搜档网
当前位置:搜档网 › 老师 2.1_数列的概念与简单表示法(一,二)_学案(人教A版必修5)

老师 2.1_数列的概念与简单表示法(一,二)_学案(人教A版必修5)

老师 2.1_数列的概念与简单表示法(一,二)_学案(人教A版必修5)
老师 2.1_数列的概念与简单表示法(一,二)_学案(人教A版必修5)

第二章 数 列

§2.1 数列的概念与简单表示法(一)

自主学习

知识梳理

1.数列的概念

按照一定__顺序__排列着的一列数称为数列,数列中的每一个数叫做这个数列的__项_. 2.数列的一般形式

数列的一般形式可以写成a 1,a 2,a 3,…,a n ,…,简记为__{a n }_,其中__ a 1___称为数列{a n }的第1项(或称为__首项__),a 2称为第2项,…,____ a n ____称为第n 项.

3.数列的分类

(1)根据数列的项数可以将数列分为两类: 有穷数列:项数____有限____的数列; 无穷数列:项数____无限____的数列.

(2)按照数列的每一项随序号变化的情况分类:

递增数列:从第2项起,每一项都____大于____它的前一项的数列; 递减数列:从第2项起,每一项都____小于____它的前一项的数列; 常数列:各项____相等____的数列;

摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 4.数列的通项公式

如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.

5.数列的递推公式

如果已知数列{a n }的首项(或前n 项)及相邻两项间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.

自主探究

1.数列1,2,3,4,…的一个通项公式是______ a n =n ______.

2.数列1,12,13,1

4

,…的一个通项公式是____________.

3.数列2,4,6,8,…的一个通项公式是____________. 4.数列1,3,5,7,…的一个通项公式是____________. 5.数列1,4,9,16,…的一个通项公式是____________. 6.数列1,2,4,8,…的一个通项公式是____________.

7.数列-1,1,-1,1,…的一个通项公式是____________. 8.数列1,-2,3,-4,…的一个通项公式是____________. 9.数列9,99,999,9 999,…的一个通项公式是____________.

10.数列0.9,0.99,0.999,0.999 9,…的一个通项公式是____________.

对点讲练

知识点一 根据数列的前几项写出数列的一个通项公式

例1 根据数列的前几项,写出下列各数列的一个通项公式.

(1)-1,7,-13,19,…;(2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…;(4)3

2

1,710,9

17,…;(5)0,1,0,1,…

总结 解决本类问题的关键是观察、归纳各项与对应的项数之间的联系.同时,要善于利用我们熟知的一些基本数列,通过合理的联想、转化而达到问题的解决.

变式训练1 写出下面数列的一个通项公式.

(1)212,414,618,81

16

,… (2)10,11,10,11,10,11,…

(3)-1,85,-157,24

9

,…

知识点二 根据递推公式写出数列的前几项

例2 设数列{a n }满足?????

a 1

=1,a n

=1+1a n -1(n>1,n ∈N *

).写出这个数列的前5项.

总结 由递推公式可以确定数列,它也是给出数列的一种常用方法.

变式训练2 在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项.

知识点三 数列通项公式的应用

例3 已知数列????

??

9n 2-9n +29n 2

-1; (1)求这个数列的第10项; (2)98

101

是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;

(4)在区间????

13,23内有、无数列中的项?若有,有几项?若没有,说明理由.

总结 判断某数是否为数列中的项,只需将它代入通项公式中求n 的值,若存在正整数

n ,则说明该数是数列中的项,否则就不是该数列的项.

变式训练3 已知数列{a n }的通项公式a n =(-1)n (n +1)

(2n -1)(2n +1)

.

(1)写出它的第10项;(2)判断2

33

是不是该数列中的项.

1.与集合中元素的性质相比较,数列中的项也有三个性质:

(1)确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的. (2)可重复性:数列中的数可以重复.

(3)有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列次序也有关. 2.并非所有的数列都能写出它的通项公式.例如,π的不同近似值,依据精确的程度可形成一个数列3,3.1,3.14,3.141,…,它没有通项公式.

3.如果一个数列有通项公式,则它的通项公式可以有多种形式.例如:数列-1,1,-

1,1,-1,1,…的通项公式可写成a n =(-1)n ,也可以写成a n =(-1)n +

2,还可以写成a n

=?????

-1 (n =2k -1),1 (n =2k ),

其中k ∈N *. 课时作业

一、选择题

1.设数列2,5,22,11,…,则25是这个数列的( ) A .第6项 B .第7项 C .第8项 D .第9项 2.数列1,3,6,10,…的一个通项公式是( )

A .a n =n 2-n +1

B .a n =n (n -1)2

C .a n =n (n +1)

2

D .a n =n 2+1

3.已知数列{a n }中,a n =2n +1,那么a 2n 为( ) A .2n +1 B .4n -1 C .4n +1 D .4n

4.若数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )

A .a n =12[1+(-1)n -

1] B .a n =12

[1-cos(n ·180°)]

C .a n =sin 2(n ·90°)

D .a n =(n -1)(n -2)+12

[1+(-1)n -

1]

5.已知数列{a n }的通项公式为a n =n 2

-n -50,则-8是该数列的( )

6.用火柴棒按下图的方法搭三角形:

按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是__________.

7.传说古希腊毕达哥拉斯(Pythagoras ,约公元前570年—公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形形状,就将其所对应石子个数称为三角形数,则第10个三角形数是______.

8.数列a ,b ,a ,b ,…的一个通项公式是____________. 三、解答题

9.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.

10.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.

(1)求a 3+a 5;(2)探究256

225

是否为此数列中的项;(3)试比较a n 与a n +1 (n ≥2)的大小.

第二章 数 列

§2.1 数列的概念与简单表示法(一)

知识梳理

1.顺序 项

2.{a n } a 1 首项 a n

3.(1)有限 无限 (2)大于 小于 相等 自主探究

1.a n =n 2.a n =1

n 3.a n =2n 4.a n =2n -1

5.a n =n 2

6.a n =2n -1 7.a n =(-1)n 8.a n =(-1)n +1n 9.a n =10n -1 10.a n =1-0.1n 对点讲练

例1 解 (1)符号问题可通过(-1)n 或(-1)n +

1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,

故通项公式为a n =(-1)n (6n -5) (n ∈N *).

