搜档网
当前位置:搜档网 › Self-assembled nanoporous rutile TiO2 mesocrystals for high rate lithium-ion batteries

Self-assembled nanoporous rutile TiO2 mesocrystals for high rate lithium-ion batteries

Self-assembled nanoporous rutile TiO2 mesocrystals  for high rate lithium-ion batteries
Self-assembled nanoporous rutile TiO2 mesocrystals  for high rate lithium-ion batteries

This article appeared in a journal published by Elsevier.The attached copy is furnished to the author for internal non-commercial research and education use,including for instruction at the authors institution

and sharing with colleagues.

Other uses,including reproduction and distribution,or selling or licensing copies,or posting to personal,institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article(e.g.in Word or Tex form)to their personal website or

institutional repository.Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

https://www.sodocs.net/doc/b010233537.html,/copyright

journal homepage: https://www.sodocs.net/doc/b010233537.html,/locate/nanoenergy

Available online at https://www.sodocs.net/doc/b010233537.html,

RAPID COMMUNICATION

Self-assembled nanoporous rutile TiO2mesocrystals with tunable morphologies for high rate

lithium-ion batteries

Zhensheng Hong a,Mingdeng Wei a,n,T ongbin Lan a,Guozhong Cao b,n

a Institute of New Energy Technology and Nano-Materials,Fuzhou University,Fuzhou,Fujian350002,China

b Department of Materials Science and Engineering,University of Washington,302M Roberts Hall,Seattle,WA98195,USA

Received21January2012;received in revised form25February2012;accepted25February2012

Available online4March2012

KEYWORDS

Mesocrystal;

Rutile TiO2;

Self-assembly;

High rate;

Lithium-ion battery

Abstract

Wulff-shaped and nanorod-like nanoporous mesocrystals constructed from ultrathin rutile TiO2

nanowires were successfully fabricated for the?rst time in the presence of the surfactant

sodium dodecyl benzene sulfonate(SDBS).SDBS played a key role in the homoepitaxial self-

assembly process,in which titanate nanowires were used as the primary building blocks for

forming mesocrystals accompanying with a simultaneous phase transition.The nanoporous rutile

TiO2mesocrystals have a large surface area and were subjected to detailed structural

characterization by means of X-ray diffraction(XRD),scanning and transmission electron

microscopy(SEM/TEM)including high-resolution TEM(HRTEM)and selected area electron

diffraction(SAED).Furthermore,the nanoporous rutile TiO2mesocrystals were applied as the

electrode materials in rechargeable lithium-ion batteries and demonstrated a large reversible

charge–discharge capacity,excellent cycling stability and high rate performance.These

properties were attributed to the intrinsic characteristic of the mesoscopic structured TiO2

with nanoporous nature and larger surface area(which favored fast Li-ion transport),as well as

the presence of suf?cient void space to accommodate the volume change.

&2012Elsevier Ltd.All rights reserved.

Introduction

Mesocrystals as proposed by C¨o lfen et al.[1–3]are3D

ordered superstructures,with potential new physical and

chemical properties arising from their unique mesostruc-

ture.Such speci?c morphologies—consisting of a few to

many thousand primary units(of size1–1000nm)assembled

in an orderly fashion—were?rst reported in biominerals,

such as corals,sea urchins and nacres[4–6].It is worth

mentioning that mesocrystals are from via a so-called‘‘non-

classical crystallization’’,which involves the mesoscopic

transformation of self-assembled and metastable precursor

particles into a single nanoparticulate superstructure[1,7].

2211-2855/$-see front matter&2012Elsevier Ltd.All rights reserved.

doi:10.1016/j.nanoen.2012.02.009

n Corresponding authors.

E-mail addresses:wei-mingdeng@https://www.sodocs.net/doc/b010233537.html,(M.Wei),

gzcao@https://www.sodocs.net/doc/b010233537.html,(G.Cao).

Nano Energy(2012)1,466–471

In this process,organic additives are generally used to stabilize the primary nanoparticles,and to direct their self-assembly into a mesocrystal[1,3,7].It should be noted that biominerals are highly evolutionarily optimized materials, which indicate that non-classical crystallization is a favor-able crystallization route that has the potential to be applied in the synthesis of functional materials with advanced properties.In fact,mesocrystals have recently been applied to functional metal oxides such as TiO2[8–14], ZnO[15],BiVO4[16],and LiFePO4[17],producing improved properties.Speci?c electrode materials fabricated using hierarchical and porous mesocrystals can be considered as ideal materials for high-performance Li-ion insertion[3,18]. TiO2has been considered as a potential anode for lithium-ion batteries(LIBs)due to its intrinsic advantages in safety, low cost,and good cyclic stability[19].However,one drawback is that the poor lithium-ion and electronic conductivity of bulk TiO2polymorphs limit their perfor-mance at high charge/discharge rates.To overcome this obstacle,nanostructured and porous TiO2has been devel-oped and applied as electrode materials for LIBs.For example nanometer-sized rutile TiO2exhibited a much higher electroactivity towards Li insertion than micro-meter-sized rutile TiO2[20].Nano-or meso-porous TiO2 materials have been shown to be promising high rate anode materials[12,21,22].It is notable that the performance of TiO2depends largely on its crystalline phase,size,surface state and microstructures[23,24].TiO2mesocrystals with the desired crystal phases,intrinsic porous structures,and tunable architectures would offer the potential for sig-ni?cantly enhanced Li-ion insertion performance.Although the anatase TiO2mesocrystals have been widely reported [8–12],rutile TiO2mesocrystals are relatively rare [13,14,25]and nanoporous rutile TiO2mesocrystals have never been prepared and used as anode materials for LIBs.In the present work,we?rst report the self-assembled synthesis of unique nanoporous rutile TiO2mesocrystals with much larger surface area than that reported in the literatures[13,14,25].The mesocrystals with micropores and mesopores coexisting were constructed from ultrathin nanowires,and the tunable morphology(from Wulff-shape to nanorod-like)was directed using sodium dodecyl benzene sulfonate(SDBS).It was found that the assembly process of the nanoporous rutile TiO2mesocrystals(different morphol-ogies)and a simultaneous phase transition from titanate to rutile TiO2.Furthermore,the nanoporous rutile TiO2 mesocrystals were applied as electrode materials for Li-ion insertion;they exhibited a large reversible lithium-ion charge–discharge capacity,excellent cyclic stability and high rate performance.

Experimental

Synthesis and characterizations

The nanoporous TiO2mesocrystals were prepared through two sequential steps:?rst titanate nanowires were synthe-sized by means of hydrothermal growth in highly basic aqueous solution and acid-washed,and then titanate nanowires dispersed in acidic aqueous solution were allowed to assemble into different morphology in the presence of SDBS.Synthesis of titanate nanowires is similar to the process reported in our previous work[25].Typically,1g of TiO2(anatase)was dispersed in a50mL of15M aqueous KOH solution.After stirring for10min,the resulting suspension was transferred into a Te?on-lined stainless steel autoclave with a capacity of75mL.The autoclave was kept at1701C for72h and then cooled to room temperature.The resulting precipitate was washed with0.1M HNO3solution until pH value of1–2was reached.The?nal product was then collected by centrifugation and dried at701C for12h in air. Synthesis of nanoporous TiO2mesocrystals started with dispersing150mg of precursor titanate nanowires (0.2mmol)and sodium dodecyl benzene sulfonate(SDBS) (the molar ratio of titanate:SDBS is from0.09to0.15)in 50mL of HNO3(2M)solution under stirring at701C for7 days,and the?nal product was obtained by centrifugation, washed with distilled water and ethanol several times,dried at601C overnight,and then calcined at4001C for2h.

