搜档网
当前位置:搜档网 › 光学第2章习题及答案

光学第2章习题及答案

光学第2章习题及答案
光学第2章习题及答案

第二章习题答案

2—1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要

得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:光电效应方程

2

12

m mv h =ν-Φ (1) 由题意知 0m v = 即 0h ν-Φ=

14

15

1.9 4.59104.13610ev Hz h ev s -Φν=

==??? 1.24652.61.9c hc nm Kev nm ev

λ?====νΦ

(2) ∵ 2

1 1.52

m mv ev =

∴ 1.5c

ev h h λ

=ν-Φ=-Φ 1.24364.71.5 1.5 1.9hc nm Kev

nm ev ev ev

λ?=

==+Φ+

2-2 对于氢原子、一次电离的氢离子He +

和两次电离的锂离子Li ++

,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度;(2)电子在基态的结合能; (3)由基态带第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长。 解:(1)由波尔理论及电子的轨道半径公式

r 1为氢原子第一波尔半径

222

01122204()(197.3)0.0530.511e e c r a nm nm m e m c e 6πε====≈/4πε?10?1.44

氢原子第二波尔半径

可知:He + (Z=2)

Li + + (Z=3)

电子在波尔轨道上的速率为 于是有 H :

6116121

2.1910137

1.1102

v c m s m s c

v m s 8--=α=

?3?10/=??α=

=??

2

1

n n r r z

=221140.212r n r r nm

===112

210.0265220.1062a

r nm

r a nm

====112

210.0176320.07053

a

r nm

r a nm

====n

z

v c n

He + :

61

161

22 4.3810102

v c m s c v m s

--=α=??2α==2.19?? Li + + :

61

161

23 6.5710102

v c m s c v m s

--=α=??3α==3.28?? (2) 电子在基态的结合能E k 在数值上等于原子的基态能量 由波尔理论的能量公式 可得

故有 H : 13.6k E ev =

He + : 213.6254.4k E ev =?= Li ++ : 213.63122.4k E e v

=?= (3)以电压加速电子,使之于原子碰撞,把原子从基态激发到较高能态,用来加速电子的电势差称为激发电势,从基态激发到第一激发态得相应的电势差称为第一激发电势。

2121221

13.6(1)2

E V z e ?=

=- 对 H : 121

13.6(1)10.24

V v =?-=

He + : 2

12113.62(1)40.84V v =??-=

Li ++ : 2

12113.63(1)91.84

V v =??-=

共振线(即赖曼系第一条)的波长:

1

21212E E hc

E hc -=

?=

λ H : 12 1.24121.610.2nm kev

nm ev λ?=

=

He + : 12 1.2430.440.8nm kev

nm ev λ?=

= Li ++ : 12 1.2413.591.8nm kev

nm ev

λ?=

=

2—3 欲使电子与处于基态的锂离子Li ++

发生非弹性散射,试问电子至少具有多大的动能? 解:Li + +基态能量为 211()122.42

e E m c z e v α=-

=- 从基态到第一激发态所需能量为

ev Z E 8.91434.122)2

11(6.132

212=?=-

??=?,故电子必须具有91.8ev 的动能. 2

1()2n e z E m c n

=-α221

()13.62

k e E m cz z ev 1

=∣E∣=α=

2—4 运动质子与一个处于静止的基态氢原子作完全非弹性的对心碰撞,欲使锂原子发射出

光子,质子至少应多大的速度运动? 解: 方法一:欲使基态氢原子发射光子,至少应使氢原子以基态激发到第一激发态

122110.2E E E ev

?=-=V 根据第一章的推导,入射粒子m 与靶M 组成系统的实验室系能量E L 与E C 之间的关系为:

c L M

E E M m

=

+

∴所求质子的动能为:

212121(1)220.42k c M m m E mv E E E ev M M

+=

==+?=?=V 所求质子的速度为: )(1026.610

673.1106.14.20221

427

19---??=????==s m m E v k 方法二: 质子与基态氢原子碰撞过程动量守恒,则

()v m m v m H P P +=10 ? 10v m m m v H

P P

+=

102

1022102121)(2121E m m m v m v m m v m E H P H P H P P =+?=+-=?

eV E E E v m E P 4.20)(222

11221010=-=?==

)/(1026.6242

10

10s m c c

m E v P ?=?=

M e V c m P 9382=其中 2.5 (1)原子在热平衡条件下处于不同能量状态的数目是按波尔兹曼分布的,即处于能量为E n 的激发态的原子数为:

1()11

n E E kT

n n g N N e g --/=

式中N 1是能量为E 1状态的原子数,k 为玻尔兹曼常量,g n 和g 1为相应能量状态的统计权重。试问:原子态的氢在一个大气压、20℃温度的条件下,容器必须多大才能有一个原子处在第 一激发态?已知氢原子处于基态和第一激发态的统计权重分别为g 1=2和g 2=8。 (2)电子与室温下的氢原子气体相碰撞,要观察到H α线,试问电子的最小动能为多大?

2—6 在波长从95nm 到125nm 的光带范围内,氢原子的吸收光谱中包含哪些谱线? 解:对于min 95nm λ=,有

22min

1

1

11()1R n λ=-

1 4.8n ===

∵ min 95nm λ=的波长的光子不足以将氢原子激发到n=5的激发态,则在min 95nm λ=以内有一光子可将氢原子激发到n=4的激发态

∴ n 1=4

同理有:2 1.9n =

== ∵ 对应于n=1的辐射光子的波长应比125nm 更长,在波段以外

∴ n 2=2

又∵ 氢原子的吸收谱对应于赖曼系

∴ 在(95∽125nm )波段内只能观察到3条 即

(1,2)(1,3)(1,4)m n m n m n ν

==ν

==ν== 123

2—7 试问哪种类氢离子的巴耳末系和赖曼系主线的波长差等于133.7nm ?

