搜档网
当前位置:搜档网 › 归纳法发展史

归纳法发展史

归纳法发展史
归纳法发展史

归纳法的发展史

在通常的理解下,归纳推理的有效性问题指的是如何证明由已经验到的事例推出其断定范围超过这些事例的结论为合理的问题,这个问题也被称为休谟问题。他认为,关于事实的知识当以因果关系为基础,只有因果关系才能使我们超出感

觉和记忆的范围;对因果关系并不能先验地认识,只可能借助经验;要由经验得出超出经验的任何知识(包括因果关系的

知识)又必须假设因果关系。可见,要证明超出感觉经验得到关于事实的知识的合理性是不可能的。

休谟对于“归纳”这个推理的不信任。具体地说,就是,“我们不能用过去发生的事情去推理得到将来也会这么发生”。任何试图去证明他的想法是错的人都会不自觉的用到过去做事成功的经验,而我们要证明的正是这个,所以这个命

题目前在哲学界被认为是无法通过理性的推理来证明的。从哲学上说,休谟的结论宣告了自培根以来的英国经验论哲学的

终结,同时它又是这一哲学历史发展的必然结果。古典经验论哲学从培根的历史地发展到了休谟,休谟以他的怀疑注意结

论终结了这一哲学;同时,他的结论又是对经验哲学所依赖的根本方法——归纳法的合理性的严重挑战。但是,休谟的结

论对于归纳法的合理性仅仅是怀疑主义的,而并非是否定的:它并未否定归纳法的合理性,仅仅是对这一合理性表示了怀疑。休谟问题以严格论证的方式揭示了证明归纳推理有效性所面临的困难,有助于人们加深对归纳推理本质的认识,为归

纳逻辑的发展指示了方向,客观上提示了古典归纳逻辑向现代类型发展的方向。

培根倡导的归纳法在英国科学家赫舍尔那里有了新的发展。赫舍尔重视实验,认为一切关于自然规律的知识都来自实验。他注重探求现象间的因果关系,并归纳了因果关系的5个特征:①如果没有干扰或破坏, 则原因和结果间将结成

一定关系;②如果没有能造成同一结果的别种原因,则无因即无果;③原因增大或减小强度,导致结果

增大或减少强度;④如果没有妨碍因素介入,原因和结果的关系恒常不变;⑤原因解除,伴随结果消除。赫舍尔还根据上

述原则提出了求因果关系的9 条法则。其中,第2条法则是按共同的前件推出相似的结果,即由一组事实引起相似的结果,那一组事实中有一个相同点,可能是所寻之因;如果另外还有相同点,就可能是“伴随因” 。这是后来“密尔五法”中契合法的原型;第7条法则是“区分法” ,第8条法则叫“剩余法”,第9条法则叫“相伴变

化法”。它们分别是密尔五法中的差异法、剩余法和共变法的原型。

而在对待假说和猜想方面,培根的后继者做得更加卓著,也因此把归纳法逐步地引向精密化和规范化。赫舍尔在《自然哲学研究讲演集》中并不囿于培根的那一套归纳的逻辑模式,在对待假说问题上他与培根背道而驰,他相当注重假说的

作用,认为这是科学家们从实际的经验上升到系统的科学理论最重要的途径。之后,惠威尔也提出他的“假说演绎法”,

并且他还总结了科学发现方法的三个阶段,首先是“序曲”,再到“归纳”,最后就到了“结局”,这也就成为了上世纪

50 年代著名科学哲学家赖巴哈欣提出的“假说——演绎”的归纳模型的雏形。

惠威尔和培根一样注重收集经验材料,也是“序曲”部分,但是他在第二步的“归纳”阶段则主张应该有新观点,敢

于大胆提出有创见的假说和猜想,然后通过归纳的具体过程一步步发现一般原理,最后还要以演绎方法适当扩展,从而使

这些一般公理应用到更广范围。

和赫舍尔同时代的英国科学家休厄尔也为归纳逻辑的发展作出了贡献。休厄尔的归纳观念带有理性主义的特点,他提出了有别于培根和赫舍尔的归纳法则。其归纳逻辑著作主要有: 《新工具的更新》、《归纳科学史》。休厄尔认为,科学发现可以使用3种方法,即观察法、思想清晰法和归纳法。他提出的归纳法包括:①持续法,用以考察事物

量的等级;②分级法,用以确定事物质的差别;③自然分类法,用以考察事物间重要类似之点。他还提出了一种被称作

“适用于量的特殊的归纳法”。

穆勒是古典归纳逻辑的集大成者。他总结和发展了自培根以来的研究成果,建立了以寻求因果联系的四种方法为中心的归纳逻辑理论。他提出的归纳五法包括:1,契合法,考察几个出现某一被研究现象的不同场合,如果各个不同场合除一个条件相同外,其他条件都不同,那么,这个相同条件就是某被研究现象的原因。因这种方法是异中求同,所以又叫做求同法。2,差异法,比较某现象出现的场合和不出现的场合,如果这两个场合除一点不,同外,其他情况都相同,那么这个不同点就是这个现象的原因。因这种方法是同中求异,所以又称之为求异法。3,共变法,在其他条件不变的

情况下,如果某一现象发生变化另一现象也随之发生相应变化,那么,前一现象就是后一现象的原因。4,剩余法,如果某一复合现象已确定是由某种复合原因引起的,把其中已确认有因果联系的部分减去,那么,剩余部分也必有因果联系。

