搜档网
当前位置:搜档网 › 8.2 消元——解二元一次方程组(3)

8.2 消元——解二元一次方程组(3)

8.2 消元——解二元一次方程组(3)
8.2 消元——解二元一次方程组(3)

七年级数学下册第八章

第四课时《8.2 消元——解二元一次方程组(3)》教学设计

高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组 一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中, A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803?? ? ? ? ? ? ? ? ??? 0.230 -52.322 54.000 240.236 29.304 -117.818b ?? ? ? ?= ? ? ? ? ??? T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068) 二、原理及步骤分析 设 n n ij R a A ?∈=][)1(,n n R b b b b ∈=],,,[)1()2(2)1(1 。若约化主元素 ),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。 如果在消元过程中发现某个约化主元0) (=k kk a , 则第K 次消元就无法进行。此外,即 使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。 为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。相应过程为: (1)选主元:在子块的第一列中选择一个元) (k k i k a 使) (max k ik n i k k k i a a k ≤≤= 并将第k 行元与第k i 行元互换。 (2)消元计算:对k=1,2,……n-1依次计算 ()()()?? ?? ?????++=-=++=-=++==++n k k i b m b b n k k j i a m a a n k k i a a m k k ik k i k i k kj ik k ij k ij k kk k ik k ik ,,2,1,,2,1,,,2,1) ()()1() ()()1()() ()( (3)回代求解

二元一次方程组的解法——消元法

7.2 二元一次方程组的解法 第一课时 教学目的 1.使学生通过探索,逐步发现解方程组的基本思想是“消元”,化二元——次方程组为一元一次方程。 2.使学生了解“代人消元法”,并掌握直接代入消元法。 3.通过代入消元,使学生初步理解把“未知”转化为“已知”,和复杂问题转化为简单问题的思想方法。 重点、难点 1.重点;用代入法解二元一次方程组。 2.难点:体会用一个未知数表示另一个未知数进行代入消元。 教学过程 一、回顾旧知 1.什么叫二元一次方程,二元一次方程组,二元一次方程组的解? 2.把3x+y=7改写成用x的代数式表示y的形式。 指名回答,其他学生补充。 二、讲授新知 回顾上一节课的问题2。 在问题2中,如果设应拆除旧校舍xm2,建新校舍ym2,那么根据 题意可列出方程组。 y-x=20000×30% ① y=4x ② 思考:怎样解这个方程组? 分析:方程②表明,可以把y看作4x,因此,方程①中的y也可以看成4x,即把②代人①(得到一元一次方程,实际上此方程就是设应拆除旧校舍xm2,所列的一元一次方程)。 解:把②代入①,得 4x-x=20000×30% 3x=6000 x=2000 把x=2000代入②,得 y=8000 所以x=2000 y=8000 答:应拆除2000 m2旧校舍,建造8000 m2新校舍。 这样就把二元转化为一元,把“未知”转化为“已知”。你能用同样的方法来解问题1中的二元一次方程组吗? 让学生自己概括上面解法的思路,然后试着解方程组。对有困难的同学,教师加以引导。并总结出解方程的步骤。 1. 选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程③。 2.把③代人另一个方程,得一元一次方程。 3.解这个一元一次方程,得一个未知数的值。 4.把这个未知数的值代人③,求出另一个未知数值,从而得到方程组的解。 以上解法是通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的,这种

解二元一次方程组练习题经典

学习好资料欢迎下载 解二元一次方程组练习题 梅州)解方程组2013?.1.( 淄博)解方程组.2.(2013? 邵阳)解方程组:2013?.3.( (4.2013?.遵义)解方程组 2013?.湘西州)解方程组:5.( (6.2013?荆州)用代入消元法解方程组. .?汕头)解方程组2013.7( ?2012.8(湖州)解方程组. 学习好资料欢迎下载

广州)解方程组2012?.9.( 常德)解方程组:?10.(2012 2012?.南京)解方程组(11. 厦门)解方程组:12.(2012?. .2011?永州)解方程组:(13. 14.(2011怀化)解方程组:?. 桂林)解二元一次方程组:.?(15.2013 ?(.162010.南京)解方程组: 学习好资料欢迎下载 丽水)解方程组:(2010?17.