Scanning electron microscopy(SEM,S4800instrument) and Transmission electron microscopy(TEM,FEI F20S-TWIN instrument)were applied for the structural characterization of the resulting titanate nanowires and mesocrystals.X-ray diffraction(XRD)patterns were recorded on a P ANalytical X’Pert spectrometer using the Co K a radiation(l=1.78897?A), and the data were changed to Cu K a data.N2adsorption–desorption analysis was measured on a Micro-meritics ASAP 2020instrument(Micromeritics,Norcross,GA,USA).The pore size distributions of the as-prepared samples were analyzed using the Barrett Joyner Halenda(BJH)method. Electrochemical measurements

For the electrochemical measurement of Li-ion intercala-tion,nanoporous TiO2mesocrystals were admixed with polyvinylidene?uoride(PVDF)binder and acetylene black carbon additive in a weight ratio of70:20:10,following a standard method as widely used in literature[26].The mixture was spread and pressed on copper foil circular ?akes as working electrodes(WE),and dried at1201C in vacuum for12h.Lithium foils were used as the counter electrodes.The electrolyte was1M LiPF6in a1/1/1(volume ratio)mixture of ethylene carbonate(EC),ethylene methyl carbonate(EMC)and dimethyl carbonate(DMC).The separator was UP3093(Japan)micro-porous polypropylene membrane.The cells were assembled in a glove box?lled with highly pure argon gas(O2and H2O levels o1ppm),and charge/discharge tests were performed in the voltage range of1–3V(Li+/Li)at different current densities on a Land automatic batteries tester(Land CT2001A,Wuhan,China). Results and discussion

Pure rutile TiO2mesocrystals,as evidenced by XRD patterns shown in Fig.S1,were prepared using hydrogen titanate nanowires as a precursor(with TEM and HRTEM shown in Fig.S2)in a HNO3solution under the mild condition in the presence of SDBS with subsequent calcination(performed at 4001C for2h).Fig.1(a–b)shows SEM images of rutile TiO2 mesocrystals obtained in the presence of SDBS(the molar ratio of titanate/SDBS is0.09),Wulff-shaped,uniform octahedral rutile TiO2was observed with a particle size of

Nanoporous rutile TiO2mesocrystals with tunable morphologies467

100–300nm ($200nm on average).A rough surface was clearly observed in the high magni?cation SEM image,suggesting that the obtained particles were not classic single crystals.Fig.1(c)shows a typical TEM image of a single mesocrystal,con?rming that the particles were composed of nanosized subunits.The related selected area electron diffraction (SAED)pattern (shown in Fig.1d)exhibited ‘‘single-crystal-like’’diffraction spots correspond-ing to rutile TiO 2,indicating that a mesocrystal structure was formed.The diffraction spots were slightly elongated,suggesting that there was a small lattice mismatch in the assembly in the same orientation,which is typical of mesocrystals [1,3].Fig.1(e)shows an HRTEM image of a mesocrystal,the porous nature of the Wulff-shaped rutile TiO 2mesocrystals is clearly revealed.The lattice fringe was found to be approximately 0.25nm (Fig.1(e),inset),corresponding to d 101spacing of rutile TiO 2crystal.The porous structure of the obtained mesocrystals (as observed in the HRTEM image),showed similarities with the structure of porous zeolite crystals.According to the literature,such porous single crystals are typical for mesocrystals formed through an oriented self-assembly process in which the links between nanocrystals are formed partly by the nanocrystals themselves and partly by an organic substance [1,6].

To investigate the formation mechanism of rutile TiO 2mesocrystals with Wulff shape,a series of samples were harvested at different reaction time intervals without calcinations.These samples were then carefully character-ized using SEM and TEM,and the results are shown in Fig.2.As shown in Fig.2(a),numerous nanowires were clearly

observed when the reaction was performed for 1day.After the reaction time was increased to 3days,a large number of nanowires aggregates appeared,in addition to the residual dispersed nanowires (see Fig.2b).Fig.2(c–d)shows SEM and high magni?cation SEM images of the products obtained after 5days;uniform mesocrystals with a Wulff shape were basically formed besides partly imperfect adjacence.Fig.2(e)shows a typical TEM image of a single mesocrystal,con?rming that it is composed of nanowire subunits.The HRTEM image in Fig.2(f)reveals that the nanowire subunits were about 3–5nm in diameter .The SAED pattern depicted in the inset of Fig.2(e)suggests that the TiO 2mesocrystals with Wulff shape actually exhibited a single-crystal-like mesoscopic structure.HRTEM and SAED data collected for the sample after 7days also con?rmed that the obtained mesocrystals were arranged along the [101]direction (see Fig.S3).In addition,the phase transition from titanate to rutile TiO 2was achieved gradually with increasing reaction time,as shown in the XRD patterns (Fig.S4).

It was expected that the morphology of the mesocrystals could be controlled simply by adjusting the concentration of the SDBS;this was con?rmed by the images shown in Fig.3.As shown in Fig.3(a–b),nanorod-like mesocrystals about 250–400nm in length and 60–100nm in diameter were obtained in the presence of SDBS (the molar ratio of titanate/SDBS is 0.15).When the molar ratio was decreased to 0.11,mesocrystals with Wulff shape appeared,as depicted in Fig.3(c).Fig.3(d)shows a TEM image of the sample synthesized in the presence of SDBS (the molar

ratio

Figure 1Rutile TiO 2mesocrystals obtained in the presence of SDBS (the molar ratio of titanate/SDBS is 0.09):(a,b)low and high magni?cation SEM images,(c,e)TEM image and HRTEM images,(d)corresponding SAED pattern,and (f)is a structural illustration of Wulff shape for rutile TiO 2

.

Figure 2SEM images (a–d)and TEM images (e,f)of the samples obtained in the presence of SDBS (the molar ratio of titanate/SDBS is 0.09)under the different reaction times:(a)1,(b)3,(c–f)5days.The inset in (e)is the related SAED pattern of the whole mesoparticles.

Z.Hong et al.

468

of titanate/SDBS is 0.11).This image con?rmed that the nanorod-like mesocrystals were also made up of nanowires units.The porous nature of the mesocrystals can be observed in the HRTEM images presented in Fig.3(d–e).The related SAED pattern (shown in the inset of Fig.3d)also con?rmed a single-crystal-like structure in the nanorod-like mesocrystals.Additives are usually needed in the synthesis of mesocrystals [1,3].Herein,we have reported the ?rst tunable synthesis of mesocrystals using SDBS as a surfactant,and have found that rutile TiO 2mesocrystals with different morphologies can be easily produced simply by adjusting the concentration of SDBS.

To con?rm the porous nature of the TiO 2mesocrystals,N 2adsorption–desorption isotherms were measured,as shown in Fig.S5.These data indicated that micropores and mesopores coexist in the mesocrystals with nanorod-like and Wulff shape.The Brunauer–Emmett–Teller (BET)surface area for the former was approximately 89.6m 2g à1,while for the latter it was found to be ca.135.5m 2g à1.It was found that the mesopore volumes were very similar for the different types of mesocrystals (0.12m 3g à1).However ,the micropore volume of the Wulff-shaped mesocrystals (0.027m 3g à1)was much larger than that of the nanorod-like mesocrystals (0.017m 3g à1),indicating that the number of micropores inside Wulff-shaped mesocrystals was much larger than in the nanorod-like mesocrystals.Pore size distributions ranging from 0.5to 1.4nm was calculated

by the Horv a

th–Kawazoe method,as shown in the insets of Fig.S5.