5,契合差异并用法,又叫做求同、求异并用法。内容是:如果某被考

究现象出现的各个场合(正事例组)只有一个共同的因素,而这个被考察现象不出现的各个场合(负事例组)都没有这个共同因素,那么,这个共同的因素就是某被考察现象的原因。穆勒五法,推动了归纳法在科学研究中的应用。在科学研究中,归纳法发挥着重要的作用,许多经验定律、经验公式的获得都是借助了归纳法的力量。不仅是古典归纳逻辑的最高成就之一,而且具有鲜明的方法率特征与不低估的方法论价值。穆勒所论述的五种方法是以消除非相干因素为基础,以演绎思想为补充的求因果归纳方法;它们可作为实验探索的方法论准则,在科学假说的构建与确证中起着重大作用。

德国古典哲学家康德对形式逻辑的发展也有贡献。康德关于判断分类的思想是有名的。在这一分类中,他第一次提出按关系把判断划分为直言判断(见直言命题)、假言判断(见假言命题)和选言判断(见选言命题)。此外, 康德在逻辑史上第一个把传统逻辑称作“形式逻辑” ,并认为传统逻辑研究的是思维形式方面的规则,它不涉及认识的内容。因此,康德批评了传统逻辑的不足,并提出一种所谓“先验逻辑” ,这是探讨理性认识能力的认识论逻辑。先验的范畴应用于经验何以可能?这是康德为解决休谟的难题,必须要证明知识的客观有效性而必须加以说明的问题。范畴要应用于感官对象的经验世界,必须有一个中介环节,这个环节既具有先天的性质(与范畴同类)又具有感性直观的性质(与显象同类),而时间正好具备这些条件,范畴应用经验的过程所凭借的中间环节就是想象力对时间作种种先验规定而形成的先验的图型。康德认为,我们的经验与对象的概念是如何形成一致性的?并不是上帝的预先设定,也不是这些经验使概念变为可能,而是概念使经验变为可能。概念不是来自感性直观,而是按一定形式创造对象,只有在这种情况下,先天综合判断才有可能。康德证明了先天综合判断的可能性,也证明了因果联系具有先天的普遍性、必然性,为自然科学、形而上学找到了存在的根据,克服了休谟的怀疑论。而可思而不可知的“物自体” ,也使康德终究未能克服休谟的不可知论。

赖欣巴哈被尊为逻辑实证主义运动的主要创始人之一。他以概率的意义理论对逻辑实证主义经验证实原则和意义理论作出了某些修,指出命题可以分为两类:一是已经证实的命题,是关于过去和当下的的事实命题。人们能够断定它们的真值,具有二值性。二是尚未证实的命题,如关于未来的事实命题。这类命题人们不能准确的断定真假,只能做出一些预测性的权衡,这种权衡是一系列从最不确定到不同程度的确定,以致非常确定。它们的精确计量是概率。所以他提出了两种意义理论:真值意义理论和概率意义理论。正赖欣巴哈认为,归纳问题的关键是科学知识是否具有必然的确定性的问题,如果坚持“科学知识无错论“,认为科学知识是必然的确定性的知识,那么归纳问题就不可能得到彻底解决,最终必然陷入笛卡尔、康德的先验主义或者休谟的怀疑主义;反之,如果抛弃科学知识无措论,坚持科学知识可错论,认为科学知识不过是一种不确定的概率或假设,那么上述”归纳问题“就不存在了。

凯恩斯是著名的经济学家,同时他又是归纳逻辑史上有开创性贡献的人物。一般认为,从直接知识通过演绎推理可以得到导出知识,因为二者之间有蕴含关系。凯恩斯进一步认为,直接知识与合理信念之间也存在着一定的逻辑关系——概率关系,由于这种关系,我们可以经盖然性推理由直接知识得到程度不同的合理信念。在他看来,归纳推理乃是盖然性推理最为重要的类型。

逻辑主义概率归纳逻辑起源于凯恩斯等人,不过其代表人物当推卡尔纳普,他于本世纪四、五十年代系统地

建立起这一理论。该理论把概率定义为假设h相对于证据e的认证度,记为 C (h, e)o C (h, e)仅仅表达了h

和e这两个命题之间的某种逻辑关系,而对h和e各自的真假毫无断定,因此对它的确定只需进行语义分析,而无需与事实相对照。该理论是建立在一个简单的语言系统之上的,该语言仅由个体常项、一元谓词和逻辑常项构成,而且其数目都是有限的;这样便可形成一些对所有个体的各种性质同时有所断定的语句即“状态描述”,而其他任一语句的概率都可根据状态描述的概率从逻辑上加以确定。问题的关键在于如何确定各个状态描述的概率,对此,卡尔纳普先后采取了不同的方法和态度。它开始将无差别原则直接用于状态描述,从而给各个状态描述以相等的概率;后又改为将无差别原则用于所谓的结构描述,最后又建立了一个“归纳方法连续统” ,允许用无数多种方法对状态描述赋予概率;至于一个人如何在这诸多的归纳方法中加以选择,则取决于他在实用上甚至在直觉上的理由。这样一来,卡尔纳普便在很大程度上放弃了原先的逻辑主义主张,在很大程度上转入主观主义的阵营。