解:赖曼系主线:22213(1)24RZ RZ ν

=-= 赖 巴耳末主线:2222115

()2336RZ RZ ν

=-= 巴 二主线波长差:

nm RZ RZ RZ RZ 7.1331588)20108(151345362

222==-?=-=

-=?赖巴λλλ 278888

415133.715109737.3110133.7

Z R nm -===?????

2Z ∴=即He 原子的离子。

2—8 一次电离的氢原子He +从第一激发态向基态跃迁时所辐射的光子,能量处于基态的

氢原子电离,从而放出电子,试求该电子的速度。 解:He +从E 2→E 1跃迁辐射的光子的能量为

2212

1

(

1)32h E E RcZ Rhc ν=-=--= 氢原子的电离能为 10()E E E Rhc Rhc ∞=-=--=

∴ 电离的电子的能量为 32k E Rhc Rhc Rhc =-=

该电子的速度为

63.0910v m s =

===?/ 2—9 电子偶素是由一个正电子和一个电子所组成的一种束缚系统,试求出:(1)基态时两电子之间的距离;(2)基态电子的电离能和由基态到第一激发态的激发能;(3)由第一激发态退激到基态所放光子的波长。

解:电子偶素可看作类氢体系,波尔理论同样适用,但有关公式中的电子质量必须采用体系的折合质量代替,对电子偶素,其折合质量为:

2

e e e m M m

m M μ=

=+

(1)22

001122

442220.0530.106e r a nm nm e m e

πεπε====?=μ (2)电离能为 1i A E E E R hc ∞=-=

式中 11

21A e R R R m

M

∞∞==+ 于是 76

11 1.097373110 1.2410 6.8022

i E R hc ev ev -∞==????=

则电离电势为 6.80i i E

V v e

==

第一激发电势为 222121211

()

312 5.102A R hcZ E R hc V v e e e

∞-??==== (3)共振线波长为

31212 1.2410243.15.10hc nm ev

nm E ev

λ??===?

2—10 μ-

子是一种基本粒子,除静止质量为电子质量为电子质量的207倍外,其余性质与

电子都一样。当它运动速度较慢时,被质子俘获形成μ子原子,试计算:(1)μ子原子的第一波尔轨道半径;(2)μ子原子的最低能量;(3)μ子原子赖曼线系中的最短波长。 解:(1)μ子原子可看作类氢体系,应用波尔理论,其轨道半径为

22024n n r e Z

πε=

μ 式中 2072071836

186.020********e e e e m M m m m M ?μ===++ 其第一波尔半径为24

0112

40.053 2.8510186.0186.0186.0

e a nm r nm m e πε-====?

(2)μ子原子的能量公式为 2211()186.0()22n e z z E c m c n n

αα=-μ=-? 最低能量 1n =,2311

186.0()186.013.6 2.53102e E m c ev ev α=-

?=-?=-? (3)由波长公式 hc

E

λ=?

3min

3max 1 1.24100.490( 2.5310)

hc hc nm ev nm E E E ev λ∞??====?---? 2—11 已知氢和重氢的里德伯常量之比为0.999 728,而它们的核质量之比为

m H /m D =0.500 20,试计算质子质量与电子质量之比。

解:由 1A e A

R R m M ∞

=+

,可知 10.9997281e

H D e D H m R M m R M +

=

=+ 又∵ 0.50020

H

D M M =

,∴

0.5002010.9997281e

H

e H

m M m M +

=+

30.499528

1836.5 1.8100.000272

H e M m ==≈? 2—12 当静止的氢原子从第一激发态向基态跃迁放出一个光子时,(1)试求这个氢原子所获得的反冲速率为多大?(2)试估计氢原子的反冲能量与所发光子的能量之比。 解:(1)所发光子的能量

ev ev Rhc E E h 2.106.1343

)2

111(2212=?=-=-=ν

光子的动量 c

ev

c h h P 2.10===νλ

氢原子的反冲动量等于光子动量的大小,即c

h P M v H

ν

=

=反 s m s m

c m h H v 26.31031067.110602.12.1082719=?????==--ν反

(3) 氢原子的反冲能量为

J J v m E H k 2722721087.8)26.3(1067.12

121--?=???==

反 91927104.510

602.12.101087.8---?=???=νh E k

2—13 钠原子的基态为3s ,试问钠原子从4P 激发态向低能级跃迁时,可产生几条谱线(不考虑精细结构)?

解:不考虑能级的精细结构,钠原子的能级图如下:

根据辐射的选择定则1±=?l ,可知,当钠原子从4P 态向低能级跃迁时可产生6条光谱。

2—14 钠原子光谱的共振线(主线系第一条)的波长等于λ=589.3nm ,辅线系线限的波长等于λ∞=408.6nm ,试求(1)3S 、3P 对应的光谱项和能量;(2)钠原子基态电子的电离能和由基态到第一激发态的激发能。

解:(1)由Na 的能级图可知,3P 能级的光谱项和能级分别为:

162

210447.26.4081

1~-∞

?====m nm

T λν;ev nm Kev nm hcT E 03.36.40824.122-=?-

=-= 3S 能级的光谱项和能级可通过下式求出:

1

1

211~λν==-T T , ev

m ev nm hcT E m T T 14.510144.41024.110144.410

3.5891

10447.21

16311169

61

21-=????-=-=?=?+

?=+

=---λ(2)Na 原子的电离能为

ev ev E E E i 14.5)14.5(01=--=-=∞

故电离电势为 v e

E V i

i 14.5==

第一激发电势为 v e

ev ev e E E e E V 11.2)