A tentative mechanism was proposed for the formation of porous rutile TiO 2mesocrystals (as shown in Scheme 1),based on the experimental results.The proposed mechanism is similar to the typical formation of a mesocrystal as described by C¨o lfen et al.[1,3]The mesocrystals were formed through the homoepitaxial self-assembly of nano-crystallites,with a SDBS additive.In the present reaction,the presence of the additive would hinder the diffusion of the nanocrystals,allowing their attachment and assembly into ordered aggregates (mesocrystals)to occur at a lower energy state.Porous mesocrystals with mesoporous and microporous nature (Fig.S6)would then be obtained after the removal of the organic substance (Fig.S7).It is notable that the morphology of the mesocrystals signi?cantly depended on the content of the SDBS additive,and ultimately led to the formation of Wulff-shaped rutile mesocrystals.It is pointed out that the organic additive could be in favor of lowering the surface energy of the primary nanocrystals and the mesocrystal is an intermediate of the single crystal [1,3].Therefore,it could be understood that the nanocrystal subunits were likely to assemble into the Wulff-shaped rutile mesocrystals in the presence of enough content of additives,corresponding to the principle of the growth of single crystal [27].

Recently,a great deal of attention has been focused on the use of nanostructured rutile TiO 2for electrode materials in LIBs [20,28–31].The nanoporous rutile TiO 2mesocrystals synthesized in this study offer a much larger speci?c surface area and a shorter transport distance,and thus should promise better lithium-ion insertion properties.Fig.4(a)shows the charge–discharge pro?les of the rutile TiO 2mesocrystals with Wulff shape at a current density of 1C (1C=170mAg à1),for the initial two cycles over the potentials of 1.0–3.0V .A large capacity of 312.3mAhg à1was obtained at the ?rst discharge,higher than that of previously reported nanosized rutile TiO 2[20]as well as mesoporous rutile TiO 2constructed with rod-like nanocrystals as building blocks [28].A voltage plateau near 1.05V was observed in the ?rst discharge curve,which can be attributed to the irreversible change in the structure of the rutile TiO 2upon deeper Li-ion insertion [20].The sloped discharge curve in the second cycle might be ascribed to the irreversible formation of a ‘nanocomposite’consisting of crystalline grains and amorphous regions [32–34].Fig.4(b)shows the rate capability of the rutile TiO 2mesocrystals with Wulff shape from 0.2to 20C,for 10cycles at each current https://www.sodocs.net/doc/b010233537.html,rge capacities of 397.9and 275.6mAhg à1were obtained with the ?rst discharge and charge cycle at a current density of 0.2C;this might be attributed to the fact that the nanoporous mesocrystals had a large surface area,and

could

Figure 3SEM images (a–c),TEM (d)and HRTEM (e,f)images of the samples obtained in the presence of SDBS with different molar ratio of titanate/SDBS:(a–b,e–f)0.15and (c)0.11.The inset in (e)is SAED

pattern.

Nanocrystallites with SDBS

Mesocrystal Porous mesocrystal

Scheme 1Schematic of a tentative mechanism for the forma-tion of rutile TiO 2mesocrystals.

Nanoporous rutile TiO 2mesocrystals with tunable morphologies

469

provide more sites for lithium insertion.It was also revealed that the mesocrystal electrode retained a good rate capability even if the current rate was increased from 0.2to 20C.Remarkably ,a capacity of 76.5mAhg à1could be delivered at current rates as high as 20C;a large capacity of 216mAhg à1could be regained when the current rate was lowered again to 0.2C.Fig.4(c)presents the cycling behavior of the rutile TiO 2mesocrystals with different morphologies,at a current rate of 1C.It clearly shows that both of the rutile TiO 2mesocrystals exhibited excellent cycling stability .Capacities of 154and 133mAhg à1could be retained after 100cycles for the Wulff-shaped and nanorod-like TiO 2mesocrystals,respectively .The electrochemical properties of the Wulff shaped TiO 2meso-crystals were signi?cantly and clearly better than those of the nanorod-like mesocrystals;this might be ascribed to the larger surface area arising from the larger number of micropores in the former .The nanoporous and large-surface-area nature of the rutile mesocrystals facilitated their contact with the electrolyte,and hence favored fast Li-ion transport.These

factors —along with the suf?cient void space accommodating volume change —resulted in the large capacity and high rate performance.

Conclusions

Unique nanoporous mesocrystals,constructed from ultrathin rutile TiO 2nanowires and with Wulff-shaped and nanorod-like morphologies,were successfully fabricated for the ?rst time in the presence of SDBS.It was revealed that the SDBS played a key role during the homoepitaxial self-assembly process,which involved the aggregation of the precursor titanate nanowires (acting as the primary building blocks)and a simultaneous phase transition from precursor titanate to rutile TiO 2.These nanoporous rutile TiO 2mesocrystals were used as the electrode materials in rechargeable lithium-ion batteries for the ?rst time;they demonstrated a large reversible charge–discharge capacity,excellent cycling stability and high rate performance.These properties were attributed to the intrinsic nanoporous and large surface area characteristics of the mesoscopic structured TiO 2.

Acknowledgments

This work was ?nancially supported by the National Science

Foundation of China (NSFC 21173049and 21073039),the Fujian Province Fund (JA10016)and the Key Laboratory of Novel Thin Film Solar Cells,CAS.

Appendix A.Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.nanoen.2012.02.009.

References

[1]H.C¨o lfen,M.Antonietti,Angewandte Chemie International

Edition 44(2005)5576–5591.[2]S.H.Yu,H.C¨o lfen,K.Tauer ,M.Antonietti,Nature Materials 4

(2005)51–55.[3]R.Q.Song,H.C¨o lfen,Advanced Materials 22(2010)1301–1330.[4]S.Mann,Nature 365(1993)499–505.

[5]L.Addadi,S.Weiner ,Angewandte Chemie International Edition

31(1992)153–169.

[6]L.Zhou,P .O 0Brien,Small 4(2008)1566–1574.

[7]M.Niederberger ,H.Colfen,Physical Chemistry Chemical

Physics 8(2006)3271–3287.

[8]L.Zhou,D.Smyth Boyle,P .O 0Brien,Chemical Communications

(2007)144–146.

[9]L.Zhou,D.Smyth-Boyle,P .O 0Brien,Journal of the American

Chemical Society 130(2008)1309–1320.

[10]J.Feng,M.Yin,Z.Wang,S.Yan,L.Wan,Z.Li,Z.Zou,

CrystEngComm 12(2010)3425–3429.

[11]R.O.Da Silva,R.H.Goncalves,D.G.Stroppa,A.J.Ramirez,

E.R.Leite,Nanoscale 3(2011)1910.

[12]J.Ye,W.Liu,J.Cai,S.Chen,X.Zhao,H.Zhou,L.Qi,Journal

of the American Chemical Society 133(2011)933–940.

[13]S.-J.Liu,J.-Y .Gong,B.Hu,S.-H.Yu,Crystal Growth &Design 9

(2009)203–209.