广州)解方程组:.?.18(2010 巴中)解方程组:.? 19.(2009 天津)解方程组:? 20.(2008 宿迁)解方程组:.2008? 21.( 桂林)解二元一次方程组:.(22.2011? ?郴州)解方程组:200723.( .?(24.2007常德)解方程组: 学习好资料欢迎下载 宁德)解方程组:2005?25.(

岳阳)解方程组:?.(2011.26 苏州)解方程组:.27.(2005? ?(2005江西)解方程组:28. 29.(2013自贡模拟)解二元一次方程组:.? 黄冈)解方程组:.?(30.2013 解二元一次方程组练习题学习好资料欢迎下载 参考答案与试题解析

一.解答题(共30小题) 梅州)解方程组.2013? 1.( 考点:解二元一次方程组;解一元一次方程. 专题:计算题;压轴题. 分析:①+②得到方程3x=6,求出x的值,把x的值代入②得出一个关于y的方程,求出方程的解即可. 解答: 解:, ①+②得:3x=6, 解得x=2, 将x=2代入②得:2﹣y=1, 解得:y=1. ∴原方程组的解为. 点评:本题考查了解一元一次方程和解二元一次方程组的应用,关键是把二元一次方程组转化成一元一次方程,题目比较好,难度适中. 2.(2013?淄博)解方程组. 考点:解二元一次方程组. 专题:计算题. 分析:先用加减消元法求出y的值,再用代入消元法求出x的值即可. 解答: 解:, ①﹣2×②得,﹣7y=7,解得y=﹣1; 把y=﹣1代入②得,x+2×(﹣1)=﹣2,解得x=0, 故此方程组的解为:.点评本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键 3.(2013?邵阳)解方程组:.

二元一次方程组加减消元法练习题

解二元一次方程组(加减法)练习题一、基础过关 1.用加、减法解方程组 436, 43 2. x y x y += ? ? -= ? ,若先求x的值,应先将两个方程组相_______;若 先求y的值,应先将两个方程组相________. 2.解方程组 231, 367. x y x y += ? ? -= ? 用加减法消去y,需要() A.①×2-② B.①×3-②×2 C.①×2+② D.①×3+②×2 3.已知两数之和是36,两数之差是12,则这两数之积是() A.266 B.288 C.-288 D.-124 4.已知x、y满足方程组 259, 2717 x y x y -+= ? ? -+= ? ,则x:y的值是() A.11:9 B.12:7 C.11:8 D.-11:8 5.已知x、y互为相反数,且(x+y+4)(x-y)=4,则x、y的值分别为() A. 2, 2 x y = ? ? =- ? B. 2, 2 x y =- ? ? = ? C. 1 , 2 1 2 x y ? = ?? ? ?=- ?? D. 1 , 2 1 2 x y ? =- ?? ? ?= ?? 6.已知a+2b=3-m且2a+b=-m+4,则a-b的值为() A.1 B.-1 C.0 D.m-1 7.若2 3 x5m+2n+2y3与- 3 4 x6y3m-2n-1的和是单项式,则m=_______,n=________. 8.用加减法解下列方程组: (1) 3216, 31; m n m n += ? ? -= ? (2) 234, 443; x y x y += ? ? -= ? (3) 523, 611; x y x y -= ? ? += ? (4) 35 7, 23 423 2. 35 x y x y ++ ? += ?? ? -- ?+= ??

《消元──解二元一次方程组》教学设计

《消元──解二元一次方程组》教学设计(第1课时) 一、内容和内容解析 1.内容 代入消元法解二元一次方程组 2.内容解析 二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式, 在平面直角坐标系中求两直线交点坐标等. 解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。 本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元. 二、目标和目标解析 1.教学目标 (1)会用代入消元法解一些简单的二元一次方程组 (2)理解解二元一次方程组的思路是消元,体会化归思想 2.教学目标解析 (1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解, (2)要让学生经历探究的过程.体会二元一次方程组的解法与一元

一次方程的解法的关系,进一步体会消元思想和化归思想 三、教学问题诊断分析 1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向一元一次方程转化的思路 2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。 本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。 四、教学过程设计 1.创设情境,提出问题 问题1篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗? 师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16 x=6,则胜6场,负4场 教师追问:你能根据问题中的等量关系列出二元一次方程组吗? 师生活动:学生回答:能.设胜x场,负y场.根据题意,得 我们在上节课,通过列表找公共解的方法得到了这个方程组的解,