(2)数列变形为89(1-0.1),89(1-0.01),8

9(1-0.001),…,

∴a n =8

9???

?1-110n (n ∈N *). (3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3.因此把第1

项变为-2-32,因此原数列可化为-21-321,22-322,-23-323,24-3

2

4,…,

∴a n =(-1)n ·2n

-3

2

n (n ∈N *).

(4)将数列统一为32,55,710,9

17

,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子

的通项公式为b n =2n +1,对于分母2,5,10,17,…联想到数列1,4,9,16…即数列{n 2},可得分母的通项公式为c n =n 2+1,

∴可得它的一个通项公式为a n =2n +1

n 2+1

(n ∈N *).

(5)a n =?????

0 (n 为奇数)1 (n 为偶数)

或a n =1+(-1)n 2 (n ∈N *)或a n =1+cos n π2 (n ∈N *).

变式训练1 解 (1)这是个混合数列,

可看成2+12,4+14,6+18,8+1

16

,….

故通项公式a n =2n +1

2

n (n ∈N *).

(2)该数列中各项每两个元素重复一遍,可以利用这个周期性求a n .原数列可变形为: 10+0,10+1,10+0,10+1,….

故其一个通项为:a n =10+1+(-1)n

2

(n ∈N *),

或a n =????

?

10,n 为奇数11,n 为偶数

(n ∈N *).

(3)通项符号为(-1)n ,如果把第一项-1看作-3

3

,则分母为3,5,7,9,…,分母通项为

2n +1;分子为3,8,15,24,…,分子通项为(n +1)2-1即n (n +2),

所以原数列通项为:a n =(-1)n n 2

+2n 2n +1

(n ∈N *). 例2 解 由题意可知 a 1=1,

a 2=1+1a 1=1+1

1=2,

a 3=1+1a 2=1+12=3

2,

a 4=1+1a 3=1+23=5

3,

a 5=1+1a 4=1+35=8

5

.

变式训练2 在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项.

解 a 1=2,a 2=3,

a 3=3a 2-2a 1=3×3-2×2=5, a 4=3a 3-2a 2=3×5-2×3=9, a 5=3a 4-2a 3=3×9-2×5=17, a 6=3a 5-2a 4=3×17-2×9=33.

例3 (1)解 设f (n )=9n 2-9n +2

9n 2-1

=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1

. 令n =10,得第10项a 10=f (10)=28

31

.

(2)解 令3n -23n +1=98

101

,得9n =300.

此方程无正整数解,所以98

101

不是该数列中的项.

(3)证明 ∵a n =3n -23n +1=3n +1-33n +1=1-3

3n +1

又n ∈N *,∴0<3

3n +1

<1,∴0

∴数列中的各项都在区间(0,1)内.

(4)解 令1

3

则?????

3n +1<9n -6

9n -6<6n +2

,即???

n >7

6

n <8

3

.∴76

3

. 又∵n ∈N *,

∴当且仅当n =2时,上式成立,故区间????13,23上有数列中的项,且只有一项为a 2=4

7

. 变式训练3 解 (1)a 10=(-1)10×1119×21

=11

399.

(2)令n +1(2n -1)(2n +1)=2

33

化简得:8n 2-33n -35=0,

解得n =5或n =-7

8

(舍去).

当n =5时,a 5=-233≠233.∴2

33

不是该数列中的项.

课时作业

1.B [数列通项公式为a n =3n -1,令3n -1=25,解得n =7.] 2.C 3.C

4.D [令n =1,2,3,4代入验证即可.]

5.C [n 2-n -50=-8,得n =7或n =-6(舍去).] 6.a n =2n +1 7.55

解析 三角形数依次为:1,3,6,10,15,…,第10个三角形数为:1+2+3+4+…+10=55.

8.a n =a +b 2+(-1)n +1????a -b 2 解析 a =a +b 2+a -b 2,b =a +b 2-a -b

2,

故a n =a +b 2+(-1)n +1????a -b 2.

9.解 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中点的个数为1+n (n -1)=n 2-n +1.

10.解 由题意知:a n =n 2

(n -1)2

(n ≥2).

(1)a 3+a 5=94+2516=61

16.

(2)∵256225=162

152=a 16,

∴256

225

为数列中的项. (3)n ≥2时,a n -a n +1=n 2

(n -1)2-(n +1)2n 2=n 4-(n 2-1)2(n -1)2n 2=2n 2-1(n -1)2n 2

>0,∴a n >a n +1.

2.1数列的概念与简单表示法(二)

自主学习

知识梳理

1.数列可以看作是一个定义域为________________(或它的有限子集{1,2,3,…,n})的函数,当自变量按照从小到大的顺序依次取值时,对应的一列________.

2.一般地,一个数列{a n},如果从________起,每一项都大于它的前一项,即____________,那么这个数列叫做递增数列.如果从________起,每一项都小于它的前一项,即____________,那么这个数列叫做递减数列.如果数列{a n}的各项________,那么这个数列叫做常数列.

3.数列的最大、最小项问题,可以通过研究数列的单调性加以解决,若求最大项a n,n的值可通过解不等式组________________来确定;若求最小项a n,n的值可通过解不等式组________________来确定.

自主探究

已知数列{a n}中,a1=1,a2=2,a n+2=a n+1-a n,试写出a3,a4,a5,a6,a7,a8,你发现数列{a n}具有怎样的规律?你能否求出该数列中的第2 011项是多少?

对点讲练

知识点一利用函数的性质判断数列的单调性

例1已知数列{a n}的通项公式为a n=n2

n2+1

.求证:数列{a n}为递增数列.

总结数列是一种特殊的函数,因此可用研究函数单调性的方法来研究数列的单调性.变式训练1在数列{a n}中,a n=n3-an,若数列{a n}为递增数列,试确定实数a的取值范围.

知识点二 求数列的最大最小项

例2 已知a n =9n (n +1)

10

n

(n ∈N *),试问数列{a n }中有没有最大项?如果有,求出这个最大项;如果没有,说明理由.

总结 先考虑{a n }的单调性,再利用单调性求其最值.

变式训练2 已知数列{a n }的通项公式为a n =n 2-5n +4 (n ∈N *),则 (1)数列中有多少项是负数?