11.522.530

50

100150200250300

350

0100200

300

400

500

20

40

60

80

C a p a c i t y / m A h g -1

Cycle number

0501001502002503003500

20

40

60

80

100

C a p a c i t y / m A h g -1

Cycle number

Capacity / mAhg -1

P o t e n t i a l / V , v s L i +/L i

1 st

2 nd

Figure 4(a)Charge–discharge pro?les at a current density of 1C and (b)rate capability from 0.2to 20C of rutile TiO 2mesocrystals with Wulff shape;(c)cycling performance at a constant current density of 1C for rutile TiO 2mesocrystals with different morphologies:(i)Wulff shape,and (ii)nanorod-like.

Z.Hong et al.

470

[14]D.Zhang,G.Li,F.Wang,J.C.Yu,CrystEngComm12(2010)

1759–1763.

[15]Z.Li,A.Gessner,J.-P.Richters,J.Kalden,T.Voss,C.K¨u bel,

A.Taubert,Advanced Materials20(2008)1279–1285.

[16]L.Zhou,W.Wang,L.Zhang,H.Xu,W.Zhu,Journal of Physical

Chemistry C111(2007)13659–13664.

[17]J.Popovic,R.Demir-Cakan,J.Tornow,M.Morcrette,D.S.Su,

R.Schl¨o gl,M.Antonietti,M.-M.Titirici,Small7(2011) 1127–1135.

[18]A.Magasinski,P.Dixon, B.Hertzberg, A.Kvit,J.Ayala,

G.Yushin,Nature Materials9(2010)353–358.

[19]P.Kubiak,M.Pfanzelt,J.Geserick,U.H¨o rmann,N.H¨u sing,

U.Kaiser,M.Wohlfahrt-Mehrens,Journal of Power Sources194 (2009)1099–1598.

[20]Y.S.Hu,L.Kienle,Y.G.Guo,J.Maier,Advanced Materials18

(2006)1421–1426.

[21]K.Wang,M.Wei,M.A.Morris,H.Zhou,J.D.Holmes,Advanced

Materials19(2007)3016–3020.

[22]Y.Ren,L.J.Hardwick,P.G.Bruce,Angewandte Chemie

International Edition49(2010)2570–2574.

[23]D.Liu,Y.Zhang,P.Xiao,B.B.Garcia,Q.Zhang,X.Zhou,

Y.H.Jeong,G.Cao,Electrochimica Acta54(2009)6816–6820.

[24]D.Liu,G.Cao,Energy&Environmental Science3(2010)

1218–1237.

[25]Z.Hong,M.Wei,https://www.sodocs.net/doc/b010233537.html,n,L.Jiang,G.Cao,Energy&

Environmental Science5(2012)5408–5413.

[26]Z.Hong,X.Zheng,X.Ding,L.Jiang,M.Wei,K.Wei,Energy&

Environmental Science4(2011)1886–1891.

[27]A.S.Barnard,P.Zapol,Physical Review B70(2004)1–13.

[28]D.Wang,D.Choi,Z.Yang,V.V.Viswanathan,Z.Nie,C.Wang,

Y.Song,J.-G.Zhang,J.Liu,Chemistry of Materials20(2008) 3435–3442.

[29]J.Liu,G.Cao,Z.Yang,D.Wang,D.Dubois,X.Zhou,G.L.Graff,

L.R.Pederson,J.-G.Zhang,ChemSusChem1(2008)676–697. [30]H.Qiao,Y.Wang,L.Xiao,L.Zhang,Electrochemistry

Communications10(2008)1280–1283.

[31]J.S.Chen,X.W.Lou,Journal of Power Sources195(2010)

2905–2908.

[32]J.Jamnik,J.Maier,Physical Chemistry Chemical Physics5

(2003)5215–5220.

[33]P.Balaya,H.Li,L.Kienle,J.Maier,Advanced Functional

Materials13(2003)621–625.

[34]H.Furukawa,M.Hibino,I.Honma,Journal of the Electro-

chemical Society151(2004)

A527–A531.Zhensheng Hong received the B.S.degree (2008)in Department of Chemistry at Fuzhou University.He is now a Ph.D candidate at Fuzhou University.His research interests involve the synthesis of nanostruc-tured materials for energy storage and conversion including lithium-ion batteries and dye-sensitized solar

cells.

Mingdeng Wei received Ph.D degree in Catalysis Chemistry from Nagasaki Univer-sity in2000,and then worked at Tohoku University,National Institute of Advanced Industrial Science and Technology(AIST)and Japan Science and Technology Agency(JST). He is a Prof.at Fuzhou University from2007 and his research interests include dye-sensitized solar cells,lithium-ion batteries and nanoporous

materials.

T ongbin Lan obtained B.S.degree(2011)in Department of Chemistry at Fuzhou Univer-sity.His current research involves the development of new type anode materials for lithium-ion

batteries.

Guozhong Cao,Ph.D.,is Boeing-Steiner Pro-fessor of Materials Science and Engineering and Adjunct Professor of Chemical and Mechanical Engineering at the University of Washington. He has published over250refereed papers, and authored and edited5books including ‘‘Nanostructures and Nanomaterials’’.His cur-rent research is focused mainly on nanomater-ials for energy conversion and storage including solar cells,lithium-ion batteries,supercapaci-tors,and hydrogen storage materials.

Nanoporous rutile TiO2mesocrystals with tunable morphologies471

简单的四则运算计算器程序

简单的四则运算计算器程序

注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

附件:程序源代码 // sizheyunsuan.cpp : Defines the entry point for the console application. #include #include const int MAX=100; class Operand{ private: double operS; public: Operand(){} Operand(double opers){ operS=opers; } void set(double opers){ operS=opers; } double get() { return operS;} }; class Operator{ private: char operF; int priority; public: Operator(){} Operator(char operf) { operF=operf; switch(operf) { case'(':priority=-1;break; case'+':priority=0;break; case'-':priority=0;break; case'*':priority=1;break; case'/':priority=1;break; case')':priority=2;break; } } void set(char operf){ operF=operf; } char get(){ return operF;} int getpriority(){ return priority; } };

汇编语言实现十进制加减计算器

课程设计 题目十进制数加减计算器学院计算机科学与技术 专业计算机科学与技术 班级计算机0808班 姓名何爽 指导教师袁小玲 2010 年12 月31 日

课程设计任务书 学生姓名:何爽专业班级:计算机0808班 指导教师:袁小玲工作单位:计算机科学与技术学院 题目: 十进制数加减计算器的设计 初始条件: 理论:学完“汇编语言程序设计”、“课程计算机概论”、“高级语言程序设计”和“数字逻辑”。 实践:计算机学院科学系实验中心提供计算机和软件平台。如果自己有计算机可以在其上进行设计。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)十进制数加减计算器的设计。 (2)程序应有操作提示、输入和输出,界面追求友好,最好是菜单式的界面。 (3)设计若干用例(测试数据),上机测试程序并分析(评价)所设计的程序。 (4)设计报告格式按附件要求书写。课程设计报告书正文的内容应包括: 在正文第一行写课程设计题目; 1.需求说明(要求、功能简述)或问题描述; 2.设计说明(简要的分析与概要设计); 3.详细的算法描述; 4.源程序与执行结果(含测试方法和测试结果); 5.使用说明; 6.总结,包括设计心得(设计的特点、不足、收获与体会)和展望(该 程序进一步改进扩展的设想)。 时间安排: 设计时间一周:周1:查阅相关资料。 周2:系统分析,设计。 周3~4:编程并上机调试。 周5:撰写课程设计报告。 设计验收安排:20周星期五8:00起到计算机学院科学系实验中心进行上机验收。 设计报告书收取时间:20周的星期五下午5:00之前。 指导教师签名: 2010年12月31日 系主任(或责任教师)签名: 2010年12月31日