解三元一次方程组的消元技巧

解三元一次方程组的消元技巧 解三元一次方程组的基本思想和解二元一次方程组一样也是消元,化三元为二元、一元,最终求出各未知数的值,完成解题过程.但是,在具体解题过程中,许多同学却难以下手,不清楚先消去哪个未知数好.下面就介绍几种常见的消元策略,供同学们学习时参考. 一、当方程组中有一个方程缺省某未知数时,可以从其余方程中消去所缺少的未知数. 1、解方程组3472395978.x z x y z x y z +=??++=??-+=? , , ①②③ 分析:因为方程①中缺少未知数y 项,故而可由②、③先消去y ,再求解. 解:②×3+③,得111035x z +=,④ 解由①、④组成的方程组,得52x z =??=-? , ⑤ 把⑤代入②,得13 y =, 所以原方程组的解为5132 x y z =???=??=-??. 二、当方程组中有两个方程缺省不同的未知数时,可将其中一个与剩余方程消去另一个所缺少的未知数;或则可先用含公共未知数的代数式表示另外两个未知数,再用代入法消元. 1、解方程组27532234 4.y x x y z x z =-??++=??-=? , , ①②③ 分析:很明显,在方程①、③中,分别缺少未知数z 、y 的项,而都含有未知数x 的项,从而可用含x 的代数式分别表示y 、z ,再代入②就可以直接消去y 、z 了. 解:由③,得314 z x =-, ④ 把①、④代入②,得2x =, ⑤

把⑤代入①,得3 y=-,⑥ 把⑤代入③,得 1 2 z=, 所以原方程组的解是 2 3 1 2 x y z ? ?= ? =-? ? ?= ? . 2、 解答: 16 8 3 x y z =? ? =? ?=? 三、当方程组中三个方程都缺省不同的未知数时,可从中挑选两个消去相同的未知数 四、当方程组中某个未知数的系数成整数倍关系时,可先消去这个未知数 1、解方程组 2439 32511 56713. x y z x y z x y z ++= ? ? -+= ? ?-+= ? , , ① ② ③ 分析:方程组中含y的项系数依次是4,-2,-6,且4=-2×(-2),-6=-2×3.由此可先消去未知数y.

消元解二元一次方程组教案

§8.1.2用代入消元法解二元一次方程组 一、教学目标: 1、知识与技能: (1)会用代入法解二元一次方程组。 (2)能体会“代入法”解二元一次方程组的基本思路。 2、过程与方法: (1)通过代入消元,使学生初步了解把“未知”转化为“已知”,和把复杂问题转化为简单问题的思想方法。 (2)培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较为简单的方程进行变形。 3、情感与态度: (1)训练学生的运算技巧,养成检验的习惯。 (2)通过本节课的学习,渗透化归的数学思想。 二、教学重点与难点 1、重点: 用代入消元法解二元一次方程组 2、难点: (1)消元的思想。 (2)探究如何用代入法将“二元”化为“一元” 三:教学过程设计 1、创设情境

问题:在1500年前,《孙子算经》中记载了这样一个有趣的数学问题,那就是雉 兔同笼问题,它是这样描述的:今有雉兔同笼,上有三十五头,下有九十四足, 问雉兔几何?把它翻译成现代汉语也就是说有若干只鸡和兔子同在一个笼子里, 从上面数,有35个头,从下面数,有九十四只脚,问鸡和兔子分别有多少只? 2、新课引入 我们昨天已经初步学习二元一次方程组,所以对于上面的问题,我们知道可以用 二元一次方程组来解决。下面请大家自己在本子上列式,正好检验昨天大家是否 认真听课了,也请一个同学来帮帮老师列式: 解:设鸡有x 只,兔有y 只。 依题意得: ???=+=+9442 35y x y x 由①可得x -=35y 把③带入②中得 94x -354x 2=+)( 解得23x = 把23x =带入③中得12y = 所以原方程的解为? ??==12y 23 x 3、新课讲解 (1)带入消元法:上面的解法,是把二元一次方程组中的一个方程的一个未知 数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求 得这个二元一次方程组的解,这种方法就叫做代入消元法,简称代入法。 (2)消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数, 那么就把二元一次方程组转换为我们熟悉的一元一次方程。我们可以先求出一个 未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决问题