卡尔纳普主张科学知识与直接经验之间的关系是科学假设从经验证据取得一定程度的确认。这一理论也就是逻辑概率。逻辑概率就是把概率作为一个逻辑概念来处理,区别于以相对频率为根据的统计概率。卡尔纳普认为,逻辑概率是一切不具有演绎必然性的归纳推理的基础,关于逻辑概率的理论就是归纳逻辑。他指出,逻辑概率不属于科学本身,而属于科学逻辑即科学方法论,它要用元语言表述。逻辑概率的特点是:其概率值取决于语句之间的逻辑关系,而与经验无关。逻辑概率的陈述是分析陈述,它确定语句之间定量的确认关系,类似于演绎逻辑确定语句之间的推论关系,从而归纳逻辑可给出假说的相对于给定证据的确认度。因此,他认为归纳逻辑与演绎逻辑、归纳推理与演绎推理之间没有根本性质的区别。

美国哲学家、逻辑学家皮尔士也是现代归纳逻辑的先驱。他把归纳法定义为检验假说的操作,它既没有发现的职能,也不能提供证明,只是提出辩护假说的标准。被检验的假说包括全称陈述、统计陈述或其他的概率陈述,因而归纳推理包括量的归纳。他认为这种归纳具有真正“自我校正”的性质,它能使我们所假定的估计逐渐接近真的数值。这就表明,皮尔士的归纳逻辑包含有统计推理的成分,他也因此而成为古典归纳逻辑向现代归纳逻辑过渡的关键性人物。

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

例谈不完全归纳法在初中数学中的运用

例谈不完全归纳法在初中数学中的运用 郧西县城关镇城北中学 徐华进 不完全归纳法是指从一个或几个(但不是全部)特殊情况作一般性的结论的归纳推理。这种归纳法是用一定数量数值为基础,进行分析探究,从中找出规律,并将此规律推广应用到一般情况下的计算和证明.在初中数学教材中,经常会用这种方法进行定义、公式、法则、定理的推导.学生在学习中,若能正确运用不完全归纳法,可提高分析、解决问题能力,发现、探索问题的能力。下面略举几例说明它的运用; 一. 在推导法则、定理中的运用 1.利用不完全归纳法推导分式乘方的运算法则 根据乘方的意义和分式乘法法则,可得: ①222)(b a bb aa b a == ②bbb aaa b a =3)(=33b a ③7 7 7)(b a bbbbbbb aaaaaaa b a ==…… 由此可推出,当n 为正整数时,= n b a )( b a n b a b a b a 个 ···??=n n b n a n b a b bb a aa =???? 个个····(b ≠0) 即分式乘方要把分子、分母分別乘方 2.利用不完全归纳法推导凸多边形内角和定律 将教材的推导过程整理成下表:

通过引导学生填写上表内容,分析概括,总结归纳出多边形内角和定理:n 边形内角和等于1800 ×(n-2). 说明:本定理的推导,还可以在多边形内(或一边上)取任一点,分别连接多边形的顶点,也可仿照上述方法,得到同样的结论,可让学有余力的学生在课外去探讨。 二.在解题中的应用 1 . 从计算结果中探究规律 例 计算:⑴211- = 3 ⑵221111-=33 ⑶222111111-=333 ⑷222211111111-=3333 请根据上述规律写出下式的结果: 2 1 222....222211......11111个个n n -=______________. 分析:①从⑴至⑵式的左边可以看出:被开方数中被减数1的个数是减数2的二倍,其结果中3的个数是减数2的个数。 解: 2 1 222....222211......11111个个n n -= 3 333个n ? 说明:解此类题目关键是正确分析归纳出题中的结果数字与算式中数字之间的特殊关系,再从特殊推 广到一般. 2.从图形的特征中探究规律 例1 下列各三角形图案是由若干个五角星组成的,每条边(包括两个顶点)有n (n>1)五角星,每个图案中五角星的总数为s.按此规律推断:s 与n 的关系. ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ …… ★ ★ ★ ★ n=2,s=3 n=3 s=6 n=4,s=9 图(1) 图(2) 图(3 分析方法一:由于每条边上的五角星数包括了两个顶点,若每边按n 个计算,则重算了三角形三个顶点上的三个。故有s=3n-3. 分析方法二:由图可知,每个图案上的五角星总数,随着各边上五角星的增多而增多,且前面一个图案中五角星总数总比其后面一个图案中五角星总数少3,因此可猜想:s=b n +κ,根据图(1)、图(2)中的条件就能求出k ,b 的值,再验证是否满足图(3)的条件。 解:设s=b n +κ, 把n=2,s=3;n=3,s=6分别代入上式,得 ?? ?=+=+6 33 2b k b k 解得? ? ?=-=33 k b ∴s=3n-3 经检验:n=4,s=9也满足s=3n-3 所求s 与n 的关系为s=3n-3