14.5(03.3121212=---=-=?=

(完整word版)波动光学复习题及答案

第九章波动光学 9.1 在双缝干实验中,波长λ =500nm 的单色光入射在缝间距 d=2×10-4 m的双缝上,屏到双缝的距离为2m,求: (1)每条明纹宽度;(2)中央明纹两侧的两条第10 级明纹中心的间距;(3)若用一厚度为e=6.6 × 10 m的云母片覆盖其中一缝后,零级明纹移到原来的第7 级明纹处;则云母片的折射率是多少? 9 解:(1)Δχ=D = 2 500 140 m=5×10-3m d 2 10 4 (2)中央明纹两侧的两条第10 级明纹间距为 20Δχ =0.1m (3)由于e(n-1)=7 λ , 所以有 n=1+7 =1.53 e 9.2 某单色光照在缝间距为d=2.2 ×10-4的杨氏双缝上,屏到双缝的距离为D=1.8m,测出屏上20 条明纹之间的距离为9.84 × 10-2m,则该单色光的波长是多少? 解:因为x Dy d 2 x 20 x 9.84 10 m 2.2 10 4 9.84 10 2 20 1.8 所以601.3nm 9.3 白光垂直照射到空气中一厚度e=380nm的肥皂膜(n=1.33)上,在可见光的范围内400~760nm),哪些波长的光在反射中增强?

r 2 r 1 k 干涉加强。所以 λ = 4ne 2k 1 在可见光范围内, k=2 时,λ =673.9nm k=3 时 , λ =404.3nm 9.4 如题图 9.4 所示,在双缝实验中入射光的波长为 550nm , 用一厚度为 e=2.85 ×10-4cm 的透明薄片盖住 S 1缝,发现中央明纹 解:当用透明薄片盖住 S 1 缝,以单色光照射时,经 S 1缝的光程, 在相同的几何路程下增加了,于是原光程差的中央明纹位置从 O 点向上移动,其他条纹随之平动,但条纹宽度不变。依题意,图 中 O ' 为中央明纹的位置,加透明薄片后,①光路的光程为 r 1 e ne r 1 (n 1)e ;②光路的光程为 r 2 。因为点是中央明条纹的 位置,其光程差为零,所以有 r 2 [r 1 (n 1)e] 0 ,即 r 2 r 1 (n 1)e ⑴ 在不加透明薄片时,出现中央明条纹的条件为 解:由于光垂直入射,光程上有半波损失,即 2ne+ 2=k λ时, 。试求:透明薄片的折射率。

大学物理波动光学题库及标准答案

大学物理波动光学题库及答案

————————————————————————————————作者:————————————————————————————————日期:

一、选择题:(每题3分) 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为 (A) 1.5 λ. (B) 1.5 λ/ n . (C) 1.5 n λ. (D) 3 λ. [ ] 2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中 (A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等. (D) 传播的路程不相等,走过的光程不相等. [ ] 3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+ (B) ])1([])1([211222t n r t n r -+--+ (C) )()(111222t n r t n r --- (D) 1122t n t n - [ ] 4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为?φ,则 (A) l =3 λ / 2,?φ=3π. (B) l =3 λ / (2n ),?φ=3n π. (C) l =3 λ / (2n ),?φ=3π. (D) l =3n λ / 2,?φ=3n π. [ ] 5、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ. (C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ] 6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). [ ] 7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2. (C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2). P S 1 S 2 r 1 n 1 n 2 t 2 r 2 t 1 n 1 n 2 n 3 e λ n 2n 1n 3 e ①② n 2n 1n 3 e ①②

《大学物理学》波动光学习题及答案

一、选择题(每题4分,共20分) 1.如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,经上下两个表面反射的两束光发生干涉。若薄膜厚度为e ,而且321n n n >>,则两束反射光在相遇点的位相差为(B (A ) 22πn e λ ; (B ) 24πn e λ ; (C ) 24πn e πλ -; (D ) 24πn e πλ +。 2.如图示,用波长600λ=nm 的单色光做双缝实验,在屏P 处产生第五级明纹,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P (A )5.0×10-4cm ;(B )6.0×10-4cm ; (C )7.0×10-4cm ;(D )8.0×10-4cm 。 3.在单缝衍射实验中,缝宽a =0.2mm ,透镜焦距f =0.4m ,入射光波长λ=500nm 位置2mm 处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为几个半波带?( D ) (A) 亮纹,3个半波带; (B) 亮纹,4个半波带;(C) 暗纹,3个半波带; (D) 暗纹,4个半波带。 4.波长为600nm 的单色光垂直入射到光栅常数为2.5×10-3mm 的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现的全部级数为(B ) (A) 0、1±、2±、3±、4±; (B) 0、1±、3±;(C) 1±、3±; (D) 0、2±、4±。 5. 自然光以60°的入射角照射到某一透明介质表面时,反射光为线偏振光,则( B ) (A) 折射光为线偏振光,折射角为30°; (B) 折射光为部分偏振光,折射角为30°; (C) 折射光为线偏振光,折射角不能确定; (D) 折射光为部分偏振光,折射角不能确定。 二、填空题(每小题4分,共20分) 6.波长为λ的单色光垂直照射在空气劈尖上,劈尖的折射率为n ,劈尖角为θ,则第k 级明纹和第3k +级明纹的间距l = 32s i n λn θ 。 7.用550λ=nm 的单色光垂直照射牛顿环装置时,第4级暗纹对应的空气膜厚度为 1.1 μm 。 8.在单缝夫琅和费衍射实验中,设第一级暗纹的衍射角很小。若1600nm λ=为入射光,中央明纹宽度为 3m m ;若以2400nm λ=为入射光,则中央明纹宽度为 2 mm 。 9.设白天人的眼瞳直径为3mm ,入射光波长为550nm ,窗纱上两根细丝之间的距离为3mm ,人眼睛可以距离 13.4 m 时,恰能分辨。 10.费马原理指出,光总是沿着光程为 极值 的路径传播的。 三、计算题(共60分) 11.(10分)在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求:(1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长;(2)相邻两明条纹间的距离. 解:(1)由λk d D x = 明知,23 0.26002110 x nm λ= =??, 3 n e