(2)n 为何值时,a n 有最小值?并求出最小值.

知识点三 由递推公式求通项公式

例3 已知数列{a n }满足a 1=1,a n =a n -1+1

n (n -1)

(n ≥2),写出该数列的前五项及它

的一个通项公式.

总结 已知递推关系求通项公式这类问题要求不高,主要掌握由a 1和递推关系先求出前几项,再归纳、猜想a n 的方法,以及累加:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+

a 1;累乘:a n =a n a n -1·a n -1a n -2·…·a 2

a 1·a 1

等方法.

变式训练3 已知数列{a n }满足a 1=1

2

,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.

函数与数列的联系与区别

一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题. 另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N *或它的子集{1,2,…,n },因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性,如研究单调性时,由数列的图象可知,只要这些点每个比它前面相邻的一个高(即a n >a n -1),则图象呈上升趋势,即数列递增,即{a n }递增?a n +1>a n 对任意的n (n ∈N *)都成立.类似地,有{a n }递减?a n +1

课时作业

一、选择题

1.已知a n +1-a n -3=0,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数项 D .不能确定

2.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +1

2

n ,则此数列第4项是( )

A .1 B.12 C.34 D.5

8

3.若a 1=1,a n +1=a n

3a n +1

,给出的数列{a n }的第34项是( )

A.34103 B .100 C.1100 D.1104

4.已知a n =3

2n -11

(n ∈N *),记数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值为

( )

A .10

B .11

C .12

D .13

5.已知数列{a n }满足a n +1=?

??

2a n ????0≤a n <12,2a n -1 ????12≤a n <1.

若a 1=6

7,则a 2 010的值为( )

A.67

B.57

C.3

D.1

6.已知数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,(n ∈N *),则使a n >100的n 的最小值是________.

7.设a n =-n 2+10n +11,则数列{a n }从首项到第m 项的和最大,则m 的值是________. 8.已知数列{a n }满足a 1=0,a n +1=a n +n ,则a 2 009=________. 三、解答题

9.已知函数f (x )=2x -2-

x ,数列{a n }满足f (log 2 a n )=-2n . (1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列.

10.在数列{a n }中,a 1=12,a n =1-1

a n -1

(n ≥2,n ∈N *).

(1)求证:a n +3=a n ; (2)求a 2 010.

§2.1 数列的概念与简单表示法(二)

知识梳理

1.正整数集N * 函数值

2.第二项 a n +1>a n 第二项 a n +1

a n ≤a n -1a n ≤a n +1 自主探究

解 a 1=1,a 2=2,a 3=1,a 4=-1,a 5=-2, a 6=-1,a 7=1,a 8=2,….

发现:a n +6=a n ,数列{a n }具有周期性,周期T =6, 证明如下:

∵a n +2=a n +1-a n ,

∴a n +3=a n +2-a n +1=(a n +1-a n )-a n +1=-a n . ∴a n +6=-a n +3=-(-a n )=a n . ∴数列{a n }是周期数列,且T =6. ∴a 2 011=a 335×6+1=a 1=1. 对点讲练

例1 证明 ∵a n =n 2n 2+1=1-1

n 2+1

a n +1-a n =1n 2+1-1

(n +1)2+1

=[(n +1)2+1]-(n 2+1)(n 2+1)[(n +1)2

+1]=2n +1(n 2+1)[(n +1)2+1]. 由n ∈N *,得a n +1-a n >0,即a n +1>a n . ∴数列{a n }为递增数列.

变式训练1 解 若{a n }为递增数列, 则a n +1-a n ≥0.

即(n +1)3-a (n +1)-n 3+an ≥0恒成立. 即a ≤(n +1)3-n 3=3n 2+3n +1恒成立, 即a ≤(3n 2+3n +1)min ,

∵n ∈N *,∴3n 2+3n +1的最小值为7. ∴a 的取值范围为a ≤7.

例2 解 因为a n +1-a n =????910n +1·(n +2)-????910n ·(n +1)=????910n +1·???

?(n +2)-109(n +1) =????910n +1·8-n 9,

则当n ≤7时,????910n +1·8-n

9>0,

当n =8时,????910n +1·8-n

9=0,

当n ≥9时,????910n +1·8-n

9<0, 所以a 1a 10>a 11>a 12>…,

故数列{a n }存在最大项,最大项为a 8=a 9=99

108.

变式训练2 解 (1)a n =n 2-5n +4=????n -522-94

, 当n =2,3时,a n <0.

∴数列中有两项是负数.

(2)∵a n =n 2-5n +4=????n -522-94,可知对称轴方程为n =5

2

=2.5. 又因n ∈N *

,故n =2或3时,a n 有最小值, 其最小值为-2.

例3 解 由递推公式得a 1=1,

a 2=1+12×1=32

,a 3=32+13×2=5

3,

a 4=53+14×3=74,a 5=74+15×4=95

.

故数列的前五项分别为1,32,53,74,9

5

.

∴通项公式为a n =2n -1n =2-1

n

(n ∈N *).

变式训练3 解 ∵a n a n -1=a n -1-a n , ∴1a n -1a n -1

=1. ∴1a n =1

a 1+????1a 2-1a 1+????1a 3-1a 2+…+????1a n -1a n -1=2+1+1+…+1(n -1)个1 =n +1.

∴1a n =n +1,∴a n =1n +1 (n ∈N *). 课时作业 1.A

2.B [∵a 1=1,∴a 2=12+12=1,a 3=12+14=34,a 4=12×34+18=1

2

.]

3.C [a 2=a 13a 1+1=13+1=14,a 3=a 2

3a 2+1

=1434+1=17,a 4=a 33a 3+1=1737

+1=110, 猜想a n =13(n -1)+1, ∴a 34=13×(34-1)+1=1

100

.]

4.B [∵-a 1=a 10,-a 2=a 9,-a 3=a 8,-a 4=a 7,-a 5=a 6, ∴S 11>0,则当n ≥11时,S n >0,故n 最小为11.]

5.C [计算得a 2=57,a 3=37,a 4=6

7

,故数列{a n }是以3为周期的周期数列,

又知2 010除以3能整除,所以a 2 010=a 3=3

7

.]