数学归纳法

《数学归纳法》说课稿 各位专家、评委:大家好! 我是陇西一中的数学教师王耀文,很高兴能有机会参加这次说课活动. 我要讲的课题是《数学归纳法》(第一课时),用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本)数学第三册(选修Ⅱ),本课是高中数学第三册第二章第一节. 下面我就从教材分析、教学目标的确定、教学方法的选择、学法的指导、教学过程的设计和板书设计六个方面进行说明. 1教材分析 1.1教材的地位和作用 数学中许多与正整数有关的命题,用不完全归纳法证明是不可靠的,用完全归纳法证明又是不可能的,为解决这一“有限”与“无限”的矛盾,数学归纳法应运而生.所以数学归纳法是一种十分严谨而又重要的方法,也是历年高考中比较常考的证明方法. 它可以证明某些与正整数有关且具有递推性的数学命题,也可以通过“有限”来解决某些“无限”问题. 1.2重点、难点 重点是如何在较短的时间内,使学生理解“归纳法”和“数学归纳法”的实质,接受数学归纳法的证题思路. 难点有两个,一是学生初步对数学归纳法原理的理解;二是数学归纳法的两个步骤及其作用. 2教材目标的确定

2.1知识目标使学生了解数学归纳法的发现过程,理解数学归纳法原理;理解数学归纳法的操作步骤;能用数学归纳法证明一些简单的数学命题并能正确书写证明步骤. 2.2能力目标培养学生观察、猜想、归纳、发现问题的能力;培养学生数学思维能力、推理论证能力以及分析问题和解决问题的能力. 2.3情感目标使学生在发现数学归纳法的过程中,体验数学研究的过程和发现的乐趣,激发学生学习数学的兴趣,使学生经历数学思维过程,获得成功的体验. 3教学方法的选择 本节课我主要采用“…发现?的过程教学”和“启发探究式”的教学方法,根据教材特点和学生实际在教学中体现两点: ⑴由学生的特点确定启发探究和感性体验的学习方法. 由于本节课安排在高三阶段,且为数学基础较好的理科学生的选修内容,考虑到学生的接受能力比较强这一重要因素,在教学中我通过创设情境,启发引导学生在观察、分析、归纳的基础上,自主探索,发现数学结论和规律,掌握数学方法,突出学生的主体地位. ⑵由教材特点确定以引导发现为教学主线. 根据本节课的特点,教学重点应该是方法的应用.但是我认为虽然数学归纳法的操作步骤简单、明确,教师却不能把教学过程简单的当作方法的灌输,技能的操练.对方法作简单的灌输,学生必将半信半疑,兴趣不大.为此,我在教学中通过实例给学生创造条件,让学生直观感受到数学归纳法的实质,再在教师的引导下发现理解数学归纳法,揭示数学归纳法的实质. 对于数学归纳法的应用,只要求学生在理解原理的基础上掌握应用原理证题的步骤,学会证明一些简单的问题. 4学法的指导

高中数学不完全归纳法证明题

數學歸納法的迷思 數學歸納法可說是高中數學裡最令同學納悶的一部份了,數學歸納法學的不錯的同學,大概都能謹遵老師交待要寫出以下2步驟: 1、 步驟1:證明n=1時,敘述成立。(不一定從1開始) 2、 步驟2:假設n=k 時,敘述成立;證明n=k+1時,敘述也成立 由數學歸納法得證,n 為任意自然數時都成立。 完整寫出以上2步驟,並且遇到數學歸納法的證明題時,操作以上步驟,算是達到了學習數學歸納法的最基本要求。只是能操作數學歸納法的基本步驟,不一定代表了解數學歸納法的原理,因此容易造成誤用,而不知道錯在何處,或者是雖然做出了正確的証明,但終究對於這樣的証明方法存疑,先說存疑之處:「只知道n=k 和n=k+1成立,仍不知道後面幾項是否成立」、「用假設來證明很沒說服力,萬一假設不成立呢?」、「怎麼可以假設n=k 成立呢?」這是學習數學歸納法常會出現的疑問,所以再複習一下數學歸納法的基本原理,皮亞諾(G.Peano)在西元1889年提出的自然數的序數理論,包含5條公理: (1)1是一個自然數 (2)每一個自然數a 都有一個後繼元素 (3)1沒有生成元素 (4)如果a 與b 的後繼元素相等,則a=b (5)若一個由自然數所組成的集合S 包含1,並且當S 包含某一自然數a 時,它一定也含有a 的後繼元素,則S 就包含有全體自然數。 數學歸納法原理就是皮亞諾的第5條公理,無需證明。數學歸納法實際上是一種演繹方法,由於我們無法證明所有自然數均滿足於某一條件,所以我們用邏輯遞推的方式,先證明有一個起始值合於條件(步驟1),接下來證明所滿足的條件是可以遞推的,若n=k 成立?n=k+1成立(步驟2)。就以老師上課常講的以骨牌為例,假設我們有無限多顆骨牌,因為數量是無限多,所以我們無法實際操作,看到所有骨牌倒下,但是我們可以確認的兩件事就是第一顆骨牌會倒,以及若骨牌倒了,後一顆骨牌也必倒,這兩件事確定了,我們不必眼見所有骨牌倒下,也知道所有骨牌都會倒,這就是數學歸納法的原理。 同學在學習數學歸納法常見的錯誤上大致有以下二種: (一)忽略起始值與遞推過程的互相配合,以證明n n 22<,N n ∈為例: 1、 當1=n 時,1221<,成立 2、 設k n =時k k 22<成立;當1+=k n 時 1 2122)12(22)1(2222221--=--->++-?=+-+k k k k k k k k k k 01)2(>--=k k ?122)1(+<+k k ,由數學歸納法得証。 以上證明犯了很明顯的錯誤,就是01)2(>--=k k 的條件必須3≥k ,所以用k=1當起始值就與證明過程沒有配合,仔細再檢視一遍,4,3,2=n ,均不符合,