波动光学选择题C答案

波动光学选择题 (参考答案) 1.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中( ) (A) 传播的路程相等,走过的光程相等 (B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等 答: (C ) 2.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1 和r 2。路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板, 路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部 分可看作真空,这两条路径的光程差等于( ) (A) 222111()()r n t r n t +-+ (B) 222111[(1)][(1)]r n t r n t +--+- (C) 222111()()r n t r n t --- (D) 2211n t n t - 答:(B ) 3.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反 射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1 为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇 点的相位差为( ) (A) 2112/()n e n πλ (B) 121[4/()]n e n πλπ+ (C) 121[4/()]n e n πλπ+ (D) 1214/()n e n πλ 答:(C ) 4.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则( ): (A) 干涉条纹的宽度将发生改变 (B) 产生红光和蓝光的两套彩色干涉条纹 (C) 干涉条纹的亮度将发生改变 (D) 不产生干涉条纹 答:(D ) 5.在双缝干涉实验中,两条缝的宽度原来是相等的。若其中一缝的宽度略变窄(缝中心位置不变),则( ) (A) 干涉条纹的间距变宽 (B) 干涉条纹的间距变窄 (C) 干涉条纹的间距不变,但原极小处的强度不再为零

《光学教程》(姚启钧)课后习题1-5章解答

《光学教程》(姚启钧)1-5章习题解答 第一章 光的干涉 1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。 解:1500nm λ= 7011180 500100.4090.022 r y cm d λ-?= =??= 改用2700nm λ= 7022180700100.5730.022 r y cm d λ-?= =??= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ?=?-?= 2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。 解:⑴ 7050640100.080.04 r y cm d λ-?= =??= ⑵由光程差公式 210 sin y r r d d r δθ=-== 0224 y d r π π π?δλ λ ?= = ?= ⑶中央点强度:2 04I A = P 点光强为:2 21cos 4I A π?? =+ ?? ?

012 (1)0.8542I I =+= 3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。已知光波长为7610m -? 解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()76455 61061061010.5 d m cm n λ---==??=?=?- 4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。 解: 7050500100.1250.02 r y cm d λ-?= =??= 由干涉条纹可见度定义: 12min 2min 1221Max Max A A I I V I I A A ?? ? -??= =+??+ ??? 由题意,设22 122A A = ,即 1 2 A A = 0.943 V == 5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角 θ。 解:700,20,180,1nm r cm L cm y mm λ===?=

(答案1)波动光学习题

波动光学习题 光程、光程差 1.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为 (A) 1.5 λ. (B) 1.5 λ/ n . (C) 1.5 n λ. (D) 3 λ. [ A ] 2.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中 (A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等. (D) 传播的路程不相等,走过的光程不相等. [ C ] 3.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+ (B) ])1([])1([211222t n r t n r -+--+ (C) )()(111222t n r t n r --- (D) 1122t n t n - [ B ] 4.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反 射光在相遇点的相位差为 (A) 2πn 2e / ( n 1 λ1). (B)[4πn 1e / ( n 2 λ1)] + π. (C) [4πn 2e / ( n 1 λ1) ]+ π. (D) 4πn 2e / ( n 1 λ1). [ C ] 5.真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为?φ,则 (A) l =3 λ / 2,?φ=3π. (B) l =3 λ / (2n ),?φ=3n π. (C) l =3 λ / (2n ),?φ=3π. (D) l =3n λ / 2,?φ=3n π. [ ] 6.如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而 且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ. (C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ A ] P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1 n 1 3λ1 n 1 3λ

应用光学总复习与习题解答.

总复习 第一章几何光学的基本定律返回内容提要 有关光传播路径的定律是本章的主要问题。 折射定律(光学不变量)及其矢量形式 反射定律(是折射定律当时的特殊情况) 费马原理(极端光程定律),由费马原理导出折射定律和反射定律(实、虚)物空间、像空间概念 完善成像条件(等光程条件)及特例 第二章球面与球面系统返回内容提要 球面系统仅对细小平面以细光束成完善像 基本公式: 阿贝不变量放大率及其关系: 拉氏不变量 反射球面的有关公式由可得。 第三章平面与平面系统返回内容提要

平面镜成镜像 夹角为α的双平面镜的二次像特征 平行平板引起的轴向位移 反射棱镜的展开,结构常数,棱镜转像系统 折射棱镜的最小偏角,光楔与双光楔 关键问题:坐标系判断,奇次反射成像像,偶次反射成一致像,并考虑屋脊的作用。第四章理想光学系统返回内容提要 主点、主平面,焦点、焦平面,节点、节平面的概念 高斯公式与牛顿公式: 当时化为,并有三种放大率 ,, 拉氏不变量 ,,

厚透镜:看成两光组组合。 ++组合:间隔小时为正光焦度,增大后可变成望远镜,间隔更大时为负光焦度。 --组合:总是负光焦度 +-组合:可得到长焦距短工作距离、短焦距长工作距离系统,其中负弯月形透镜可在间隔增大时变 成望远镜,间隔更大时为正光焦度。 第五章光学系统中的光束限制返回内容提要 本部分应与典型光学系统部分相结合进行复习。 孔阑,入瞳,出瞳;视阑,入窗,出窗;孔径角、视场角及其作用 拦光,渐晕,渐晕光阑 系统可能存在二个渐晕光阑,一个拦下光线,一个拦上光线 对准平面,景像平面,远景平面,近景平面,景深 物方(像方)远心光路——物方(像方)主光线平行于光轴 第六章光能及其计算返回内容提要 本章重点在于光能有关概念、单位和像面照度计算。 辐射能通量,光通量,光谱光视效率,发光效率 发光强度,光照度,光出射度,光亮度的概念、单位及其关系 光束经反射、折射后亮度的变化,经光学系统的光能损失 , 通过光学系统的光通量,像面照度 总之,