6.12

7.10或11

解析 令a n =-n 2+10n +11≥0,则n ≤11. ∴a 1>0,a 2>0,…,a 10>0,a 11=0. ∴S 10=S 11且为S n 的最大值. 8.2 017 036

解析 由a 1=0,a n +1=a n +n 得

a n =a n -1+n -1,a n -1=a n -2+n -2, ?

a 2=a 1+1, a 1=0,

累加可得a n =0+1+2+…+n -1=n (n -1)

2

∴a 2 009=2 009×2 008

2

=2 017 036.

9.(1)解 因为f (x )=2x -2-

x ,f (log 2 a n )=-2n ,

所以2log 2 a n -2-log 2a n =-2n ,a n -1

a n

=-2n ,

所以a 2n +2na n -1=0,解得a n =-n ±n 2

+1. 因为a n >0,所以a n =n 2+1-n .

(2)证明 a n +1a n =(n +1)2+1-(n +1)

n 2+1-n =

n 2+1+n

(n +1)2+1+(n +1)

<1.

又因为a n >0,所以a n +1

10.(1)证明 a n +3=1-1a n +2

=1-1

1-1a n +1

=1-11-11-1a n =1-1

1-

1a n -1a n

=1-11-

a n a n -1=1-1a n -1-a n a n -1=1-1

-1a n -1

=1-(1-a n )=a n .∴a n +3=a n .

(2)解 由(1)知数列{a n }的周期T =3,

a 1=1

2

,a 2=-1,a 3=2.

∴a 2 010=a 3×670=a 3=2.

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

数列的概念与简单表示法(含 解析)

第一节数列的概念与简单表示法 知识要点 1.数列的定义、分类与通项公式 (1)数列的定义: ①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类: (3)数列的通项公式: 如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 2.数列的递推公式 如果已知数列{a n}的首项(或前几项),且任一项a n与它的前一项a n (n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数-1 列的递推公式.

3.对数列概念的理解 (1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列. (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别. 4.数列的函数特征 数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n) =a n(n∈N*). 题型一:由数列的前几项求数列的通项公式 [例1] 下列公式可作为数列{a n}:1,2,1,2,1,2,…的通项公式的是( ) A.a n=1 B.a n=C.a n=2- D.a n= [自主解答] 由a n=2-可得a1=1,a2=2,a3=1,a4=2,….[答案] C 变式:若本例中数列变为:0,1,0,1,…,则{a n}的一个通项公式为________. 答案: a n= 由题悟法 1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n或(-1)n+1来调整. 2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.

2018年必修五《等差数列的前n项和》第二课时参考教案

课题: §2.3 等差数列的前n 项和 (第2课时) ●教学目标 知识与技能:进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前 项和的公式研究 的最值; 过程与方法:经历公式应用的过程; 情感态度与价值观:通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题。 ●教学重点 熟练掌握等差数列的求和公式 ●教学难点 灵活应用求和公式解决问题 ●教学过程 Ⅰ.课题导入 首先回忆一下上一节课所学主要内容: 1.等差数列的前n 项和公式1:2 )(1n n a a n S += 2.等差数列的前n 项和公式2:2)1(1d n n na S n -+ = Ⅱ.讲授新课 探究:——课本P51的探究活动 结论:一般地,如果一个数列{},n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? 由2n S pn qn r =++,得11S a p q r ==++ 当2n ≥时1n n n a S S -=-=22()[(1)(1)]pn qn r p n q n r ++--+-+=2()pn p q -+

1[2()][2(1)()]n n d a a pn p q p n p q -∴=-=-+---+=2p 对等差数列的前n 项和公式2:2)1(1d n n na S n -+ =可化成式子: n )2 d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式 [范例讲解] 等差数列前项和的最值问题 例4 解略 小结: 对等差数列前项和的最值问题有两种方法: (1) 利用n a : 当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值 当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值 (2) 利用n S : 由n )2 d a (n 2d S 12n -+=利用二次函数配方法求得最值时n 的值 Ⅲ.课堂练习 1.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式。 2.差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值。 Ⅳ.课时小结 1.前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,一定是等差数列,该数列的 首项是1a p q r =++ 公差是d=2p 通项公式是111,12(),2n n n S a p q r n a S S pn p q n -==++=?=?-=-+≥?当时当时 2.差数列前项和的最值问题有两种方法: (1)当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值。

(完整word版)高中数学必修五等差数列测试题

等差数列测试题 一、选择题(每小题5分,共40分) 1.设数列11,22,5,2,……则25是这个数列的 ( ) A.第六项 B.第七项 C.第八项 D.第九项 2.在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则 ( ) A. a =2,b =5 B. a =-2,b =5 C. a =2,b =-5 D. a =-2,b =-5 3.首项为24-的等差数列,从第10项开始为正数,则公差d 的取值范围是 ( ) A.d >83 B.d >3 C.83≤d <3 D.83 <d ≤3 4.等差数列}{n a 共有n 2项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为 ( ) A .3 B .-3 C .-2 D .-1 5.在等差数列}{n a 中,,0,01110>,则在n S 中最大的负数为 ( ) A .17S B .18S C .19S D .20S 6.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是: ( ) A.a 11 B.a 10 C.a 9 D.a 8 7.设函数f (x )满足f (n +1)= 2)(2n n f +(n ∈N *)且f (1)=2,则f (20)为 ( ) A.95 B.97 C.105 D.192 8.已知无穷等差数列{a n },前n 项和S n 中,S 6S 8 ,则 ( ) A .在数列{a n }中a 7最大 B .在数列{a n }中,a 3或a 4最大 C .前三项之和S 3必与前11项之和S 11相等 D .当n ≥8时,a n <0 二、填空题(每小题6分,共30分) 9.集合{}*6,,且60M m m n n N m ==∈<中所有元素的和等于_________. 10.在等差数列{}n a 中,37104118,14.a a a a a +-=-=-记123n n S a a a a =++++L ,则13S =_____

数列的概念与简单表示法

数列的概念与简单表示法 [考纲传真]1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数. 【知识通关】 1.数列的有关概念 n n 若数列{a n }的前n 项和为S n , 则a n =??? S 1,n =1, S n -S n -1,n ≥2. 4.数列的分类 [