《消元解二元一次方程组》教案

《消元——解二元一次方程组》教案1 第一课时 ★新课标要求 (一)知识与技能 1.知道代入法的概念. 2.会用代入消元法解二元一次方程组. (二)过程与方法 1.通过探索,了解解二元一次方程的“消元”思想,初步体会数学的化归思想. 2.培养探索、自主、合作的意识,提高解题能力. (三)情感、态度与价值观 1.在消元的过程中体会化未知为已知、化复杂为简单的化归思想,从而享受数学的化归美,提高学习数学的兴趣. 2.通过研究解决问题的方法,培养学生合作交流意识与探究精神. ★教学重点 用代入法解二元一次方程组,基本方法是消元化二元为一元. ★教学难点 用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉. ★教学方法 1.关于检验方程组的解的问题.教学时要强调代入“原方程组”和“每一个”这两点. 2.教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.早一些指出消元思想和把“二元”转化为“一元”的方法,这样,学生就能有较强的目的性. 3.教师讲解例题时要注意由简到繁,由易到难,逐步加深.随着例题由简到繁,由易到难,要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以求解迅速,而且可以减少错误.教师启发、引导,学生观察、试验、比较、思考,讨论、交流学习成果. ★教学过程 一、引入新课 教师活动:请同学们回忆上节课我们讨论的篮球联赛的问题.大家可以得到两种方程﹙组﹚.设此篮球队胜x 场,负y 场. 方法一:2(22)40x x +-=; 方法二:22240 x y x y +=??+=? 方法一得到的方程是我们学过的一元一次方程.大家很容易解得18x =.所以该篮球队胜18场,负22184-=场. 二、进行新课 1.代入消元法的概念 方法二得到的是二元一次方程组,怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么联系? 学生活动:思考、讨论、发现二元一次方程组中第1个方程20x y +=说明20y x =-,

代入消元法解方程组

备课人:班第小组姓名: 宜州市祥贝中学七年级数学科导学案 课题: 8.2.1 用代入法解二元一次方程组课型:新授课 一、学习目标 1.会用代入法解二元一次方程组。 2.灵活运用代入法的技巧. 二、自学导航 阅读课文P91—P93,完成下列问题: 1.篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少? 如果只设一个末知数:胜x场,负(10-x)场,列方程为:,解得x= 。 在上节课中,我们可以设出两个未知数,列出二元一次方程组,设胜的场数是x,负的场数是y, x+y=10 ① 2x+y=16 ② 那么怎样求解二元一次方程组呢? 2.思考:上面的二元一次方程组和一元一次方程有什么关系? 可以发现,二元一次方程组中第1个方程x+y=10写成y=,将第2个方程2x+y=10的y换为10-x,这个方程就化为一元一次方程。 二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做思想。 3.归纳:上面的解法,是把二元一次方程组中一个方程的用含 的式子表示出来,再代入,实现消元,进而求得这个二元一次方程组的解.这种方法叫做,简称。 例1 用代入法解方程组x-y=3 ① 3x-8y=14 ② 分析:方程①中x的系数是1,用含y的式子表示x,比较简单。 解:

三、合作探究 1.将方程5x-6y=12变形:若用含y 的式子表示x ,则x=______,当y=-2时,x=_______;若用含x 的式子表示y ,则y=______,当x=0时,y=________ 。 2.用代人法解方程组? ??=+-=7y 3x 23x y ①②,把____代人____,可以消去未知数______,方程变为: 3.若方程y=1-x 的解也是方程3x+2y=5的解,则x=____,y=____。 4.若? ??-=-=+???-==1by ax 7by ax 2y 1x 是方程组的解,则a=______,b=_______。 5.已知方程组???=-=-1y 7x 45y x 3的解也是方程组? ??==-5by -x 34y 2ax 的解,则a=_______,b=________ ,3a+2b=___________。 6.已知x=1和x=2都满足关于x 的方程x 2+px+q=0,则p=_____,q=________ 。 7.用代入法解下列方程组: ⑴???=+=5x y 3x ⑵???==+y 3x 2y 32x ⑶? ??=-=+8y 2x 57y x 3 四、巩固提升 1.方程组{1 y 2x 11y -x 2+==的解是( ) A.???==0y 0x B.???==37y x C.???==73y x D.? ??-===37y x 2.根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g )两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t ,这些消毒液应该分装大、小瓶两种产品各多少瓶?