工程光学习题答案

工程光学习题答案 第一章习题及答案 1、已知真空中的光速c=3*108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、 火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。 解: 则当光在水中, n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n=1.65 时,v=1.82*108m/s, 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s, 当光在金刚石中,n=2.417 时,v=1.24*108m/s。 2、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm,则像的大 小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属 片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属 片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反 射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到 金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射 临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片 最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求 光纤的数值孔径(即n0sinI1,其中I1 为光在光纤内能以全反射方式传播时在入 射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2 sinI2 (1)

初二物理光学练习题附答案

精心整理一、光的直线传播、光速练习题: 一、选择题 1.下列说法中正确的是(CD) A.光总是沿直线传播 B.光在同一种介质中总是沿直线传播 C.光在同一种均匀介质中总是沿直线传播 D.小孔成像是光沿直线传播形成的 2.下列关于光线的说法正确的是(BD) A.光源能射出无数条光线 B.光线实际上是不存在的 C.光线就是很细的光束 D.光线是用来表示光传播方向的直线 3. (BCD) A. C. 4. A. C. 5. A. C. 6 A C 7 A C 8.如图1 A. C. 9 10.身高1.6m的人以1m/s的速度沿直线向路灯下走去,在某一时刻,人影长1.8m,经2s,影长变为1.3m,这盏路灯的高度应是__8或2.63_m。 11.在阳光下,测得操场上旗杆的影长是3.5m。同时测得身高1.5m同学的影子长度是0.5m。由此可以算出旗杆的高度是__10.5_m。 二、光的反射、平面镜练习题 一、选择题 1.关于光的反射,正确的说法是(C) A.反射定律只适用于平面镜反射 B.漫反射不遵循反射定律 C.如果甲从平面镜中能看到乙的眼睛,那么乙也一定能通过平面镜看到甲的眼睛

D.反射角是指反射线和界面的夹角 2.平面镜成像的特点是(ABCD) A.像位于镜后,是正立的虚像 B.镜后的像距等于镜前的物距 C.像的大小跟物体的大小相等 D.像的颜色与物体的颜色相同 3.如图1两平面镜互成直角,入射光线AB经过两次反射后的反射光线为CD,现以两平面镜的交线为轴,将两平面镜同向旋转15°,在入射光方向不变的情况下,反射光成为C′D′,则C′D′与CD关系为(A) A.不相交,同向平行 B.不相交,反向平行 C.相交成60° D.相交成30° 4.两平面镜间夹角为θ,从任意方向入射到一个镜面的光线经两个镜面上两次反射后,出射线与入射线之间的夹角为(C) A.θ/2 B.θ C.2θ D.与具体入射方向有关 5.一束光线沿与水平方向成40°角的方向传播,现放一平面镜,使入射光线经平面镜反射后沿水平方向传播,则此平面镜与水平方向所夹锐角为:(AD) A.20° B.40° C.50° D.70° 6.下列说法正确的是(ABCD) A.发散光束经平面镜反射后仍为发散光束 B.本应会聚到一点的光线遇到平面镜而未能会聚,则其反射光线一定会聚于一点 C.平行光束经平面镜反射后仍平行 D.平面镜能改变光的传播方向,但不能改变两条光线间的平行或不平行的关系 7.在竖直的墙壁上挂一平面镜,一个人站在平面镜前刚好能在平面镜中看到自己的全身像.当他向后退的过程中,下列说法正确的是(C) A.像变小,他仍能刚好看到自己的全身像 B.像变大,头顶和脚的像看不到了 C.像的大小不变,他仍能刚好看到自己的全身像 D.像的大小不变,他仍能看到自己的全身像,但像未占满全幅镜面 9.a、b、c三条光线交于一点P,如图3如果在P点前任意放一块平面镜MN,使三条光线皆能照于镜面上,则(B) A.三条光线的反射光线一定不交于一点 B.三条光线的反射光线交于一点,该点距MN的距离与P点距MN的距离相等 C.三条光线的反射光线交于一点,该点距MN的距离大于P点距MN的距离 D.三条光线的反射光线的反向延长线交于一点 10.一点光源S通过平面镜成像,如图4光源不动,平面镜以速度v沿OS方向向光源平移,镜面与OS方向之间夹角为30°,则光源的像S′将(D) A.以速率v平行于OS向右运动 B.以速率v垂直OS向下运动 D.以速率v沿S′S连线向S运动 二、填空题 13.一个平行光源从地面竖直向上将光线投射到一块和光线垂直的平面镜上,平面镜离地面3m 高,如果将平面镜绕水平轴转过30°,则水平地面上的光斑离光源3根号3__m。 17.一激光束从地面竖直向上投射到与光束垂直的平面镜上,平面镜距地面的高度为h.如果将平面镜绕着光束的投射点在竖直面内转过θ角,则反射到水平地面上的光斑移动的距离为.htg2θ__. 三、作图题 19.如图7所示,MN为一平面镜,P为一不透光的障碍物,人眼在S处,试用作图法画出人通过平面镜能看到箱子左侧多大范围的地面。要求画出所有必要光线的光路图,并在直线CD上用AB线段标出范围。