求数列的最大(小)项,一般可以利用数列的单调性,即用??? a n ≥a n -1, a n ≥a n +1.(n ≥2, n ∈N *)或?? ? a n ≤a n -1,a n ≤a n +1 (n ≥2,n ∈N *)求解,也可以转化为函数的最值问题或利 用数形结合思想求解. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( ) (4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) [答案] (1)× (2)× (3)× (4)√ 2.已知数列11×2,12×3,13×4,…,1 n (n +1) ,…,下列各数中是此数列中的项的是( ) A .135 B .142 C .148 D .154 B 3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64 A 4.在数列{a n }中,a 1=1,a n =1+(-1)n a n -1(n ≥2),则a 5等于( ) A .32 B .53 C .85 D .23 D 5.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________. 5n -4

人教A版数学必修五2.2.1《等差数列》word教案

课题:2.2.1等差数列 教学目标: 1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。 2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力 3.情感目标: ①通过个性化的学习增强学生的自信心和意志力。 ②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。 ③体验从分外到大凡,又到分外的认知规律,培养学生勇于创新的科学精神。 教学重点: 教学重点是等差数列的定义和对通项公式的认识与应用。确凿把握定义是正确认识等差数列,解决相关问题的前提条件。通项公式是研究一个数列的严重工具。 教学难点: (1)理解等差数列“等差”的特点及通项公式的含义。 (2)等差数列的通项公式的推导过程及应用。 学情分析: 高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。

授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程: 一、情景引入: 1.观察梯田图片让学生对等差数列有一个直观的认识。 2.由生活中详尽的数列实例引入 (1)在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星,你能预测出下一次的大致时间吗? 1682,1758,1834,1910,1986,() (2)你能根据规律在()内填上适合的数吗? 1,4,7,10,(),16,… 2,0,-2,-4,-6,()… 引导学生观察:以上3个数列有何规律? 引导学生得出“从第2项起,每一项与前一项的差都是同一个常数”,我们把这样的数列叫做等差数列.(板书课题) 二.新课探究,推导公式 1.学生自主归纳等差数列的概念. 如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。 强调: ①“从第二项起”满足条件;

数列的概念及表示

课题:数列(第一课时) 一、教学目标: 知识目标:(1)了解数列的概念,了解数列的分类,了解数列是一种特殊的数列, 会用列表法和图像法表示数列; (2)理解数列的通项公式,会根据通项公式写出数列的前几项,会 根据简单数列的前几项写出数列的通项公式。 能力目标:通过数列概念的归纳概括,初步培养学生的归纳、抽象、概括的能力, 渗透函数思想。 情感目标:通过有关数列的实际应用,激发学生学习数列的积极性。 二、重点:数列的概念,数列的通项公式及其简单应用. 三、难点:根据数列的前几项归纳概括出数列的一个通项公式. 四、教学方法:观察发现、探究合作、启发引导、讲练结合 五、教学手段:多媒体课件、投影仪 六、教学过程: 1、问题情境 (1)庄子说:一尺之棰,日取其半,万世不竭。每次剩下的部分依次是: 1111,,,,24816 (2)某种细胞,如果每个细胞每分钟分类成2个,那么每过1分钟,1个细胞分裂的个数依次为:1,2,4,8,16,32,┅┅ (3)2012----伦敦奥运,从1984年到2012年,我国共参加了8次奥运会,各次参赛获得的金牌总数依次为:15,5,16,16,28,32,51,38. 问题1:这几组数据有什么共同的特点? 2、学生活动 都是一列有顺序的数。 特点1:都是一列数,2:有一定的次序 3、建构数学 (1)数列的定义:按照一定次序排成一列的数称为数列; 数列中的每个数都叫做这个数列的项; 各项依次叫做这个数列的第1项(首项),第2项,…,第n 项,…,如: 数列 2, 4, 8, 16 问题2:① 1,-1,1,-1,……是数列吗? ② 数列1,2,3,4,5与数列5,4,3,2,1是否是同一个数列? (2)数列的分类:有穷数列,无穷数列。 问题3:下面三个数列哪些是有穷数列,哪些是无穷数列? a 4 a 1 a 2 a 3

数列的概念与简单表示讲义

数列的概念与简单表示讲义 【知识要点】: 知识点一:数列的概念 ⒈数列的定义:按一定顺序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项,第2项,…,第项,….其中数列的第1项也叫作首项。 3. 数列的一般形式:,或简记为,其中是数列的第项 知识点二:数列的分类 1. 根据数列项数的多少分: 有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6,…是无穷数列 2. 根据数列项的大小分: 递增数列:从第2项起,每一项都大于它的前一项的数列。 递减数列:从第2项起,每一项都小于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列 知识点三:数列的通项公式与前项和 1. 数列的通项公式 如果数列的第项与之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 如数列:的通项公式为(); 的通项公式为(); 的通项公式为(); 注意:(1)并不是所有数列都能写出其通项公式; (2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…; 它的通项公式可以是,也可以是. (3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项. (4)数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.