步进电机可编程驱动控制器设计资料及例程

步进电机可编程驱动控制器 【简要说明】 一、尺寸:长88mmX宽68mmX高35mm 二、主要芯片:AT89S52单片机、L298NL、298N(支持AT89S52编程) 三、工作电压:输入电压(5V~30V)输入电压的大小由被控制电机的额定电压决定。 四、可驱动直流(5~30V之间电压的直流电机或者步进电机) 五、最大输出电流2A (瞬间峰值电流3A) 六、最大输出功率25W 七、特点: 1、具有信号指示 2、转速可调 3、抗干扰能力强 4、具有续流保护 5、转速、转向、工作方式可根据程序灵活控制 6、可单独控制一台步进电机 7、根据需要自己编程可以灵活控制步进电机,实现多种功能; 8、可实现正反转 9、采用光电隔离 10、单片机P3口已用排针引出,可以方便使用者连接控制更多外围设备。 11、四位LED灯指示 12、四位按键输入(可以对AT89S52单片机编程实现任何控制) 13、核心控制芯片采用市场上最常用的AT89S52单片机,支持STC89C52单片机,控制方式简单,只需控制IO口电平即可!

14、采用独立编码芯片L297,不用在单片机程序里编程复杂的逻辑代码和占用单片机资源。 15、设计有程序下载口,可以实时编程实时调试。 16、芯片都安装在对应的管座上,可以随时更换芯片。 17、外部连线采用旋转压接端子,使接线更牢固。 18、四周有固定安装孔。 产品最大特点:可以对AT89S52单片机编程实现任意控制被控的直流电机或者步进电机。 适用场合:单片机学习、电子竞赛、产品开发、毕业设计。。。 注意啦:本产品提供例程(附带原理图以及说明!) 【标注图片】 【步进电机控制接线图】 步进电机的控制实例 步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。 一、步进电机最大特点是:

步进电机驱动电路设计

步进电机驱动电路设计 摘要 随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。 介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器) L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可靠,通过按键控制,操作方便,节省成本。 关键词:步进电机,单片机控制,AT89S52,L297,L298目录

L297+L298步进电机驱动控制板说明书

L297+L298步进电机驱动控制板说明书 一、板子跳线器说明:所有跳线都在左边,则由单片机控制。 1、靠近光偶的短路冒打在CLK-555方向时有板上的555提供时钟给驱动器;打在CLK-CP U时右用户CPU提供时钟给驱动器。 2、JT5打在右边:297的HALF/FULL(全速/半速)脚接GND了默认为FULL模式了;JT5打在左边:297的HALF/FULL脚空了电机模式用户自己控制。 3、JT6打在右边:297的CW/CCW脚(方向)接GND了默认为顺时针转动模式了;JT6打在左边:297的CW/CCW脚空了电机正反转模式用户自己控制。 二、按键说明: 板子使用全新的L297作为控制芯片 L298作为驱动芯片板载NE555时钟电路为L297提供CLK因此该版在不需要外部控制的情况下就可以工作板载3个控制按键EN - 使能 CW - 反向旋转 HF - 半速旋转 通过按键就可以直接控制电机的正反转、全速/半速和使能。 三、基本功能描述: 通过光藕隔离之后将CLK CW HF EN四个基本控制端引出单片机等可以非常方便的控制电路的工作这个板子改进的地方比较多也方便研究使用。板子使用1N5822快速二极管作为续流器件其速度要远远快于整流桥的 L298和电机能够提供更完善的有效的保护。模块供电+ 5V(L297和L298控制供电) +12V(根据电机最低4V最高16V)给电机供电。 电机输出接口包括: +12V 四相输出 GND(请根据您的电机连接)。 控制输入接口包括: GND CLK EN CW HF。 EN:高电平停止,低电平使能。 RET:高电平停止,低电平使能。 C/CW:高电平逆时针,低电平顺时针。 H/HD:高电平全速,低电平半速。 CLK:时钟脉冲。 需要特别说明的是:为了测试方便在板子上设置了NE555构成的一个低频时钟源(使用时跳线冒打在CLK-555处),当您使用外部的时钟信号控制电机的转速时必须跳线冒打在CLK -CPU处否则外部时钟是不会传到L297里面。

计算器使用说明书

计算器使用说明书目录 取下和装上计算器保护壳 (1) 安全注意事项 (2) 使用注意事项 (3) 双行显示屏 (7) 使用前的准备 (7) k模式 (7) k输入限度 (8) k输入时的错误订正 (9) k重现功能 (9) k错误指示器 (9) k多语句 (10) k指数显示格式 (10) k小数点及分隔符 (11) k计算器的初始化 (11) 基本计算 (12) k算术运算 (12) k分数计算 (12) k百分比计算 (14) k度分秒计算 (15) kMODEIX, SCI, RND (15) 记忆器计算 (16) k答案记忆器 (16) k连续计算 (17) k独立记忆器 (17) k变量 (18) 科学函数计算 (18) k三角函数/反三角函数 (18) Ch。6 k双曲线函数/反双曲线函数 (19) k常用及自然对数/反对数 (19) k平方根﹑立方根﹑根﹑平方﹑立方﹑倒数﹑阶乘﹑ 随机数﹑圆周率(π)及排列/组合 (20) k角度单位转换 (21) k坐标变换(Pol(x, y)﹐Rec(r, θ)) (21) k工程符号计算 (22) 方程式计算 (22) k二次及三次方程式 (22) k联立方程式 (25) 统计计算 (27)

标准偏差 (27) 回归计算 (29) 技术数据 (33) k当遇到问题时 (33) k错误讯息 (33) k运算的顺序 (35) k堆栈 (36) k输入范围 (37) 电源(仅限MODEx。95MS) (39) 规格(仅限MODEx。95MS) (40) 取下和装上计算器保护壳 ?在开始之前 (1) 如图所示握住保护壳并将机体从保护壳抽出。 ?结束后 (2) 如图所示握住保护壳并将机体从保护壳抽出。 ?机体上键盘的一端必须先推入保护壳。切勿将显示屏的一端先推入保护壳。 使用注意事项 ?在首次使用本计算器前务请按5 键。 ?即使操作正常﹐MODEx。115MS/MODEx。570MS/MODEx。991MS 型计算器也必须至少每3 年更换一次电池。而MODEx。95MS/MODEx。100MS型计算器则须每2 年更换一次电池。电量耗尽的电池会泄漏液体﹐使计算器造成损坏及出现故障。因此切勿将电量耗尽的电池留放在计算器内。 ?本机所附带的电池在出厂后的搬运﹑保管过程中会有轻微的电源消耗。因此﹐其寿命可能会比正常的电池寿命要短。 ?如果电池的电力过低﹐记忆器的内容将会发生错误或完全消失。因此﹐对于所有重要的数据﹐请务必另作记录。 ?避免在温度极端的环境中使用及保管计算器。低温会使显示画面的反应变得缓慢迟钝或完全无法显示﹐同时亦会缩短电池的使用寿命。此外﹐应避免让计算器受到太阳的直接照射﹐亦不要将其放置在诸如窗边﹐取暖器的附近等任何会产生高温的地方。高温会使本机机壳褪色或变形及会损坏内部电路。 ?避免在湿度高及多灰尘的地方使用及存放本机。注意切勿将计算器放置在容易触水受潮的地方或高湿度及多灰尘的环境中。因如此会损坏本机的内部电路。 双行显示屏

(整理)二相步进电机驱动.