消元法解线性方程组

消元法解线性方程组 学校:青海师范大学 院系:数学系 专业:数学与应用数学 班级:10B 指导教师:邓红梅 学号:20101611218 姓名:梅增旺

摘要:线性方程组在数学的各个分支,在自然科学,工程技术,生产实际中经常遇到,而且未知元的个数及方程的个数可达成百上千,因此它的理论是很重要的,其应用也很广泛。本篇将就解线性方程组在此做一浅谈,以消元法为主要方法。消元法是解一般线性方程组行之有效的方法,早在中学大家都已经有接触,消元法的基本思想是通消元变形把方程组化成容易求解的同解方程组进行求解。 关键字:线性方程组消元法求解 Abstract: linear equations in various branches of mathematics, natural science,engineering technology, often encountered in actual production, and the unknown element number and the number of equations can be hundreds, so itis important in the theory, its application is very extensive. This article on thesolution of linear equations based on a discussion, mainly by means ofelimination method. Elimination method is the general linear equations ofeffective early in high school, everyone has a contact, the basic idea ofelimination method is through the elimination of the equations of deformationinto easy to solve with the solution of equations. Keywords:elimination method for solving linear equations

消元--解二元一次方程组知识点总结(含例题)

消元—解二元一次方程组知识点教案 1.代入消元法解二元一次方程组 (1)消元思想的概念 二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想. (2)代入消元法 把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法. (3)代人法解二元一次方程组的一般步骤: ①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数 用含有另一个未知数的代数式表示出来. ②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程. ③解方程:解这个一元一次方程,求出一个未知数的值. ④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方 程组的解. 2.加减消元法解二元一次方程组 (1)加减消元法 当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________. (2)用加减法解二元一次方程组的一般步骤: ①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数. ②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转 化为一元一次方程. ③解方程:解一元一次方程,求出一个未知数的值. ④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值, 从而得到方程组的解.

MATLAB之GAUSS消元法解线性方程组

Matlab之Gauss消元法解线性方程组 1.Gauss消元法 function x=DelGauss(a,b) %Gauss消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k);%计算行列式 end det=det*a(n,n); for k=n:-1:1%回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >>A=[1.0170-0.00920.0095;-0.00920.99030.0136;0.00950.0136 0.9898]; >>b=[101]'; >>x=DelGauss(A,b) x= 0.9739 -0.0047 1.0010 2.列主元Gauss消去法: function x=detGauss(a,b) %Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0;%选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return;

消元——解二元一次方程组的解法(1)

课题:消元——解二元一次方程组的解法(1)课型:新授课课时: 1 授课人:班级:授课时间: 【学习目标】会运用代入消元法解二元一次方程组 【重点难点预测】 1、会用代入法解二元一次方程组。 2、灵活运用代入法的技巧. 【知识链接】二元一次方程元的概念。 【学法指导】自主学习、探究、合作交流。 一、自主学习、预习交流(约10分钟) 1、已知232 x y -=,当x=1时,y= ;当y=2时,x= . 2、将方程5x-6y=12变形:若用含y的式子表示x,则x=______,当y=-2 时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。 3、把下列方程改写成用含x的式子表示y的形式。 (1)23 x y -=(2)310 x y +-= 解:解: 4、基本概念 1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就 把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未 知数,然后再求另一个未知数。这种将未知数的个数由多化少、逐一解决的 思想,叫做____________。 2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式 子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组 的解,这种方法叫做________,简称_____ 。 二、合作探究、展示提升(约20分钟) 1、用代人法解方程组 3, 237.(2) y x x y -= (1) ? ? += ? 的解题步骤:先把方程____变形 为,再代入方程____,可以消去未知数_____,求得的值,最后求的值。 2、用代入法解下列方程组,把下面的解题过程补充完整 ⑴ 25, 28.(2) y x x y -= (1) ? ? += ? ⑵ 25,(1) 328.(2) x y x y += ? ? += ? (1)解:由(1),得 (2) 解:由(1),得 y= (3)y= (3)把(3)代入(2),得把(3)代入(2),得 2x+ =8 3x+ =8 教师复备(学生笔记)

