分发挥人员交叉、学科交叉和单位交叉的优势,由国内硅基光电子研究的主要优势单位承担本课题。 项目由浙江大学牵头、中科院半导体所、北京大学、南京大学、南开大学和厦门大学参加,研究队伍包括了固体微结构国家实验室(筹)和集成光电子学、人工微结构与介观物理和硅材料三个国家重点实验室中研究硅基发光的几乎所有骨干力量,课题组成员包括2位中科院院士、3位国家杰出青年基金获得者和一批优秀的中青年学术骨干。在过去5年中,这一团队在本领域获得包括2项国家自然科学二等奖在内的一批科研成果,承担和完成了20多项相关的科研项目。本项目的完成不仅会提高我国硅基光电子材料的整体研究水平、跻身于国际研发的先进行列,还将培养一批优秀的中青年学术带头人,为我国新一代光电集成、计算机等的工业应用和发展提供理论基础和技术、人才储备。 ★项目专家组: 姓名单位 杨德仁浙江大学 徐骏南京大学 江晓清浙江大学 俞育德中国科学院半导体研究所 秦国刚北京大学

硅基锂电池负极材料的研究进展及应用前景

硅基锂电池负极材料的研究进展及应用前景硅是目前已知比容量(4200mAh/g)最高的锂离子电池负极材料,但由于其巨大的体积效应(>300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层SEI,最终导致电化学性能的恶化。近年来,研究者们做了大量的研究和探索,尝试解决这些问题并取得了一定的成效,本文表述了该领域的研究进展,并提出进一步的研究方向和应用前景。 硅的脱嵌锂机理和容量衰减机制 硅不具有石墨基材料的层状结构,其储锂机制和其他金属一样,是通过与锂离子的合金化和去合金化进行的,其充放电电极反应可以写作下式: Si+xLi++x e-=Li x Si 图1 硅基锂离子电池原理图:(a)充电;(b)放电在与锂离子发生合金与去合金化过程中,硅的结构会经历一系列的变化,而硅锂合金的结构转变和稳定性直接关系到电子的输送。 根据硅的脱嵌锂机理,我们可以把硅的容量衰减机制归纳如下:

(1)在首次放电过程中,随着电压的下降,首先形成嵌锂硅与未嵌锂晶态硅两相共存的核壳结构。随着嵌锂深度的增加,锂离子与内部晶体硅反应生成硅锂合金,最终以Li15Si4的合金形式存在。这一过程中相比于原始状态硅体积变大约3倍,巨大的体积效应导致硅电极的结构破坏,活性物质与集流体'活性物质与活性物质之间失去电接触,锂离子的脱嵌过程不能顺利进行,造成巨大的不可逆容量。 (2)巨大的体积效应还会影响到SEI的形成,随着脱嵌锂过程的进行,硅表面的SEI 会随着体积膨胀而破裂再形成,使得SEI越来越厚。由于SEI的形成会消耗锂离子,因而造成了较大的不可逆容量。同时SEI较差的导电性还会使得电极的阻抗随着充放电过程不断增大,阻碍集流体与活性物质的电接触,增加了锂离子的扩散距离,阻碍锂离子的顺利脱嵌,造成容量的快速衰减。同时较厚的SEI还会造成较大的机械应力,对电极结构造成进一步破坏。 (3)不稳定的SEI层还会使得硅及硅锂合金与电解液直接接触而损耗,造成容量损失。 硅材料的选择与结构设计 1. 无定型硅和硅的氧化物 (1)无定型硅 无定形硅在低电位下拥有较高的容量,作为锂离子电池负极材料"相比于石墨类电极材料安全性能更高。但无定形硅材料只能在有限程度上缓解颗粒的破碎和粉化,其循环稳定性仍不能满足作为高容量电池负极材料的要求。 (2)硅的氧化物 作为锂离子电池负极材料,SiO具有较高的理论比容量(1200mAh/g以上)、良好的循环性能以及较低的脱嵌锂电位,因此也是一种极具潜力的高容量锂离子电池负极材料。但氧化硅含氧量的不同也会影响其稳定性和可逆容量:随着氧化硅中氧的提高,循环性能提高,但可逆容量减小。 除此之外,硅氧化物作为锂离子电池负极材料还存在一些问题:由于首次嵌锂过程中Li2O和锂硅酸盐形成过程是不可逆的,使得首次库仑效率很低;同时Li2O和锂硅酸盐导电性差,使得电化学动力学性能较差,因而其倍率性能差;相比于单质硅,硅氧化物作为负极材料的循环稳定性更好,但是随着循环次数继续增加,其稳定性仍然很差。 2. 低维硅材料 低维度的硅材料在同质量下拥有更大的表面积,利于材料与集流体和电解液的充分接触,减少由于锂离子不均匀扩散造成的应力和应变,提高材料的屈服强度和抗粉化能力,使

锂离子电池硅碳负极材料研发现状与发展趋势

Material Sciences 材料科学, 2020, 10(4), 248-252 Published Online April 2020 in Hans. https://www.sodocs.net/doc/b88070573.html,/journal/ms https://https://www.sodocs.net/doc/b88070573.html,/10.12677/ms.2020.104030 Research and Development Status and Trend of Silicon Carbon Anode Materials for Lithium Ion Batteries Yimin Xie1*, Jin Guo2, Xianhua Dong1 1Shandong Tianli Energy Co., Ltd., Jinan Shandong 2Dalian Research Institute of Petroleum and Petrochemicals, Sinopec, Dalian Liaoning Received: Mar. 31st, 2020; accepted: Apr. 15th, 2020; published: Apr. 22nd, 2020 Abstract This paper introduces the development process, research and development status and develop-ment trend of silicon carbon anode materials for lithium-ion batteries. The electrochemical prop-erties of the silicon carbon anode materials with different materials and different methods are quite different. The specific capacity ranges from about 500 mAh/g to about 2000 mAh/g. After 40 cycles, the capacity retention rate ranges from 47% to more than 90%. The research and devel-opment trend of silicon carbon anode materials is put forward. In the research and development process, the raw materials and material composite methods should be determined according to the use goal of the battery. In addition, attention should be paid to the uniformity of the micro structure and the stability of the macro structure, so as to solve the problems of volume expansion and poor conductivity of silicon materials. Keywords Lithium Ion Battery, Silicon Carbon Anode, Composite Material, High Specific Capacity 锂离子电池硅碳负极材料研发现状与发展趋势 谢以民1*,郭金2,董宪华1 1山东天力能源股份有限公司,山东济南 2中国石油化工股份有限公司大连石油化工研究院,辽宁大连 收稿日期:2020年3月31日;录用日期:2020年4月15日;发布日期:2020年4月22日 *通讯作者。

相关主题