关于物理光学 习题附答案

一、 选择题 1、在相同时间内,一束波长为λ的单色光在空中和在玻璃中,正确的是 [ ] A 、 传播的路程相等,走过的光程相等; B 、 传播的路程相等,走过的光程不相等; C 、 传播的路程不相等,走过的光程相等; D 、 传播的路程不相等,走过的光程不相等。 2. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n1n3,λ为入射光在真空中的波长,则两束反射光在相遇点的相 位差为 [ ] A .λπe n 22 ; B. ππ+e n 22 ; C .πλπ+e n 24; D. 2/42πλπ+e n 。 3. 在双缝干涉实验中,屏幕E 上的P 点是明条纹。若将2S 缝盖住,并在21S S 连线的垂直平分面处放一反射镜M ,如图所示,则此时 [ ] A .P 点处仍为明条纹; B. P 点处为暗条纹; C .不能确定P 点处是明条纹还是暗条纹; D. 无干涉条纹。 4、用白光源进行双缝实验,若用一纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则 [ ] A .干涉条纹的宽度将发生变化; B. 产生红光和蓝光的两套彩色干涉条纹; C .干涉条纹的位置和宽度、亮度均发生变化; D .不发生干涉条纹。 5、有下列说法:其中正确的是 [ ] A 、从一个单色光源所发射的同一波面上任意选取的两点光源均为相干光源; B 、从同一单色光源所发射的任意两束光,可视为两相干光束; C 、只要是频率相同的两独立光源都可视为相干光源; D 、两相干光源发出的光波在空间任意位置相遇都会产生干涉现象。

6、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径到B 点,路径的长度为 L , A 、B 两点光振动位相差记为Δφ,则 [ ] (A ) L =3λ/(2n ),Δφ = 3π; ( B ) L = 3λ/(2n ),Δφ = 3n π; (C ) L = 3n λ/2 , Δφ = 3π; ( D ) L = 3n λ/2 ,Δφ = 3n π。 7、双缝干涉实验中,两条缝原来宽度相等,若其中一缝略变宽,则 [ ] A 、干涉条纹间距变宽; B 、干涉条纹间距不变,但光强极小处的亮度增加 C 、干涉条纹间距不变,但条纹移动 D 、不发生干涉现象 8、两块平玻璃构成空气劈尖,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹 [ ] A 、向棱边方向平移,条纹间隔变小; B 、向棱边方向平移,条纹间隔变大; C 、向棱边方向平移,条纹间隔不变; D 、向远离棱边方向平移,条纹间隔不变; E 、向远离棱边方向平移,条纹间隔变小。 9、二块平玻璃构成空气劈,当把上面的玻璃慢慢地向上平移时,由反射光形成的干涉条纹 [ ] A 、向劈尖平移,条纹间隔变小; B 、向劈尖平移, 条纹间隔不变; C 、反劈尖方向平移,条纹间隔变小; D 、反劈尖方向平移,条纹间隔不变。 10、根据惠更斯-菲涅尔原理,若已知光在某时刻的波振面为S ,则S 的前方某点P 的光强度决定于波振面S 上所有面元发出的子波各自传到P 点的 [ ] A 、振动振幅之和; B 、光强之和; C 、振动振幅之和的平方; D 、振动的相干叠加. 11、波长λ的平行单色光垂直入射到缝宽a=3λ的狭缝上,一级明纹的衍射角为[ ] A 、±30°; B 、±19.5°; C 、±60°; D 、±70.5°。 12、在如图所示的单缝夫琅和费衍射实验中,若将单缝沿 透镜光轴方向向透镜平移,则屏幕上的衍射条纹 [ ] A 、间距变大; B 、间距变小; C 、不发生变化; D 、间距不变,但明暗条纹的位置交替变化。 13、 在杨氏双缝实验中,若使双缝间距减小,屏上呈现的干涉条纹间距如何变化?若使双缝到屏的距离减小,屏上的干涉条纹又将如何变化? [ ] A 、都变宽; B 、都变窄; C 、变宽,变窄; D 、变窄,变宽。 14、(1)在杨氏双缝干涉实验中,单色平行光垂直入射(如图1), 双缝向上平移很小距离,

物理光学-第二章(仅)习题

物理光学习题库——光的干涉部分 一、选择题 1. 下列哪一个干涉现象不属于分振幅干涉? A. 薄膜干涉 B.迈克尔逊干涉 C.杨氏双缝干涉 D.马赫-曾德干涉 2. 平行平板的等倾干涉图样定域在 A. 无穷远 B.平板上界面 C.平板下界面 D.自由空间 3. 在双缝干涉试验中,两条缝的宽度原来是相等的,若其中一缝的宽度略变窄,则 A.干涉条纹间距变宽 B. 干涉条纹间距变窄 C.不再发生干涉现象 D. 干涉条纹间距不变,但原来极小处强度不再为0 4. 在杨氏双缝干涉实验中,相邻亮条纹和相邻暗条纹的间隔与下列的哪一种因素无关? A.光波波长 B.屏幕到双缝的距离 C. 干涉级次 D. 双缝间隔 5. 一束波长为λ的单色光从空气中垂直入射到折射率为n的透明薄膜上,要使反射光得到干涉加强,薄膜厚度应为 A.λ/4 B.λ/4n C. λ/2 D. λ/2n 6. 在白炽灯入射的牛顿环中,同级圆环中相应于颜色蓝到红的空间位置是 A.由里向外 B.由外向里 C. 不变 D. 随机变化 7. 一个光学平板玻璃A与待测工件B之间形成空气劈尖,用波长为500nm的单色光垂直照明,看到的反射光干涉条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切,则工 件的上表面缺陷是 A.不平处为凸起,最大高度为250nm B.不平处为凸起,最大高度为500nm C.不平处为凹槽,最大高度为250nm D. 不平处为凹槽,最大高度为500nm 8. 在单色光照明下,轴线对称的杨氏干涉双孔装置中,单孔屏与双孔屏的间距为1m,双孔屏与观察屏的间距为2m,装置满足远场、傍轴近似条件,屏上出现对比度K=0.1的等间隔干涉条纹,现将双孔屏沿横向向上平移1mm,则 A. 干涉条纹向下平移2mm B. 干涉条纹向上平移2mm C. 干涉条纹向上平移3mm D. 干涉条纹不移动 9. F-P腔内间距h增加时,其自由光谱范围Δλ A. 恒定不变 B. 增加 C. 下降 D. =0 10. 把一平凸透镜放在平玻璃板上,构成牛顿环装置,当平凸透镜慢慢向上平移时,由反射光形成的牛顿环 A. 向中心收缩,条纹间隔不变 B. 向中心收缩,环心呈明暗交替变化 C. 向外扩张,环心呈明暗交替变化 D. 向外扩张,条纹间隔变大 11. 在迈克尔逊干涉仪的一条光路中,垂直光线方向放入折射率为n、厚度为h的透明介质片,放入后,两路光束光程差的改变量为 A. 2(n-1)h B. 2nh C. nh D. (n-1)h 12. 在楔形平板的双光束干涉实验中,下列说法正确的是 A. 楔角越小,条纹间隔越宽; B. 楔角一定时,照射波长越长,条纹间隔越宽 C. 局部高度变化越大,条纹变形越严重 D. 形成的干涉属于分波前干涉 13. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹会 A. 不变 B. 变密集 C.变稀疏 D.不确定 14. 若想观察到非定域干涉条纹,则应选择