人教A版高中数学必修五等差数列教案一新

等差数列教学设计 一、教学目标: 知识与能力:理解等差数列的定义;掌握等差数列的通项公式;培养学生的观察、归纳 能力,应用数学公式的能力及渗透函数、方程思想 过程与方法:经历等差数列的产生过程和应用等差数列的基本知识解决问题的能力。 情感态度与价值观:通过等差数列概念的归纳概括,培养学生的观察、分析能力,体验 从特殊到一般认知规律,培养学生积极思维,追求新知的创新意识。 二、教学重点:理解等差数列的概念,掌握等差数列的通项公式,体会等差数列与一次函数 之间的联系。 三、教学难点:概括通项公式推导过程中体现出的数学思想方法。 四、教学准备:根据本节知识的特点,为突出重点、突破难点,增加教学容量,便于学生更 好的理解和掌握所学的知识,我利用计算机辅助教学。 五、教学过程: (一) 创设情境,课题导入 复习上节课学习的数列的定义及数列的表示法。这些方法从不同的角度反映了数列的特点,下面我们来看这样的一些数列:(大屏幕显示课本41页的四个例子) ⑴、0 5 10 15 20 … … ⑵、48 53 58 63 ⑶、18 15.5 13 10.5 8 5.5 ⑷、10072 10144 10216 10288 10360 教师提出问题:以上四个数列有什么共同的特征?请同学们互相讨论。 (学生积极讨论。得到结论,教师指名回答) 共同特点:从第2项起,每项与它的前一项的差是同一个常数。 师:这些数列均具有相邻两项之差“相等”的特点,具有这种特点的数列,我们把它叫 做等差数列。 (二)设置问题,形成概念 等差数列:一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个 常数,那么这个数列就叫做等差数列。这个常数就叫做等差数列的公差, 常用字母d 表示。 师:等差数列的概念中的几个关键点是什么? 生(思考、讨论):第2项、每一项与它的前一项、同一个常数 教师在进一步强调。 师:如何用数学语言来描述等差数列的定义? 学生讨论后得出结论: 数学语言:d a a n n =--1 )2(≥n 或 d a a n n =-+1 n (≥1) (学生通过讨论,从而不断完善自己的认知结构) 师:同学们能否举一些等差数列的例子? (学生争先恐后地发言,教师随机指定两名学生回答。) 理解等差数列的概念是本节课的重点,为了加深对概念的理解,让学生讨论课本45页练习第4题,教师总结。 (三)等差数列的通项公式 师:如同我们在前一节看到的,能否确定一个数列的通项公式对研究这个数列具有重

数列的概念及其表示法

第六章数列 命题探究 解答过程 (1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得 b1(q+q2)=12,而b1=2,所以q2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2. 所以,数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n. (2)设数列{a2n b2n-1}的前n项和为T n,由a2n=6n-2,b2n-1=2×4n-1,有a2n b2n-1=(3n-1)×4n,故T n=2×4+5×42+8×43+…+(3n-1)×4n, 4T n=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1, 上述两式相减,得 -3T n=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1= - - -4-(3n-1)×4n+1 =-(3n-2)×4n+1-8. 得T n=-×4n+1+. 所以,数列{a2n b2n-1}的前n项和为-×4n+1+ §6.1数列的概念及其表示法 考纲解读 分析解读本节内容在高考中主要考查利用a n和S n的关系求通项a n,或者利用递推公式构造等差或等比数列求通项a n,又考查转化、方程与函数、分类讨论等思想方法,在高考中以解答题为主,题目具有一定的综合性,属中高档题.分值为5分或12分.

五年高考 考点数列的概念及其表示 1.(2016浙江,13,6分)设数列{a n}的前n项和为S n.若S2=4,a n+1=2S n+1,n∈N*,则a1=,S5=. 答案1;121 2.(2015江苏,11,5分)设数列{a n}满足a1=1,且a n+1-a n=n+1(n∈N*),则数列前10项的和为. 答案 3.(2013课标全国Ⅰ,14,5分)若数列{a n}的前n项和S n=a n+,则{a n}的通项公式是a n=. 答案(-2)n-1 4.(2015四川,16,12分)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列. (1)求数列{a n}的通项公式; (2)记数列的前n项和为T n,求使得|T n-1|<成立的n的最小值. 解析(1)由已知S n=2a n-a1, 有a n=S n-S n-1=2a n-2a n-1(n≥2), 即a n=2a n-1(n≥2). 从而a2=2a1,a3=2a2=4a1. 又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1). 所以a1+4a1=2(2a1+1),解得a1=2. 所以,数列{a n}是首项为2,公比为2的等比数列. 故a n=2n. (2)由(1)得=, 所以T n=++…+=- - =1-. 由|T n-1|<,得--<,即2n>1000. 因为29=512<1000<1024=210, 所以n≥10. 于是,使|T n-1|<成立的n的最小值为10. 教师用书专用(5—6) 5.(2013安徽,14,5分)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形 A n B n B n+1A n+1的面积均相等.设OA n=a n.若a1=1,a2=2,则数列{a n}的通项公式是. 答案a n=- 6.(2014广东,19,14分)设数列{a n}的前n项和为S n,满足S n=2na n+1-3n2-4n,n∈N*,且S3=15.

数列的概念与简单表示法

高一数学必修5数列新容:数列与等差数列 数列的概念与简单表示法 数列的分类: (1)据数列的项数是否有限可分类为有穷数列、无穷数列. (2)据数列的项大小关系可分类为 ①递增数列:从第二项起,每一项都大于它的前一项的数列; ②递减数列:从第二项起,每一项都小于它的前一项的数列; ③常数数列:各项相等的数列; ④摆动数列:从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列. 练习: 1、下列给出数列,试从中发现变化规律,并填写括号的数 (1)()() 1,3,6,10,,21,,??????; (2)()() 3,5,9,17,33,,,??????; (3)() 1,4,9,16,,36,??????. 2.下面数列中递增数列是,递减数列是,常数数列是,摆动数列是 (1)0,1,2,3,??????;(2)82,93,105,119,129,130,132;(3)3,3,3,3,3,??????; (4)100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01; (5)1,1,1,1,1, ---??????;(6精确到1,0.1,0.01,0.001,???的不足近似值与过剩近似值分别构成数列1,1.4,1,1.141,1.414,;2,1.5,1.42,1.415, ????????????. 3.据下列数列的前几项,写出下列数列的一个通项公式 (1)1,3,5,7,9??????; (2)9,7,5,3,1,??????; (3) 2222 21314151 ;,;; 2345 ---- (4) 1111 ,,,, 12233445 ---- ???? .