数学:2.3《数学归纳法》教案(新人教A版选修2-2) (2)

数学:2.3《数学归纳法》教案(新人教A 版选修2-2) 第一课时 2.3 数学归纳法(一) 教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明一些简单的数学命题. 教学难点:数学归纳法中递推思想的理解. 教学过程: 一、复习准备: 1. 问题1: 在数列{}n a 中,*111,,()1n n n a a a n N a +== ∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式. (过程:212a =,313a =,41 4 a =,由此得到:*1,n a n N n =∈) 2. 问题2:2()41f n n n =++,当n ∈N 时,()f n 是否都为质数? 过程:(0)f =41,(1)f =43,(2)f =47,(3)f =53,(4)f =61,(5)f =71,(6)f =83, (7)f =97,(8)f =113,(9)f =131,(10)f =151,… (39)f =1 601.但是(40)f =1 681=412是合数 3. 问题3:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒. 二、讲授新课: 1. 教学数学归纳法概念: ① 给出定义:归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般. 不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫不完全归纳法. 完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳

归纳法基本步骤

归纳法基本步骤 (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤nn0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 (1)确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。 (2)数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。 (3)证明数列前n项和与通项公式的成立。 (4)证明和自然数有关的不等式。 数学归纳法的变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

本文主要对数学归纳法的教学进行较为完整的研究

本文主要对数学归纳法的教学进行较为完整的研究。 数学归纳法是一种证明与正整数有关的命题的极为有效的科学方法。了解数学归纳法的发现和发展的历史,明确数学归纳法与归纳法的区别与联系,是教师教授和学生掌握数学归纳法的基础。对数学归纳法逻辑基础即原理的准确理解,是教师进行数学归纳法教学的前提,也是学生能否掌握这种证明方法的关键。 数学归纳法的教学首先是一种程序性教学。为了让学生能够正确应用数学归纳法,还要进行形式化教学。在形式化现象下的本质规律的教学,即内涵教学,则是数学归纳法教学的内在精髓。数学归纳法通过有限的程序,完成了验证无限的结论,它的灵魂就是递归思想。 归纳法是发现问题的一种有效方法。在数学归纳法的教学过程中,恰到好处地进行数学归纳法的教学,既可帮助学生区分这两种方法,又可引领学生了解发现问题的途径,可谓一举两得。培养学生“观察一归纳一猜想一证明”的链条式思维模式,开发学生的创造性思维能力,将会对未来数学的发展起到推波助澜的作用。数学归纳法的应用是数学归纳法教学中很重要的一个环节。数学归纳法可以用来证明与正整数有关的恒等式、不等式、整除性问题和几何问题等。 本文针对数学归纳法应用过程中,学生常见错误出现的心理因素进行了问卷调查。在应用数学归纳法证题时,导致学生犯错误的主要原因是对数学归纳法的原理没有真正理解;另一个原因是数学归纳法应用中的思维定势。要克服学生使用数学归纳法的心理障碍,一个有效的方法就是要了解数学归纳法应用的局限性。能运用非数学归纳法证明另外一些与正整数有关的命题,也是学生学习和使用数学归纳法时所要克服的心理依赖和必经过程。 1. 2数学归纳法的研究现状 对“数学归纳法”的研究国内己有不少论文,这些论文在某些具体方面作出了详尽的论述。例如,赵龙山在《有关数学归纳法教学中的逻辑问题》一文中,对数学归纳法的逻辑基础问题进行了论述和研究,形象地引入“递推机”,从而加深了对数学归纳法本质的理解,有助于学生更好地、合逻辑地运用数学归纳法证题,也有助于学生克服对于数学归纳法的模糊甚至是错误认识。文中还指出了数学归纳法与归纳法、完全归纳法是完全不同的证题方法,只是没有对一三者的内在关系进行系统详细地阐述。罗增儒在《关于数学归纳法的逻辑基础》一文中指出:历史上数学归纳法曾被称为“逐次归纳法”、“完全归纳法”,后来被称为“数学归纳法”,既区别于逻辑上的“完全归纳法”,又比“逐次归纳法”更能表明它论证的可靠性。在此文中还引述了一些学者的观点,就数学归纳法的本质进行了表述。 刘世泽在《数学归纳法的另外两种形式》一文中,介绍了除数学归纳法第I型和第II 型以外的另两种形式:跳跃归纳法和二元有限归纳法;朱孝建在《数学归纳法的构造》一文中,给出了数学归纳法的一个一般性定理,由此可推导出数学归纳法的各种常见形式,还可根据具体问题的需要构造出其它数学归纳法的形式,进一步开拓了数学归纳法的应用范围,从而对数学归纳法的本质有了一个较为全面深入地了解;李淑文、孙德菊在《累积数学归纳法》一文中,比较了数学归纳法的第一种形式和第二种形式,并就第二种形式,即累积数学归纳法作了举例说明。以上三篇论文都是针对数学归纳法的形式或构造的论述。 邵光华所作的论文《对中学“数学归纳法”教材教法的几点思考》,主要针对教材教法中对数学归纳法内容的安排和教学,提出了值得思考的五个具体问题,并简单地说明了数学归纳法和归纳法的区别。文中提到了不完全归纳法,但未作深入论述。唐以荣在《中学数学综合题解题规律讲义》中指出:“早在五十年代的苏联的教学法书籍中,己明确指出数学归纳法是演绎法的特殊形式;八十年代的中国中学数学课本和教学法书籍却没有做到这一点不能不令人遗憾。”①即使是现在的中学教材也还是没有改进这些。 齐智华在《“数学猜测”的教学构想与实践》一文中,介绍了“数学猜测”的教学纲目,