《应用光学》第一章例题

第一章例题 1.P20习题1(部分):已知真空中的光速c=3í108m/s,求光在火石玻璃(n=1.65)和加拿大树胶(n=1.526)中的光速。 解:根据折射率与光速的关系 v c n = 可求得 火石玻璃 )/(10818.165 .11038 8 11s m n c v ?=?== 加拿大树胶 )/(10966.1526 .110388 22s m n c v ?=?== 3.P20习题5, 解:设水中一点A 发出的光线射到水面。 若入射角为I 0(sinI 0=n 空/ n 水 ),则光线沿水面掠射;据光路可逆性,即与水面趋于平行的光线在水面折射进入水中一点A ,其折射角为I 0(临界角)。 故以水中一点A 为锥顶,半顶角为I 0 的 圆锥范围内,水面上的光线可以射到A 点(入射角不同)。因此,游泳者向上仰 望,不能感觉整个水面都是明亮的,而只 能看到一个明亮的圆,圆的大小与游泳者 所在处水深有关,如图示。满足水与空 气分界面的临界角为 75.033 .11 sin 0== I 即 '36480?=I , 若水深为H ,则明亮圆的半径 R = H tgI 0 4. ( P20习题7 ) 解:依题意作图如图按等光程条件有: ''''1OA n O G n MA n GM n ?+?=?+? 即 .1)100(5.112 2 1+=+-?++O G y x x O G

所以 x y x -=+-?150)100(5.122 两边平方得 222)150(])100[(25.2x y x -=+- 2223002250025.245022500x x y x x +-=++- 025.225.115022=++-y x x 0120101822=-+x x y ——此即所求分界面的表达式。 第二章例题 1.(P53习题1)一玻璃棒(n =1.5),长500mm ,两端面为半球面,半径分别为50mm 和100mm ,一箭头高1mm ,垂直位于左端球面顶点之前200mm 处的轴线上,如图所示。试求: 1)箭头经玻璃棒成像后的像距为多少? 2)整个玻璃棒的垂轴放大率为多少? 解:依题意作图如图示。 分析:已知玻璃棒的结构 参数:两端面的半径、间 隔和玻璃棒材料的折射率 n ,以及物体的位置和大小, 求经玻璃棒之后所成像的位置和大小。解决这一问题可以采用近轴光学基本公式(2.13)和(2.15),即单个球面物像位置关系式和物像大小关系式,逐面进行计算。 1)首先计算物体(箭头)经第一球面所成像的位置: 据公式(2.13)有 1111111'''r n n l n l n -=- , 将数据代入得 50 1 5.12001'5.11-=--l 解得 )(300 '1mm l =; 以第一球面所成的像作为第二球面的物,根据转面公式(2.5)可求出第二面物距 )(200500300'12mm d l l -=-=-= 对第二球面应用公式(2.13)得 2222222'''r n n l n l n -=- 即 100 5 .112005.1'12--=--l

(完整版)大学物理波动光学的题目库及答案

一、选择题:(每题3分) 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若 A 、 B 两点相位差为3π,则此路径AB 的光程为 (A) 1.5 λ. (B) 1.5 λ/ n . (C) 1.5 n λ. (D) 3 λ. [ ] 2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中 (A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等. (D) 传播的路程不相等,走过的光程不相等. [ ] 3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分 别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1 的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一 介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+ (B) ])1([])1([211222t n r t n r -+--+ (C) )()(111222t n r t n r --- (D) 1122t n t n - [ ] 4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径 传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为?φ,则 (A) l =3 λ / 2,?φ=3π. (B) l =3 λ / (2n ),?φ=3n π. (C) l =3 λ / (2n ),?φ=3π. (D) l =3n λ / 2,?φ=3n π. [ ] 5、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ. (C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ] 6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). [ ] 7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2. (C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2). P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1 n 1 3λ n 3 n 3

初二物理光学练习题(附答案)---副本

一、光的直线传播、光速练习题 一、选择题 1.下列说法中正确的是() A.光总是沿直线传播 B.光在同一种介质中总是沿直线传播 C.光在同一种均匀介质中总是沿直线传播 D.小孔成像是光沿直线传播形成的 2.下列关于光线的说法正确的是( ) A.光源能射出无数条光线 B.光线实际上是不存在的 C.光线就是很细的光束 D.光线是用来表示光传播方向的直线 3.一工棚的油毡屋顶上有一个小孔,太阳光通过它后落在地面上形成一个圆形光斑,这一现象表明( ) A.小孔的形状一定是圆的 B.太阳的形状是圆的 C.地面上的光斑是太阳的像 D.光是沿直线传播的 4.如果一个小发光体发出两条光线,根据这两条光线反向延长线的交点,可以确定( ) A.发光体的体积 B.发光体的位置 C.发光体的大小 D.发光体的面积 5.无影灯是由多个大面积光源组合而成的,下列关于照明效果的说法中正确的是() A.无影灯没有影子 B.无影灯有本影 C.无影灯没有本影 D.无影灯没有半影 不透明体遮住光源时,如果光源是比较大的发光体,所产生的影子就有两部分,完全暗的部分叫本影,半明半暗的部分叫半影 6.太阳光垂直照射到一很小的正方形小孔上,则在地面上产生光点的形状是( ) A.圆形的B.正方形的 C.不规则的D.成条形的 7.下列关于光的说法中,正确的是( )