(完整版)解线性方程组的消元法及其应用

解线性方程组的消元法及其应用 (朱立平 曲小刚) ● 教学目标与要求 通过本节的学习,使学生熟练掌握一种求解方程组的比较简便且实用的方法—高斯消元法,并能够熟练应用消元法将矩阵化为阶梯形矩阵和求矩阵的逆矩阵. ● 教学重点与难点 教学重点:解线性方程组的高斯消元法,利用消元法求逆矩阵. 教学难点:高斯消元法,利用消元法求逆矩阵. ● 教学方法与建议 先向学生说明由于运算量的庞大,克莱姆法则在实际应用中是很麻烦的,然后通过解具体的方程组,让学生自己归纳出在解方程组的时候需要做的三种变换,从而引出解高阶方程组比较简便的一种方法—高斯消元法,其三种变换的实质就是对增广矩阵的初等行变换,最后介绍利用消元法可以将矩阵化为阶梯形矩阵以及求矩阵的逆。 ● 教学过程设计 1.问题的提出 由前面第二章的知识,我们知道当方程组的解唯一的时候,可以利用克莱姆法则求出方程组的解,但随着方程组阶数的增高,需要计算的行列式的阶数和个数也增多,从而运算量也越来越大,因此在实际求解中该方法是很麻烦的. 引例 解线性方程组 ??? ??=+-=+=++132724524321 21321x x x x x x x x )3()2()1( 解 (1)???→??)2()1(?????=+-=++=+13245247 232132121x x x x x x x x )3()2()1(????→?+-?+-?) 3()2()1()2()4()1(?????-=+-=+=+133524567232 3221x x x x x x )3()2()1(

????→?+-?)3()65 ()2(??????? =--=+=+76 724567233221x x x x x )3()2()1( 用回代的方法求出解即可. 问题:观察解此方程组的过程,我们总共作了三种变换:(1)交换方程次序,(2)以不等于零的数乘某个方程,(3)一个方程加上另一个方程的k 倍.那么对于高阶方程组来说,是否也可以考虑用此方法. 2.矩阵的初等变换 定义1 阶梯形矩阵是指每一非零行第一个非零元素前的零元素个数随行序数的增加而增加的矩阵. 定义2 下面的三种变换统称为矩阵的初等行变换: i. 互换矩阵的两行(例如第i 行与第j 行,记作j i r r ?), ii. 用数0≠k 乘矩阵的某行的所有元素(例如第i 行乘k ,记作i kr ), iii. 把矩阵某行的所有元素的k 倍加到另一行的对应元素上去(例如第j 行的k 倍加到第i 行上,记作j i kr r +). 同理可以定义矩阵的初等列变换. 定义 3 如果矩阵A 经过有限次初等变换变为矩阵B ,则称矩阵A 与B 等价,记作 A ~ B . 注:任意一个矩阵总可以经过初等变换化为阶梯形矩阵. 3. 高斯消元法 对于一般的n 阶线性方程组 ?????? ?=++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112 22221211 1212111 )()2()1(n (3.1) 若系数行列式0det ≠A ,即方程组有唯一解,则其消元过程如下: 第一步,设方程(1)中1x 的系数01≠l a 将方程)(l 与(1)对调,使对调后的第一个方程1x 的系数不为零.作)1(11 1 a a i i - ),3,2(n i Λ=,得到同解方程组 ?? ? ????=++=++=+++)1()1(2)1(2) 1(2 )1(22)1(22)0(1)0(12)0(121)0(11n n nn n n n n n b x a x a b x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛ (3.2) 第二步,设0) 1(22≠a ,保留第二个方程,消去它以下方程中的含2x 的项,得

人教版七年级下册消元——解二元一次方程组练习题(含答案)

8.2消元——解二元一次方程组练习题 一、选择题 1. 二元一次方程组{x ?y =4x +y =2 的解是( ) A. {x =3y =?7 B. {x =1y =1 C. {x =7y =3 D. {x =3 y =?1 2. m 为正整数,已知二元一次方程组{mx +2y =103x ?2y =0 有整数解,则m 2的值为( ) A. 4 B. 49 C. 4或49 D. 1或49 3. 在解方程组{ax +5y =104x ?by =?4 时,由于粗心,甲看错了方程组中的a ,得到的解为{x =?3y =?1,乙看错了方程组中的b ,得到的解为{x =5y =4 .则原方程组的解( ) A. {x =?2y =8 B. {x =15y =8 C. {x =?2y =6 D. {x =?5 y =8 4. 方程组{2x +y =?x +y =3 的解为{x =2y =?,则被遮盖的两个数分别是( ) A. 1,2 B. 5,1 C. 2,?1 D. ?1,9 5. 若二元一次方程组{x +y =33x ?5y =4 的解为{x =a y =b ,则a ?b =( ) A. 1 B. 3 C. ?14 D. 74 6. 用加减法解方程组{4x +3y =7?①6x ?5y =?1?② 时,若要求消去y ,则应( ) A. ①×3+②×2 B. ①×3?②×2 C. ①×5+②×3 D. ①×5?②×3 7. 利用加减消元法解方程组{2x +5y =3①5x ?3y =6② ,下列做法正确的是( ) A. 要消去y ,可以将①×5+②×2 B. 要消去x ,可以将①×3+②×(?5)