高中数学归纳法证明题

高中数学归纳法证明题 高中数学归纳法证明题 1/2+2/2^2+3/2^3+......+n/2^n=2-n+2/2^n. 1/2+2/2^2+3/2^3+......+n/2^n=2-(n+2)/2^n. 1、当n=1时候, 左边=1/2; 右边=2-3/2=1/2 左边=右边,成立。 2、设n=k时候,有: 1/2+2/2^2+3/2^3+......+k/2^k=2-(k+2)/2^k成立, 则当n=k+1时候:有: 1/2+2/2^2+3/2^3+.....+k/2^k+(k+1)/2^(k+1) =2-(k+2)/2^k+(k+1)/2^(k+1) =2-[2(k+2)-(k+1)]/2^(k+1) =2-(k+3)/2^(k+1) =2-[(k+1)+2]/2^(k+1) 我觉得不是所有的猜想都非要用数学归纳法. 比如a1=2,a(n+1)/an=2,这显然是个等比数列 如果我直接猜想an=2^n,代入检验正确,而且对所有的n都成立,这时候干嘛还用数学归纳法啊.可是考试如果直接这样猜想是不得分的,必须要用数学归纳法证明.

结果带入递推公式验证是对n属于正整数成立. 用数学归纳法,无论n=1,还是n=k的假设,n=k+1都需要带入递推公式验证,不是多此一举吗.我又不是一个一个验证,是对n这个变量 进行验证,已经对n属于正整数成立了.怎么说就是错误的. 这说明你一眼能看出答案,是个本领。 然而,考试是要有过程的,这个本领属于你自己,不属于其他人,比如你是股票牛人,直接看出哪支会涨哪支会跌,但是不说出为什么,恐怕也不会令人信服。 比如你的问题,你猜想之后,代入检验,验证成功说明假设正确,这是个极端错误的数学问题,请记住:不是验证了一组答案通过, 就说明答案是唯一的!比如x+y=2.我们都知道这是由无数组解的方程。但是我猜想x=y=1,验证成功,于是得到答案,你觉得对吗?所 以你的证明方法是严格错误的! 说说你的这道题,最简单的一道数列题,当然可以一下看出答案,而且你的答案是正确的。但是证明起来就不是那么容易了,答案不 是看出来的,是算出来的。你的解法就是告诉大家,所有的答案都 是看出来,然后代入证明的。假设看不出来怎么办?那就无所适从, 永远也解不出来了!这就是你的做法带来的.答案,你想想呢?你的这 种做法有什么值得推广的? OK,了解! 数学归纳法使被证明了的,证明数学猜想的严密方法,这是毋庸置疑的。在n=1时成立;假设n=k成立,则n=k+1成立。这两个结论 确保了n属于N时成立,这是严密的。 你的例题太简单,直接用等比数列的定义就可以得到答案(首项 和公比均已知),不能说明你的证明方法有误。我的本意是:任何一 种证明方法,其本身是需要严格证明的,数学归纳法是经过严格证 明的;而你的证明方法:猜想带入条件,满足条件即得到猜想正确的 结论。未经证明,(即使它很严密,我说即使)它不被别人认可。事 实上,你的证明方法(猜想带入所有条件均成立)只能得到“必要”

7-4数学归纳法(理)

1.(2010·广东中山模拟)用数学归纳法证明1+12+13+…+12n -1 1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13 <2 C .1+12+13 <3 D .1+12+13+14 <3 [答案] B [解析] ∵n ∈N *,n >1,∴n 取的第一个数为2,左端分母最大 的项为122-1=13 ,故选B. 2.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立. 2°假设n =k (k ∈N *)时不等式成立,即k 2+k

[解析]上述证明过程中,在由n=k变化到n=k+1时,不等式的证明使用的是放缩法而没有使用归纳假设.故选D. 3.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,则可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得() A.n=6时该命题不成立B.n=6时该命题成立 C.n=4时该命题不成立D.n=4时该命题成立 [答案] C [解析]∵“若n=k(k∈N*)时命题成立,则当n=k+1时,该命题也成立”,故若n=4时命题成立,则n=5时命题也应成立,现已知n=5时,命题不成立,故n=4时,命题也不成立.[点评]可用逆否法判断. 4.在应用数学归纳法证明凸n边形的对角线为1 2n(n-3)条时,第一步检验第一个值n0等于() A.1B.2C.3D.4 [答案] C [解析]因为凸n边形的边数最少为3,故验证的第一个值n0=3. 5.已知S k= 1 k+1 + 1 k+2 + 1 k+3 +…+ 1 2k(k=1,2,3,…),则S k+1 等于() A.S k+ 1 2(k+1) B.S k+ 1 2k+2 - 1 k+1 C.S k+ 1 2k+1 - 1 2k+2 D.S k+ 1 2k+1 + 1 2k+2