A.光总是沿直线传播的B.光的传播速度是3×108 m/s C.萤火虫不是光源D.以上说法均不对 二、填空题 9.在射击时,瞄准的要领是“三点一线”,这是利用____的原理,光在____中传播的速度最大.排纵队时,如果看到自己前面的一位同学挡住了前面所有的人,队就排直了,这可以用____来解释. 10.身高1.6m的人以1m/s的速度沿直线向路灯下走去,在某一时刻,人影长1.8m,经2s,影长变为1.3m,这盏路灯的高度应是___m。 11.在阳光下,测得操场上旗杆的影长是3.5m。同时测得身高1.5m同学的影子长度是0.5m。由此可以算出旗杆的高度是__ _m。 二、光的反射、平面镜练习题 一、选择题 1.关于光的反射,正确的说法是() A.反射定律只适用于平面镜反射 B.漫反射不遵循反射定律 C.如果甲从平面镜中能看到乙的眼睛,那么乙也一定能通过平面镜看到甲的眼睛 D.反射角是指反射线和界面的夹角 2.平面镜成像的特点是( ) A.像位于镜后,是正立的虚像 B.镜后的像距等于镜前的物距 C.像的大小跟物体的大小相等 D.像的颜色与物体的颜色相同 3.如图1两平面镜互成直角,入射光线AB经过两次反射后的反射光线为CD,现以两平面镜的交线为轴,将两平面镜同向旋转15°,在入射光方向不变的情况下,反射光成为C′D′,则C′D′与CD关系为( ) A.不相交,同向平行 B.不相交,反向平行

精选-大学物理 第十一章 波动光学 复习题及答案详解

第十一章 波动光学 第一部分 一、填空题: 1、波长为λ的平行单色光垂直照射到如题4-1图所示的透明薄膜上,膜厚为e ,折射率为n , 透明薄膜放空气中,则上下两表面反射的两束反射光在相遇处的位相差??= 。 2、如题4-2图所示,假设有两个同相的相干点光源1S 和2S ,发出波长为λ的光。A 是它 们连线的中垂线上的一点。若在1S 与A 之间插入厚度为e 、折射率为n 的薄玻璃片,则两 光源发出的光在A 点的位相差??= 。若已知λ=5000A o , 1.5n =,A 点恰为 第四级明纹中心,则e = A o 。 3、一双缝干涉装置,在空气中观察时干涉条纹间距为1.00mm 。若整个装置放在水中,干 涉条纹的间距将为 mm 。(设水的折射率为43)。 4、在空气中有一劈尖形透明物,其劈尖角41.010rad θ-=?,在波长7000λ=A o 的单色光垂直照射下,测得两相邻干涉明条纹间距0.25l cm =,此透明材料的折射率n = 。 5、一个平凸透镜的顶点和一个平板玻璃接触,用单色光垂直照射,观察反射光形成的牛顿 环,测得第k 级暗环半径为1r 。现将透镜和玻璃板之间的空气换成某种液体(其折射率小于 玻璃的折射率),第k 级暗环的半径变为2r ,由此可知该液体的折射率为 。 6、若在麦克尔逊干涉仪的可动反射镜M 移动0.620mm 的过程中,观察到干涉条纹移动了 2300条,则所用光波的波长为 A o 。题4-1图 题4-2图 A

7、光强均为0I 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 。 8、为了获得相干光,双缝干涉采用 方法,劈尖干涉采用 方法。 9、劳埃德镜实验中,光屏中央为 条纹,这是因为产生 。 二、选择题 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A , B 两点位相差为3π,则此路径AB 的光程为 ( ) (A )1.5λ (B )1.5n λ (C )3λ (D )1.5n λ 2、在单缝夫琅和费衍射实验中,波长为的单色光垂直入射到宽度为a =4的单缝上,对应 于衍射角30的方向,单缝处波阵面可分成的半波带数目为 (A) 2 个. (B) 4个. (C) 6 个. (D) 8个. 3、如图4-4所示,用波长为的单色光照射双缝干涉实验装置,若将一折射率为n 、劈尖 角为 的透明劈尖b 插入光线2中,则当劈尖b 缓慢地向 上移动时(只遮住s 2) ,屏C 上的干涉条纹 (A) 间隔变大,向下移动. (B) 间隔变小,向上移动. (C) 间隔不变,向下移动. (D) 间隔不变,向上移动. 4、用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则 ( ) (A )干涉条纹的宽度将发生变化。 (B )产生红光和蓝光的两套彩色干涉条纹。 (C )干涉条纹的亮度将发生变化 (D )不产生干涉条纹。 5、在双缝干涉实验中,屏幕E 上的P 点处是明条纹。若将缝2S 盖住,并在1S ,2S 连线的 垂直平分面处放一反射镜M ,如题4-5图所示,则此时 ( ) (A )P 点处仍为明条纹。 (B )P 点处为暗条纹。 (C )不能确定P 点处是明条纹还是暗条纹。 (D )无干涉条纹。 6、两块平玻璃构成空气劈尖,左边为棱边,用单色平行光垂直入射。若上面的平玻璃以棱 边为轴,沿逆时针方向作微小转动,则干涉条纹的 ( ) (A )间隔变小,并向棱边方向平移。 (B )间隔变大,并向远离棱边方向平移。 (C )间隔不变,向棱边方向平移。 (D )间隔变小,并向远离棱边方向平移。 7、如题4-6图所示,用单色光垂直照射在牛顿环的装置上。当平凸透镜垂直向上缓慢平移 s s 1 s 2 1 2 O b λ C

相关主题