沪科版数学七上33消元解方程组同步测试

消元解方程组水平测试题 一、选择题 1.四名学生解二元一次方程组???=-=-32543y x y x 提出四种不同的解法,其中解法不 正确的是( ) A .由①得x = 345y +,代入② B .由①得y =45 3-x ,代入② C .由②得y =-2 3 -x ,代入① D .由②得x =3+2y ,代入① 2.用代入法解方程组? ? ?=-=+522 43y x y x 使得代入后化简比较容易的变形是( ) A .由①得x = 342y - B .由①得y = 4 32x - C .由②得x =2 5 +y D .由②得y =2x -5 3.用加减法解方程组? ??=-=+8231 32y x y x 时,要使两个方程中同一未知数的系数相等或相反, 有以下四种变形的结果: ①?? ?=-=+846196y x y x ②???=-=+869164y x y x ③???-=+-=+1646396y x y x ④???=-=+24 69264y x y x 其中变形正确的是( ) A .①② B .③④ C .①③ D .②④ 4.二元一次方程组?? ?==+x y y x 2, 102的解是( ). A ?? ?==;3,4y x B ???==;6,3y x C ???==;4,2y x D ? ??==.2, 4y x 5.已知方程组42ax by ax by -=?? +=?,的解为21 x y =??=?, ,则23a b -的值为( ) A.4 B.6 C.6- D.4- 6.在2006年德国世界杯足球赛中,32支足球队将分成8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是( ) A.两胜一负 B.一胜两平 C.一胜一平一负 D.一胜两负 7.一副三角板按如图方式摆放,且1∠的度数比2∠的度数大50,若设1x ∠=,2y ∠=,则可得到方程组为( ① ②

消元---解二元一次方程组教学反思

反思一:消元---解二元一次方程组教学反思 常言道:举一反三,触类旁通。数学教学尤其如此。旨在于对一个数学知识点反复例举、反复引导、反复训练,进而对类似问题能够参考性的对比解决并且不断提升知识的认知水平。消元二元一次方程组的解法这个课时的思想就是把未知数的个数递减而逐一解决。我在教学这个内容中得到如下反思。 一、在这节课的开始应该充分利用教材关于胜负问题的例子,让学生首先明白两个方程中的x都表示胜的场数,y都是表示负的场数,这个过程就是为了消除学生在以下的代入消元法和加减消元法中为什么能够互换的疑虑。这是个好的开端。 二、充分强调等式的变化。虽然这是个复习的问题,但是,让学生反复演练这样的等式变换是一个必要的过程,它将为后面的代入法顺利进行起到铺垫的作用。 三、在进行代入消元法时,遵循由浅入深、循序渐进的原则,引导并强调学生观察未知数的系数,注意系数是1的未知数,针对这个系数进行等式变换,然后代入另一个方程。在这个教学过程中,学生的学习难点就是当未知数的系数不是1的情况,教师就应该运用开课前复习的等式变换的知识点:用含有一个字母的代数式表示另一个字母,引导学生熟练进行等式变换,这个过程教师往往忽略训练的深度和广度,要引起注意把握训练尺度。 四、在进行加减消元法时,难点是:相同未知数的系数不相同也不是互为相反数的情况。基于此,教学原则也应该是由易到难、逐次深入的原则。教师应该先让学生熟悉简单的未知数相同或互为相反数这类题目的加减消元法则和原理;继而认真展示成倍数关系的未知数的系数;然后出示一些比如:3x-5y=10,2x+10y=1,等等的问题,提示学生怎样使相同未知数的系数相同或互为相反数,这时教师要帮助学生认真分析,强调遵循求几个数最小公倍数的原则,使它们相同未知数的系数变成为它们的最小公倍数,然后进行加减消元法去解决问题。 这就是我在这个课程教学的一些反思。 反思二:消元---解二元一次方程组教学反思 1、这节课的主要内容是用代入法解二元一次方程组。这种代入消元法的关键是如何选择一个方程,如何用含一个未知数的式子去表示另一个未知数。所以在教学上要抓住这个关键来讲解。 2、在教学过程中,学生虽然学会了用代入法解二元一次方程组,但是在结构不同的方程组中,学生就有点不知所措,不懂选择哪个方程代入另一个方程,以至 使运算简便。而是盲目地规定消那个未知数,使得计算量很大。出现这种问题的 原因是,没有抓住教师在课堂上强调的关键。针对这个问题,在以后的教学中, 我会再强调这个解题的关键,甚至还专门利用课余时间,帮他们补回来。让他们在这方面多