数学归纳法证明及其使用技巧

步骤 第一数学归纳法 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但 也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 第二数学归纳法 对于某个与自然数有关的命题P(n), (1)验证n=n0,n=n1时P(n)成立; (2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 倒推归纳法 又名反向归纳法 (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以就是一 个无穷数列中的数,如对于算术几何不等式的证明,可以就是2^k,k≥1); (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立; 螺旋式归纳法 对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立; (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1) 成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 1确定一个表达式在所有自然数范围内就是成立的或者用于确定一个其她的形式在一个无穷序列就是成立的。 2数理逻辑与计算机科学广义的形式的观点指出能被求出值的表达式就是等价表达式。

3证明数列前n项与与通项公式的成立。 4证明与自然数有关的不等式。 变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。 从0以外的数字开始 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改: 第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n≥3时,n^2>2n”这一类命题。 针对偶数或奇数 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法 数学归纳法并不就是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,、、、,m”这样的命题,如果对一般的n比较复杂,而n=m 比较容易验证,并且我们可以实现从k到k-1的递推,k=1,、、、,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,、、、,m,原命题均成立。如果命题P(n)在n=1,2,3,、、、、、、,t时成立,并且对于任意自然数k,由 P(k),P(k+1),P(k+2),、、、、、、,P(k+t-1)成立,其中t就是一个常量,那么P(n)对于一切自然数都成立、 跳跃归纳法

数学归纳法原理:【第二归纳法】【跳跃归纳法】【反向归纳法】

数学归纳法原理(六种):【第二归纳法】【跳跃归纳法】【反向归纳法】 一行骨牌,如果都充分地靠近在一起(即留有适当间隔),那么只要推倒第一个,这一行骨牌都会倒塌;竖立的梯子,已知第一级属于可到达的范围,并且任何一级都能到达次一级,那么我们就可以确信能到达梯子的任何一级;一串鞭炮一经点燃,就会炸个不停,直到炸完为止;……,日常生活中这样的事例还多着呢! 数学归纳法原理设P(n)是与自然数n有关的命题.若 (I)命题P(1)成立; (Ⅱ)对所有的自然数k,若P(k)成立,推得P(k+1)也成立. 由(I)、(Ⅱ)可知命题P(n)对一切自然数n成立. 我们将在“最小数原理”一章中介绍它的证明, 运用数学归纳法原理证题的方法,是中学数学中的一个重要的方法,它是一种递推的方法,它与归纳法有着本质的不同.由一系列有限的特殊事例得出一般结论的推理方法,通常叫做归纳法,用归纳法可以帮助我们从具体事例中发现一般规律,但是,仅根据一系列有限的特殊事例得出的一般结论的真假性还不能肯定,这就需要采用数学归纳法证明它的正确性. 一个与自然数n有关的命题P(n),常常可以用数学归纳法予以证明,证明的步骤为:(I)验证当n取第1个值no时,命题P(no)成立,这一步称为初始验证步. (Ⅱ)假设当n=k(k∈N,后≥no)时命题P(k)成立,由此推得命题P(k+1)成立.这一步称为归纳论证步. (Ⅲ)下结论,根据(I)、(Ⅱ)或由数学归纳法原理断定,对任何自然数(n≥no)命题 P(n)成立.这一步称为归纳断言步, 为了运用好数学归纳法原理,下面从有关注意事项与技巧及运用递推思想解题等几个方面作点介绍. 运用数学归纳法证题时应注意的事项与技巧三个步骤缺一不可 第一步是递推的基础,第二步是递推的依据,第三步是递推的过程与结论.三步缺一不可.数学归纳法的其他几种形式还有:第二数学归纳法;跳跃数学归纳法;倒推数学归纳法(反向归纳法);分段数学归纳法二元有限数学归纳法;双向数学归纳法;跷跷板数学归纳法;同步数学归纳法等。 1.5归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n=1正确;若假设此命题对n-1正确,就能推出命题对n也正确,则命题对所有自然数都正确.通俗的说法:命题对n=1正确,因而命题对n=2也正确,然后命题对n=3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而

利用数学归纳法解题举例

利用数学归纳法解题举例 归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。 数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n )时成立,这是递推的基础;第二步是假设在n=k时命题成立, 再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或 n≥n 且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳0 的,属于完全归纳。 运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。 一、运用数学归纳法证明整除性问题 例1.当n∈N,求证:11n+1+122n-1能被133整除。 证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。命题成立。 (2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,

数学归纳法+直接证明与间接证明

数学归纳法+直接证明与间接证明 题型一:数学归纳法基础 1、已知n 为正偶数,用数学归纳法证明111111112( ) 2 3 4 1 2 4 2n n n n -+-++ =+ ++ -++ 时,若已假设2(≥=k k n 为偶数) 时命题为真,则还需要用归纳假设再证 () A .1+=k n 时等式成立 B .2+= k n 时等式成立 C .2 2+=k n 时等式成立 D .)2(2+=k n 时等式成立 2、已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数) 时命题为真,,则还需证明( ) A.n=k+1时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立 3、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+= k n 时命题也成立. 现已知当7 =n 时该命题不成立,那么可推得() A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立 D .当n=8时该命题成立 4、利用数学归纳法证明 “*),12(312)()2)(1(N n n n n n n n ∈-???????=+???++ ”时,从“k n =”变到 “1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B 1 12++k k C 1 ) 22)(12(+++k k k D 1 32++k k 5、用数学归纳法证明),1(1112 2 * +∈≠--= ++++N n a a a a a a n n ,在验证 n=1时, 左边计算所得的式子是( ) A. 1 B.a +1 C.21a a ++ D. 421a a a +++ 典例分析