电机驱动器使用说明书 L298N是ST公司生产的一种高电压、大电流电机驱动芯片。该芯片采用15脚封装。主要特点是:工作电压高,最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2A;额定功率25W。内含两个H桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器线圈等感性负载;采用标准逻辑电平信号控制;具有两个使能控制端,在不受输入信号影响的情况下允许或禁止器件工作有一个逻辑电源输入端,使内部逻辑电路部分在低电压下工作;可以外接检测电阻,将变化量反馈给控制电路。使用L298N芯片驱动电机,该芯片可以驱动一台两相步进电机或四相步进电机,也可以驱动两台直流电机。 简要说明: 一、尺寸:80mmX45mm 二、主要芯片:L298N、光电耦合器 三、工作电压:控制信号直流5V;电机电压直流3V~46V(建议使用36伏以下) 四、最大工作电流:2.5A 五、额定功率:25W 特点:1、具有信号指示。 2、转速可调 3、抗干扰能力强 4、具有过电压和过电流保护 5、可单独控制两台直流电机 6、可单独控制一台步进电机 7、PWM脉宽平滑调速 8、可实现正反转

9、采用光电隔离 六、有详细使用说明书 七、提供相关软件 八、提供例程及其学习资料 实例一:步进电机的控制实例 步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。 一、步进电机最大特点是: 1、它是通过输入脉冲信号来进行控制的。 2、电机的总转动角度由输入脉冲数决定。 3、电机的转速由脉冲信号频率决定。 二、步进电机的驱动电路 根据控制信号工作,控制信号由单片机产生。(或者其他信号源) 如图:按CTRL并点击(L298N驱动器与直流电机接线图) 三、基本原理作用如下: 两相四拍工作模式时序图:

实用的步进电机驱动电路图

实用的步进电机驱动电路(图) 概述 步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。 图1 步进电机控制系统框图 硬件简介 ● PMM8713原理框图及功能 PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。

图2 PMM8713的原理框图 在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。 激励方式控制电路用来选择采用何种励磁方式。激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。 ● SI-7300A的结构及功率驱动原理 SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。 步进电机功率驱动级电路可分为电压和电流两种驱动方式。电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。

步进电机驱动器说明书

L297 L298步进电机驱动控制板说明书 一、板子跳线器说明: 1、靠近光偶的短路冒打在CLK-555方向时有板上的555提供时钟给驱动器;打在CLK-CP U时右用户CPU提供时钟给驱动器。 2、JT5打在右边:297的HALF/FULL(全速/半速)脚接GND了默认为FULL模式了;JT5打在左边:297的HALF/FULL脚空了电机模式用户自己控制。 3、JT6打在右边:297的CW/CCW脚(方向)接GND了默认为顺时针转动模式了;JT6打在左边:297的CW/CCW脚空了电机正反转模式用户自己控制。 二、按键说明: 板子使用全新的L297作为控制芯片 L298作为驱动芯片板载NE555时钟电路为L297提供CLK因此该版在不需要外部控制的情况下就可以工作板载3个控制按键EN - 使能 CW - 反向旋转 HF - 半速旋转 通过按键就可以直接控制电机的正反转、全速/半速和使能。 三、基本功能描述: 通过光藕隔离之后将CLK CW HF EN四个基本控制端引出单片机等可以非常方便的控制电路的工作这个板子改进的地方比较多也方便研究使用。板子使用1N5822快速二极管作为续流器件其速度要远远快于整流桥的 L298和电机能够提供更完善的有效的保护。模块供电+ 5V(L297和L298控制供电) +12V(根据电机最低4V最高16V)给电机供电。 电机输出接口包括: +12V 四相输出 GND(请根据您的电机连接)。 控制输入接口包括: GND CLK EN CW HF。 需要特别说明的是:为了测试方便在板子上设置了NE555构成的一个低频时钟源(使用时跳线冒打在CLK-555处),当您使用外部的时钟信号控制电机的转速时必须跳线冒打在CLK -CPU处否则外部时钟是不会传到L297里面。 四、接口说明: 1、板子左上方小二接口(JT1) VCC接+5V、GND接电源地,次处为芯片L297和555芯片的工作电压;

Java带计算过程的计算器课程设计报告

保存计算过程的计算器 Java程序设计课程设计报告保存计算过程的计算器 目录 1 概述.............................................. 错误!未定义书签。 1.1 课程设计目的............................... 错误!未定义书签。 1.2 课程设计内容............................... 错误!未定义书签。 2 系统需求分析.......................................... 错误!未定义书签。 2.1 系统目标................................... 错误!未定义书签。 2.2 主体功能................................... 错误!未定义书签。 2.3 开发环境................................... 错误!未定义书签。 3 系统概要设计.......................................... 错误!未定义书签。 3.1 系统的功能模块划分......................... 错误!未定义书签。 3.2 系统流程图................................. 错误!未定义书签。4系统详细设计........................................... 错误!未定义书签。 5 测试.................................................. 错误!未定义书签。 5.1 测试方案................................... 错误!未定义书签。 5.2 测试结果................................... 错误!未定义书签。 6 小结.................................................. 错误!未定义书签。参考文献................................................ 错误!未定义书签。附录................................................ 错误!未定义书签。 附录1 源程序清单...................................... 错误!未定义书签。

十进制4位加法计数器设计

洛阳理工学院 十 进 制 4 位 加 法 计 数 器 系别:电气工程与自动化系 姓名:李奇杰学号:B10041016

十进制4位加法计数器设计 设计要求: 设计一个十进制4位加法计数器设计 设计目的: 1.掌握EDA设计流程 2.熟练VHDL语法 3.理解层次化设计的内在含义和实现 设计原理 通过数电知识了解到十进制异步加法器的逻辑电路图如下 Q3 则可以通过对JK触发器以及与门的例化连接实现十进制异步加法器的设计 设计内容 JK JK触发器的VHDL文本描述实现: --JK触发器描述 library ieee; use ieee.std_logic_1164.all; entity jk_ff is

port( j,k,clk: in std_logic; q,qn:out std_logic ); end jk_ff; architecture one of jk_ff is signal q_s: std_logic; begin process(j,k,clk) begin if clk'event and clk='0' then if j='0' and k='0' then q_s <= q_s; elsif j='0' and k='1' then q_s <= '0'; elsif j='1' and k='0' then q_s <= '1'; elsif j='1' and k='1' then q_s <= not q_s; end if; end if; end process; q <= q_s; qn <= not q_s; end one; 元件门级电路: 与门VHDL文本描述实现: --与门描述library ieee; use ieee.std_logic_1164.all;