消元——解二元一次方程组(含答案)

完成情况 消元——解二元一次方程组 班级:_____________姓名:__________________组号:_________ 第一课时 一、旧知回顾 1.对课本引言中出现的“篮球联赛”的问题,先列出一元一次方程解决,再列出二元一次方程组。如何来解这样的方程组呢,请认真进行对比。 二、新知梳理 2.探究活动一:一元一次方程与二元一次方程组的关系: (1)观察方程x +y =2①与y =2-x ②,思考①是如何转化到②的? (2)二元一次方程组,如何化为一元一次方程2x +(10-x)=22?通过预习 ???=+=+22210 y x y x 仿照例1请写出完整的解题过程。 学前准备

(3)归纳代入消元法: 三、试一试 3.把下列方程改成用含x 的式子表示y 的形式(1), 。 52=+y x =y (2), 。 450x y --==y 4.用代入法解下列方程组:(解题格式请参照P91-92页例1) ① ② ★通过预习你还有什么困惑? 25342x y x y -=??+=? ① ②23328y x x y =-?? +=?①②

一、课堂活动、记录 1.解二元一次方程组的基本思想是什么?2.用代入法解方程组的基本步骤是什么? 二、精练反馈A 组: 1.把下列方程改成用含y 的式子表示x 的形式:(1)x +2y =1 (2)5x -3y=x 2.用代入法解下列方程组: (1) (2)3759y x x y =+??+=? ①②21235x y x y -=?? +=?① ② B 组: 3.有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只参加一项比赛。篮、排球队各有多少支参赛? 课堂探究

Gauss消元法解解线性方程组

摘要 本文叙述了Gauss 顺序消元法解线性方程的算法思想以及其求解过程,同时简要叙述了Gauss 主元素消元法以及Gauss 全主元消元法。紧接着给出了 Gauss Seidel -迭代法的算法思想,本文给出了这三个消元方法以及一个迭代法 的算法流程图,由于全主元消元法是前两个算法的基础上改进而来,故本文采用第三种方法进行编程计算,前两种方法不再重复编程,然后给出一个实例的计算结果,运行时间,在文章最后分析该实例的计算结果,针对同一实例,又采用 Gauss Seidel -方法编程实现,然后对结果进行分析和对比。最后给出了本人在 编程时遇到的一些问题和解决办法。 关键词:Gauss 顺序消元法 Gauss 主元素消元法 Gauss 全主元消元法 一、算法的简要描述 1.1Gauss 顺序消元法 Gauss 消元法在中学里已经学习过,其方法实质,就是运用初等变换,将线性方程组Ax b =转化为同解的上三角矩阵方程组 1Ux L b -= (1.1.1) 其中,U 为上三角矩阵,L 为下三角矩阵。然后对式(1.1.1)进行回代求解,即得方程组的解。手算的过程是非常清楚的,现在需回答的是计算机求解,如何实现上述计算过程。 设线性方程组为 1111221331121122223322 112233n n n n n n n nn n n a x a x a x a x b a x a x a x a x b a x a x a x a x b +++???+=??+++???+=?? ????????????? ?+++???+=? 写成矩阵形式为 111211121222222122 2m m m n n a a a x b a a a x b a a a x b ?????? ????????????=??????? ??????????? (1.1.2) 设线性方程组如上式所示,记(1)A A =,(1)b b =,与是增广矩阵具有形式 (1) (1)[][]A b A b =,此时方程组为(1)(1)A x b =。 第一次消元。设(1) 110a ≠, 为将第二个方程至第n 个方程的1x 系数(1)1i a 消成零,构造乘数 (1)1 1(1)11 i i a l a = (2,3,,i n =

相关主题