数列的概念与表示方法

第三讲 数列的概念与表示方法 【知识要点】 1.数列的概念 按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项.数列一般形式可以写成a 1,a 2,a 3,…,a n ,…,简记为数列{a n },其中数列的第1项a 1也称首项;a n 是数列的第n 项,也叫数列的通项. 2.数列的表示方法 (1)列举法 (2)图象法 (3) 解析法 (4)递推法 3.数列的分类 4.数列与函数的关系 从函数观点看,数列可以看作定义域为正整数集N * (或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列. 5.数列的通项公式 如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成a n =f(n),那么这个式子就叫做这个数列的通项公式.不是每个数列都有通项,如果数列有通项公式,但其通项公式在形式上不一定惟一. 6.求数列通项公式的常见类型与方法 (1)已知数列的前n 项,求其通项公式 ①据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征: 分式中分子、分母的特征;相邻项的变化特征;拆项后的特征;各项符号特征等.并对此进行归纳、联想. ②根据数列的前几项写出数列的一个通项公式是不完全归纳法,它着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整. ③观察、分析问题的特点是最重要的,观察要有目的,观察出项与项数之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)转换而使问题得到解决. 题型一 由数列的前n 项求其通项公式 例1 写出下列各数列的一个通项公式: (1)4,6,8,10,… (2) ,32 31,1615,87,43,21

北师大版高中数学必修五《等差数列》第一课时教案-新版

2.1 等差数列(一) 教学目标 1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题; 2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导, 归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题。 3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。 教学重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式; 会用公式解决一些简单的问题。 教学难点:概括通项公式推导过程中体现出的数学思想方法。 教学过程: 创设情境导入新课 上节课我们学习了数列。在日常生活中,人口增长、鞋号问题、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。 先看下面的问题: 为了使孩子上大学有足够的费用,一对夫妇从小孩上初一的时候开始存钱,第一次存了5000元,并计划每年比前一年多存2000元。若小孩正常考上大学,请问该家长后5年每年应存多少钱? 引导学生行先写出这个数列的前几项:7000,9000,11000,13000,15000 观察这个数列项的变化规律,提出生活中这样样问题很多,要解决类似的问题,我们有必要研究具有这样牲的数列——等差数列 师生互动新课探究 像这样的数列你能举出几个例子吗? 0,5,10,15,20,……① 18,15.5,13,10.5,8,5.5 ③ 48,53,58,63 ② 3,3,3,3,3,……④

看这些数列有什么共同特点呢?(由学生讨论、分析) 引导学生观察相邻两项间的关系,得到: 对于数列①,从第2项起,每一项与前一项的差都等于 5 ; 对于数列②,从第2项起,每一项与前一项的差都等于 5 ; 对于数列③,从第2项起,每一项与前一项的差都等于 -2.5 ; 对于数列④,从第2项起,每一项与前一项的差都等于 0 ; 由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。 归纳总结 形成概念 对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义: 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。 这个常数叫做等差数列的公差,公差通常用字母d 表示。那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,0。 注意:从第二项起.....,后一项减去前一项的差等于同一个常数..... 。 1.名称:等差数列,首项 )(1a , 公差 )(d 2.若0=d 则该数列为常数列 3.寻求等差数列的通项公式: d a d d a d a a d a d d a d a a d a a 3)2(2)(1134112312+=++=+=+=++=+=+= 由此归纳为 d n a a n )1(1-+= 当1=n 时 11a a = (成立) 选讲:除此之外,还可以用迭加法和迭代法推导等差数列的通项公式: (迭加法): }{n a 是等差数列,所以 ,1d a a n n =-- ,21d a a n n =--- ,32d a a n n =--- …… ,12d a a =- 两边分别相加得 ,)1(1d n a a n -=- 所以 d n a a n )1(1-+=

数列的概念与简单表示法

数列的概念与简单表示法 This model paper was revised by the Standardization Office on December 10, 2020

第六章数列 §6.1数列的概念与简单表示法 考点梳理 1.数列的概念 (1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的________.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做__________),排在第n位的数称为这个数列的第n项.所以,数列的一般形式可以写成__________,其中a n是数列的第n 项,叫做数列的通项.常把一般形式的数列简记作{a n}. (2)通项公式:如果数列{a n}的__________与序号__________之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. (3)从函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数(离散的),当自变量从小到大依次取值时所对应的一列________. (4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项__________与它的前一项__________ (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. (5)数列的表示方法有__________、__________、__________、__________. 2.数列的分类 (1)数列按项数是有限还是无限来分,分为__________、__________. (2)按项的增减规律分为__________、__________、__________和 __________.递增数列a n+1______a n ;递减数列a n+1_____a n;常数列a n+ 1______a n .递增数列与递减数列统称为__________. 3.数列前n项和S n与a n的关系 已知S n,则a n= ? ? ?(n=1)_________, (n≥2)_________. 自查自纠: 1.(1)项首项a1,a2,a3,…,a n,… (2)第n项n(3)函数值(4)a n a n-1 (5)通项公式法(解析式法) 列表法图象法递推公式法 2.(1)有穷数列无穷数列(2)递增数列递减数列 摆动数列常数列><=单调数列 3.S1S n-S n-1 典型例题讲练 类型一数列的通项公式 例题1根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2) 2 3 , 4 15 , 6 35 , 8 63 , 10 99 ,…;

数列的概念与简单表示法(第一课时)

数列的概念与简单表示法(第一课时) 教学设计案例 山东省滕州市第一中学时科峰(277500) 一、教材与教学分析 1.数列在教材中的地位 根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边. 作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).2.教学任务分析 (1)了解数列的概念 新课标的教学更贴近生活实际.通过实例,引入数列的概念,理解数列的顺序性,感受数列是刻画自然规律的数学模型.了解数列的几种分类. (2)了解数列是一类离散函数,体会数列中项与序号之间的变量依赖关系. 3.教学重点与难点 重点:理解数列的概念,认识数列是反映自然规律的基本数学模型. 难点:认识数列是一种特殊的函数,发现数列与函数之间的关系. 二、教学方法与学习方法 自主学习与合作探究相结合.

五.板书设计 六、教学评价与反思 新课程的编排特点和学习方式的变化,使课堂教学方法发生了重大变化.新课程提倡教学目标综合化、多元化和均衡性,知识的生活化,使学生获得对数学知识理解的同时,在思维能力、观察能力、情感态度与价值观等方面得到进步和发展. 鉴于此,本节课的教学设计要真正体现出学生的主体地位,以学生活动、学生探究为主,把数学与生活实际联系起来,具体说来,新课程的理念有如下体现: (1)体现“双主体”的原则,摆正了教师在教学中的位置 本节课的组织与实施,充分体现了教师的主导和学生的主体性相结合的原则;教师扮演的是组织者、引导者、参与者,学生是学习的主体,通过大量实例激发学