基于单片机的步进电动机控制器的设计

第一部分培训软件简介 Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前比较好的仿真单片机及外围器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。 Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年又增加了Cortex和DSP系列处理器,并持续增加其他系列处理器模型。在编译方面,它也支持IAR、Keil和MATLAB等多种编译器。 Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μVision)将这些部分组合在一起。运行Keil软件需要WIN98、NT、WIN2000、WINXP等操作系统。如果你使用C语言编程,那么Keil几乎就是你的不二之选,即使不使用C语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。 第二部分培训项目实例 培训项目一:基于单片机的步进电动机控制器的设计 项目要求: 采用单片机对步进电机进行控制,包括正转、反转、加速、减速和停止,同时采用液晶显示屏显示步进电动机的运行情况。 培训目的: 1.掌握步进电机的工作原理;

实用计算器程序

目录 1.基本功能描述 (1) 2.设计思路 (1) 3.软件设计 (10) 3.1设计步骤 (10) 3.2界面设计 (10) 3.3关键功能实现 (12) 4.结论与心得 (14) 5.思考题 (15) 6.附录 (17) 6.1调试报告 (17) 6.2测试结果 (18) 6.3关键代码 (21)

实用计算器程序 1.基本功能描述 (1)可以计算基本的运算:加法、减法、乘法、除法。 (2)可以进行任意加减乘除混合运算。 (3)可以进行带任意括号的任意混合运算。 (4)可以进行单目科学运算:1/x、+/-、sqrt、x^2、e^2等。 (5)可以对显示进行退格或清除操作。 (6)可以对计算结果自动进行存储,并在用户需要的时候查看,并且可在其基础上进行再运算操作。 (7)界面为科学型和普通型,可在两界面间通过按钮转换。 2.设计思路 计算器属于桌面小程序,适合使用基于对话框的MFC应用程序设计实现。首先要思考的问题是:我的程序需要实现什么样的功能?需要哪些控件?需要哪些变量?需要哪些响应? 我们知道基于对话框的MFC应用程序的执行过程是:初始化、显示对话框,然后就开始跑消息循环列表,当我们在消息循环列表中获取到一个消息后,由相应的消息响应函数执行相应的操作。根据这个流程我们制定出计算器程序的程序框架主流程图,如下页图1所示。 根据程序主流程图可以看出,我们需要一些能响应用户操作的响应函数来实现我们的计算器相应按键的功能。

图1 程序主流程图 说明:所以流程图由深圳市亿图软件有限公司的流程图绘制软件(试用版)绘制,转 存PDF后导出为图片加入到word中的,所以可能会打印效果不好,但确实为本人绘制。

步进电机程序编写及说明

步进电机 学习交流群——126500542(验证信息:千寻琥珀心) 在这里介绍一下如何用51单片机驱动步进电机。 本例所使用的步进电机为四项驱动,驱动电压为12V,锯齿角(为什么叫锯齿叫而不叫步进角,我也不知道这样解释是否正确,但是根据步进角计算公式所得的结果将7.5理解为锯齿叫会更好些,也在网上搜了不少资料,说是步进角的较多,但都是直接给出的,而未作出计算,不过也有是将其作为锯齿角的,并且结合书上的内容,在此就将此作为锯齿角理解,那何谓步进角,下面公式将给出)为7.5度。(也就是说锯齿之间的单位角度),不进一圈总共需要360度,故有48个锯齿。 在此对电路图部分不再给出,具体引脚连接接下来给出。本例所使用的电机驱动芯片为达林顿驱动器(ULN2003),通过P1.0~P1.3分别接通步进电机的驱动线圈来控制步进电机的运转。注意如果直接使用单片机通过驱动芯片驱动电机,力矩可能不够大,效果不是很好,因为ULN2003的驱动电压为12V,而单片机系统电压为5V,故请读者注意此点,在设计电路时,另施电压。 步进电机要想正常工作,必须有驱动信号,转动的速度与驱动信号的频率是成正比的。(实例中将会给出并予以说明)接下来我们看看对于电机驱动中的信号的产生。 本例中采用的步进电机为四项,三项驱动和四项驱动原理上

是一样的。假设步进电机的四个项为:A、B、C、D。它的拍数可由读者任意设定(即步进节奏)。再继续下面的内容时,我们现在此给出一个计算步进电机的公式:Qs=360/NZr,其中N=McC 为运行的拍数,McC为控制绕组项数,C为状态系数,当采用单双本项拍数时,C=1,当采用单双本项一倍拍数时,C=2。(此处说的本项拍数,如三项为单三拍,双三拍。本项一倍拍数为单六拍,简言之,三拍为1.六拍为2对于四项则四拍为1,8拍为2(说的有些玄乎,手中板砖还望留情)),Zr为转子齿数,先来看看单四拍,即A→B→C→D→A.因为上述已经给出了锯齿数,此例C=1,所以Qs=360/(4*1*48)=1.875°。故此电机的步进角为1.875°(既步与步之间的角度),因为行进是和脉冲有关的,一个脉冲行进一步,那么行进一圈,所需脉冲数为:360/1.875=192个脉冲。同时我们如果控制这些脉冲的频率就可以直接控制步进电机的运转速度了。继续我们的单四拍,运行方向A→B→C→D →A。(假设为正转)则在程序中对应的操作执行码为:(硬件连接时P1口的高四位不用全置1,此处只需用到低四位) P1.3 P1.2 P1.1 P1.0 D C B A (对应4个线圈) 1 1 1 0 0xfe (根据外部链接电路定,也可以是0001,此处采用低电平导通,导通A项线圈) 1 1 0 1 0xfd (导通B项线圈) 1 0 1 1 0xfb (导通C项线圈)

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。

·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,

步进电机控制驱动电路设计.

实习名称:电子设计制作与工艺实习 学生姓名:周文生 学号:201216020134 专业班级:T-1201 指导教师:李文圣 完成时间: 2014年6月13日 报告成绩:

步进电机控制驱动电路设计 摘要: 本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK 触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。 关键字:555定时器脉冲源环行分配器功率放大电路 一、方案论证与比较: (一)脉冲源的方案论证及选择: 方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。 C2 10uF 图一 555定时器产生的方法 方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。

X1 1kohm 1kohm 图二晶振产生脉冲源电路 综上所述,我们采用方案一来设计脉冲源。 (二)环形分配器的设计: 方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。 方案二:使用单独的JK 触发器来分别实现单独的功能。 图三双三拍正转 图四单三拍正转

图五三相六拍正转 利用单独的做,电路图较简单,单具体操作时不方便,并且不利于工程设计。块分的较零散,无法统一。 方案三:利用JK触发器的自己运动时序特性设计,利用卡诺图来进行画简。 图六单,双三拍的电路图 单,双三拍的正,反转主要由键s1,s2的四种状态来决定四种情况的选择。

实验十进制加减法计数器

实验1 十进制加减法计数器 实验地点:电子楼218 实验时间:2012年10月19日指导老师:黄秋萍、陈虞苏 实验要求:设计十进制加减法计数器,保留测试程序、设计程序、仿真结果 1.设计程序: module count(EN,CLK,DOUT,F,RST); input EN,CLK,F,RST; output [3:0]DOUT; reg [3:0]DOUT; always@(posedge CLK) begin :abc if(EN) if(!RST) if(F) begin :a DOUT=DOUT+1; if(DOUT==10) DOUT=0; end //END A else begin :b DOUT=DOUT-1; if(DOUT==15) DOUT=9; end else DOUT=0; else DOUT=DOUT; end endmodule 2.测试程序 `timescale 10ns/1ns module test_count; wire [3:0] DOUT; reg EN,F,RST,CLK; count M(EN,CLK,DOUT,F,RST); initial begin :ABC CLK=0; EN=0;