数学归纳法

“数学归纳法”教学设计 一、教材与内容解析 (一)内容与内容解析 数学归纳法是人教B版普通高级中学教科书数学选修2-2第二章第三节的内容。本节课的主要内容是介绍数学归纳法的原理。 由于正整数具有无穷无尽的特点,有些关于正整数n的命题,难以对n进行一一的验证,从而需要寻求一种新的推理方法,以便能通过有限的推理来证明无限的结论,这是数学归纳法产生的根源。 数学归纳法是一种证明与正整数n有关命题的重要方法。它的独到之处便是运用有限个步骤就能证明无限多个对象,而实现这一目的的工具就是递推思想。 数学归纳法的两个步骤中,第一步是证明的奠基,第二步是递推。递推是实现从有限到无限飞跃的关键,没有它我们就只能停留在对有限情况的把握上。 数学归纳法是以归纳为基础、以演绎为手段证明结论的一种方法,是归纳法与演绎法的完善结合.这也许是数学归纳法不是归纳法但又叫“数学归纳法”的原因. (二)地位与作用解析 从应用上看,数学归纳法是解决与正整数有关命题的一种推理方法,它将无限多个归纳过程转化为一个有限步骤的演绎过程,是证明与正整数有关问题的重要工具。数学归纳法本质是归纳递推,但它与归纳法有着一定程度的关联。在数学结论的发现过程中,不完全归纳法发现结论,最终利用数学归纳法证明解决问题。 从思想方法上看,数学归纳法蕴含了无限转化为有限的思想,体现了奠基、递推、总结一体的整体思想。 从美学上看,数学归纳法展现了无限与有限的统一美;揭示了有限推证无限,把无限“沦为”有限的思维美;数学归纳法的发展历程展现了数学文化美。 二、教学问题诊断 1.学生已有的经验和基础:(1)学生已有数学归纳法的萌芽和相关经验.虽然学生没有正式学过数学归纳法,但小学的数数、找一列数的规律、高中等差数列和等比数列通项公式的推导过程等等,都蕴含着数学归纳法的萌芽和基础.(2)学生已经有用具有代表性的元素来代替任意的、无穷多的元素的经验.如在线面垂直的定义和证明中,用“平面内

完全归纳法

完全归纳法 完全归纳推理,又称“完全归纳法”,它是以某类中每一对象(或子类)都具有或不具有某一属性为前提,推出以该类对象全部具有或不具有该属性为结论的归纳推理。 举例 ①太平洋已经被污染;大西洋已经被污染;印度洋已经被污染;北冰洋已经被污染;(太平洋、大西洋、印度洋、北冰洋是地球上的全部大洋)所以,地球上的所有大洋都已被污染。 ②张一不是有出息的;张二不是有出息的;张三不是有出息的;(张一、张二、张三是张老汉仅有的三个孩子)所以,张老汉的孩子都不是有出息的。 上述两例都是完全归纳推理。例①对地球上的所有大洋都逐一进行考察,发现它们都被污染了,由此推出地球上所有大洋都具有“已被污染”这一属性。例②对张老汉仅有的三个孩子都逐一进行考察,发现他们都不是有出息的,由此推出张老汉的孩子都不具有“有出息的”这一属性。 逻辑形式 完全归纳推理的逻辑形式可表示如下: S1是(或不是)P;S2是(或不是)P;S3是(或不是)P;……Sn是(或不是)P。(S1,S2,S3,……Sn是S类的全部对象)所以,所有的S都是(或不是)P. 上式中的S1、S2、S3、……Sn ,可以表示S类的个体对象,也可以表示S类的子类。前者,如例①和例②;后者,如下面的例③。③黄种人不是长生不老的,白种人不是长生不老的,黑种人不是长生不老的,棕种人不是长生不老的,(黄种人、白种人、黑种人、棕种人是地球上的全部人种)所以,地球上的所有人种都不是长生不老的。 完全归纳推理特点 完全归纳推理的前提无一遗漏地考察了一类事物的全部对象,断定了该类中每一对象都具有(或不具有)某种属性,结论断定的是整个这类事物具有(或不具有)该属性。也就是说,前提所断定的知识范围和结论所断定的知识范围完全相同。因此,前提与结论之间的联系是必然性的,只要前提真实,形式有效,结论必然真实。完全归纳推理是一种前提蕴涵结论的必然性推理。

数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k+1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k 这一步,当n=k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k+1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n},使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+n an =n(n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来{a n },然后再证明一般性. 解:将n=1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a1+2a 2+3a3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k+1)(k +2) 那么当n=k +1时, a1+2a 2+3a 3+…+ka k +(k+1)ak +1 = k(k +1)(k +2)+ (k +1)[3(k+1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n=k +1时,也存在一个等差数列an =3n +3使a 1+2a 2+3a 3+…+n an=n (n +1)(n+2)成立. 综合上述,可知存在一个等差数列an =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n=n(n+1)(n +2)都成立.

相关主题