数列的概念及简单表示法

数列的概念及简单表示法 一、选择题 1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n等于( ) A.(-1)n+1 2 B.cos nπ 2 C.cos n+1 2 π D.cos n+2 2 π 解析令n=1,2,3,…,逐一验证四个选项,易得D正确. 答案 D 2.数列2 3 ,- 4 5 , 6 7 ,- 8 9 ,…的第10项是( ) A.-16 17 B.- 18 19 C.-20 21 D.- 22 23 解析所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n}的通项公式a n= (-1)n+1· 2n 2n+1 ,故a10=- 20 21 . 答案 C 3.(2016·保定调研)在数列{a n}中,已知a1=1,a n+1=2a n+1,则其通项公式a n =( ) A.2n-1 B.2n-1+1 C.2n-1 D.2(n-1) 解析法一由a n+1=2a n+1,可求a2=3,a3=7,a4=15,…,验证可知a n =2n-1. 法二由题意知a n+1+1=2(a n+1),∴数列{a n+1}是以2为首项,2为公比的等比数列,∴a n+1=2n,∴a n=2n-1. 答案 A

4.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A.2n -1 B.n 2 C. (n +1)2 n 2 D. n 2 (n -1)2 解析 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2 (n -1)2. 答案 D 5.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A.7 B.6 C.5 D.4 解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2- a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4. 答案 D 二、填空题 6.若数列{a n }满足关系a n +1=1+1a n ,a 8=34 21,则a 5=________. 解析 借助递推关系,则a 8递推依次得到a 7= 2113,a 6=138,a 5=85 . 答案 8 5 7.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =???4,n =1, 2n +1,n ≥2. 答案 ???4,n =1,2n +1,n ≥2. 8.(2017·北京海淀期末)已知数列{a n }的前n 项和为S n ,且a n ≠0(n ∈N *),又 a n a n +1=S n ,则a 3-a 1=________. 解析 因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1,令n =2,得a 2a 3

数列的概念与表示(一)

数列的概念与表示导学案 一、基础知识 引例:按一定次序排列的一列数 (1)1,2,3,4,5 (2)1,51,41,31,21 (3),1,1,1,1--…… (4)1,1,1,1,…… (5)1,3,5,4,2 (6)2的精确到1,0.1,0.01,0.001,……的不足近似值排列成一列数 1、概念:(1)数列: 注:①按一定次序排列 ②同一个数在数列中可重复出现 上例中能构成数列的是: 。(1)与(5)相同吗? (2)项: (3)项的序号: 2、表示:数列的一般形式为: ,简化为 。 例:,41,31,21, 1…,1,n …简记为: 1,3,5,7,…12-n ,…简记为 注:}{n a 与n a 的区别: 3、数列与函数的关系: 4、数列的通项公式: 作用:①以序号代n 可求数列各项;②可验证某数是否是数列中的项 注:①通项公式有时不存在;②一个数列的通项公式形式可能不唯一。 5、递推公式: 6、分类: 二、例题解析 例1、根据}{n a 的通项公式,写出它的前5项。 (1)1+=n n a n (2)n a n n ?-=)1( 例2、写出下面数列的一个通项公式,使它的前4项分别是下列各数 (1)1,2,3,4; (2)1,3,5,7; (3)5 15,414,313,2122222----; 例3、已知:}{n a 中,11=a ,以后各项由111-+ =n n a a 给出,写出这个数列的前5项。

三、课后练习 1、根据}{n a 的通项公式,写出它的前5项: (1)1)1(5+-?=n n a (2)1 122++=n n a n 2、根据通项公式,写出它的第7项与第10项 (1))2(+=n n a n (2)32+-=n n a 3、写出下面数列的一个通项公式,使它的前4项分别是下列各数。 (1)1,2,3,4 (2)2,4,6,8 (3)161,81,41,21-- (4)5141.4131,3121,211---- 4、写出下面数列}{n a 的前5项 (1))2(35 11≥+==-n a a a n n (2))2(2211≥==-n a a a n n

数列的概念及简单表示方法

§ 数列的概念及简单表示法 1. 数列的定义 按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项. 2. 数列的分类 分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限 按项与项间的大小关系分类 递增数列 a n +1__>__a n 其中n ∈N + 递减数列 a n +1__<__a n 常数列 a n +1=a n 按其他标准分类 有界数列 存在正数M ,使|a n |≤M 摆动数列 从第二项起,有些项大于它的前一项,有 些项小于它的前一项的数列 3. 数列有三种表示法,它们分别是列表法、图象法和解析法. 4. 数列的通项公式 如果数列{a n }的第n 项a n 与n 之间的关系可以用一个函数式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式. 5.已知S n ,则a n =??? ?? S 1 ?n =1? S n -S n -1 ?n ≥2? .

1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达. ( × ) (2)根据数列的前几项归纳出数列的通项公式可能不止一个. ( √ ) (3)数列:1,0,1,0,1,0,…,通项公式只能是a n = 1+?-1? n +1 2 . ( × ) (4)如果数列{a n }的前n 项和为S n ,则对?n ∈N +,都有a n +1=S n +1-S n . ( √ ) (5)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ ) (6)若已知数列{a n }的递推公式为a n +1=1 2a n -1,且a 2=1,则可以写出数列{a n }的任何一项. ( √ ) 2. 设数列{a n }的前n 项和S n =n 2 ,则a 8的值为 ( ) A .15 B .16 C .49 D .64 答案 A 解析 ∵S n =n 2 ,∴a 1=S 1=1. 当n ≥2时,a n =S n -S n -1=n 2 -(n -1)2 =2n -1. ∴a n =2n -1,∴a 8=2×8-1=15. 3. 已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于 ( ) A .1 B .9 C .10 D .55 答案 A 解析 ∵S n +S m =S n +m ,a 1=1,∴S 1=1. 可令m =1,得S n +1=S n +1,∴S n +1-S n =1. 即当n ≥1时,a n +1=1,∴a 10=1. 4. (2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +1 3 ,则{a n }的通项公式是a n =_____. 答案 (-2) n -1 解析 当n =1时,a 1=1;当n ≥2时, a n =S n -S n -1=2 3a n -23 a n -1, 故 a n a n -1 =-2,故a n =(-2)n -1 . 当n =1时,也符合a n =(-2)n -1 . 综上,a n =(-2) n -1 . 5. (2013·安徽)如图,互不相同的点A 1,A 2,…,A n ,…和B 1, B 2,…,B n …分别在角O 的两条边上,所有A n B n 相互平行,

相关主题