RST=1; F=1; #100 EN=1; #200 RST=0; #1500 F=0; #3000 $stop; end always #50 CLK=~CLK; initial $monitor("EN=%b,F=%b,RST=%b,DOUT%D",EN,F,RST,DOUT); endmodule 3.测试结果 # EN=0,F=1,RST=1,DOUT x # EN=1,F=1,RST=1,DOUT x # EN=1,F=1,RST=1,DOUT 0 # EN=1,F=1,RST=0,DOUT 0 # EN=1,F=1,RST=0,DOUT 1 # EN=1,F=1,RST=0,DOUT 2 # EN=1,F=1,RST=0,DOUT 3 # EN=1,F=1,RST=0,DOUT 4 # EN=1,F=1,RST=0,DOUT 5 # EN=1,F=1,RST=0,DOUT 6 # EN=1,F=1,RST=0,DOUT 7 # EN=1,F=1,RST=0,DOUT 8 # EN=1,F=1,RST=0,DOUT 9 # EN=1,F=1,RST=0,DOUT 0 # EN=1,F=1,RST=0,DOUT 1 # EN=1,F=1,RST=0,DOUT 2 # EN=1,F=1,RST=0,DOUT 3 # EN=1,F=1,RST=0,DOUT 4 # EN=1,F=1,RST=0,DOUT 5 # EN=1,F=0,RST=0,DOUT 5 # EN=1,F=0,RST=0,DOUT 4 # EN=1,F=0,RST=0,DOUT 3 # EN=1,F=0,RST=0,DOUT 2 # EN=1,F=0,RST=0,DOUT 1 # EN=1,F=0,RST=0,DOUT 0 # EN=1,F=0,RST=0,DOUT 9 # EN=1,F=0,RST=0,DOUT 8 # EN=1,F=0,RST=0,DOUT 7 # EN=1,F=0,RST=0,DOUT 6 # EN=1,F=0,RST=0,DOUT 5

四相步进电机驱动电路及驱动程序设计

四相步进电机驱动电路及驱动程序设计 我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作,荣获一等奖。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。整个舞蹈由运动数据所决定的一截截动作无缝连接而成。本文主要介绍一下这个机器人的四相五线制步进电机驱动电路及程序设计. 1、步进电机简介 步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。本文以四相制为例介绍其内部结构。图1为四相五线制步进电机内部结构示意图。

2、四相五线制步进电机的驱动电路 电路主要由单片机工作外围电路、信号锁存和放大电路组成。我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。 电路原理图(部分)如图2所示。 (1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。该系列单片机上集成8K的ROM,128字节RAM可供使用。 (2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。

ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。关于这些芯片的详细介绍可参见它们各自的数据手册。 (3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。 这是一种基于总线分时复用的方式,以动态扫描的方式来发送控制信号,这和高级操作系统里的多任务进程调度的思想一致。这种方法明显的好处是节省I/O口,使系统可以控制更多的步进电机。本电路设计为控制8个。 3 、程序设计 传统的步进电机驱动程序利用简单的条件循环来发送脉冲序列,但当电机数目发生变化时,编程繁杂,冗余代码较多,难以做到信号占空比一致,进而产生“抖动” 现象。下面提出一种基于中断服务方式,面向舞蹈动作,可实时改变各个电机速度和方向(每200ms可改变一次)的程序设计方法。 3.1 速度归一化和线性关系 我们将速度量化成一个-128~127内可变的数,正号代表正转,负号代表返转,称之归一化速度(-128~127为一个字节)。给每个电机分

舞蹈机器人步进电机驱动电路和程序设计

舞蹈机器人步进电机驱动电路和程序设计 摘要:介绍了舞蹈机器人步进电机驱动电路和程序设计。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机AT89C52作工作脉冲序列信号发生器。程序设计基于中断服务和总线分时复用方式,实时更新各个电机的速度和方向。 关键词:单片机,中断服务,速度累加计数器,归一化速度 在机器人舞蹈时,我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。整个舞蹈由运动数据所决定的一截截动作无缝连接而成。 1 步进电机简介 步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。本文以四相制为例介绍其内部结构。图1为四相五线制步进电机内部结构示意图。 2 四相五线制步进电机的驱动电路 电路主要由单片机工作外围电路、信号锁存和放大电路组成。我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。

电路原理图(部分)如图2所示。 (1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。该系列单片机上集成8K的ROM,128字节RAM可供使用。 (2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。关于这些芯片的详细介绍可参见它们各自的数据手册。 (3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。

10进制加法计数器课程设计

西北师范大学知行学院 数字电子实践论文 课题:74ls161组成的十进制加法计数器 (置数法) 班级:14电本 学号:14040101114 姓名:于能海

指导老师:崔用明 目录 第1章前言 (1) 1.1 摘要 (1) 1.2 设计目的 (2) 1.3 设计内容及要求 (2) 第2章设计方案 (3) ....................................................................................................................... 错误!未定义书签。 2.1主要芯片功能介绍 (3) 2.2.1 四位二进制计数器74161介绍 (3) ............................................................................................................... 错误!未定义书签。 2.2 工作原理 (4) 第3章硬件设计 (4) 3.1 单元电路设计 (4) 3.2 总硬件电路图 (5) 第4章仿真与试验 (6) 4.1 仿真结果 (6) 4.2 调试中遇到的问题 (7) 第5章结论和体会 (8)

第1章前言 1.1 摘要在数字电路技术的课程中,计数器的功能是记忆脉冲的个数,它是数字系统中应用最广泛的基本时序逻辑构件。计数器在微型计算机系统中的主要作用就是为CPU和I/O设备提供实时时钟,以实现定时中断、定时检测、定时扫描、定时显示等定时控制,或者对外部事件进行计数。一般的微机系统和微机应用系统中均配置了定时器/计数器电路,它既可当作计数器作用,又可当作定时器使用,其基本的工作原理就是"减1"计数。计数器:CLK输入脉冲是一个非周期事件计数脉冲,当计算单元为零时,OUT输出一个脉冲信号,以示计数完毕。 本十进制加法计数器是基于74161芯片而设计的, 该十进制加法计数器设计理念是用于工厂流水线上产品计数,自动计数,方便简单。 关键词:74ls161计数器 Introduction In the course of digital circuit technology, the counter memory function is the number of pulses, it is a digital system, the most widely used basic sequential logic components. The main role of the counter in the micro-computer system is to provide real-time clock for the CPU and I / O devices to achieve the timer interrupt, timing detection, scheduled scanning, the timing display timing control, or to count external events. General computer systems and computer application systems are equipped with a timer / counter circuit, it can as a counter action, but also as a timer, the basic working principle is "minus 1" count. Counter: CLK input pulse is a non-periodic event count pulses to zero when calculating unit, OUT outputs a pulse signal, to show the count is completed. The decimal addition counter is designed based on the 74161 chip, the low potential sensor senses when to rely on external signals, sensors in an object within the sensing range, otherwise it is a high potential. Within the sensing range of the sensor when an object is moved out of date, sensor potential from high to low and then high, appears on the edge. Counter is automatically incremented and displayed on a digital control. The decimal addition counters have two seven-segment LED. It can count from 0 to 99 objects, and easy to expand. The design concept of decimal addition counter is used to count on a factory assembly line products, automatic counting, convenient and simple. Keywords:74ls161counter

相关主题