搜档网
当前位置:搜档网 › 微分方程》教学大纲

微分方程》教学大纲

微分方程》教学大纲
微分方程》教学大纲

《微分方程》教学大纲

前言

本课程是为适应学院培养“宽口径”、“厚基础”、“重能力”的金融工程专门人才,为金融系金融工程专业学生而开设的一门专业基础课程。

本课程修读对象为金融系金融工程专业学生。该课程旨在使学生了解和掌握微分方程的基本思想与应用微分方程研究金融问题的能力。

本课程以经济数学、金融学为基础,借鉴国内外科研成果,考虑到非数学专业的特点,注重微分方程在金融中的应用,重点内容是金融工程中常用的微分方程。

本课程的先导课程是微积分、线性代数等基础课程。

《随机过程》教学大纲目录

教学内容 (1)

第一章一阶常微分方程 (1)

第二章高阶微分方程 (1)

第三章常微分方程组 (2)

第四章差分方程 (2)

第五章偏微分方程 (3)

重点章节 (重要问题) (4)

参考书目 (5)

课时分配 (6)

教学内容

第一章一阶常微分方程

教学要求:本章要求了解微分方程的基本概念、掌握一阶微分方程的

基本类型、掌握各类一阶微分方程的求解方法、理解一阶微分方程在经济

中的应用。

内容结构:

第一节微分方程的基本概念

一、微分方程的定义

二、微分方程的阶、解、初始条件、特解

第二节一阶微分方程的求解方法

一、可分离变量型的一阶微分方程

二、齐次微分方程

三、线性微分方程,常数变易法

四、贝努里方程

五、全微分方程

六、经济增长理论中的微分方程模型

第三节解的存在性与唯一性定理

一、初始问题解的存在性与唯一性定理

二、解的延伸

本章重点(重要问题):

掌握各类一阶微分方程的解法。

第二章高阶微分方程

教学要求:本章要求掌握二阶微分方程的基本形式、二阶微分方程的解法、理解高阶微分方程的求解思想

内容结构:

第一节二阶微分方程的一般概念

一、二阶微分方程的基本类型

二、二阶微分方程解的存在性

第二节二阶微分方程的求解方法

一、可降阶的二阶微分方程的解

二、二阶线性微分方程的解

本章重点(重要问题):

二阶线性微分方程的求解方法。

第三章常微分方程组

教学要求:本章重点掌握线性常微分方程组的一般概念、掌握线性常微分方程组的求解方法、理解常微分方程组解的理论。

内容结构:

第一节常微分方程组的基本概念

一、常微分方程组的基本形式

二、常微分方程组解的问题研究

第二节线性常微分方程组

一、线性常微分方程组解的理论

二、齐次常微分方程组的解

三、非齐次常微分方程组的解

本章重点(重要问题):

线性常微分方程组的求解问题。

第四章差分方程

教学要求:要求学生重点掌握差分方程的基本概念、了解差分方程在金融工程中的应用、掌握差分方程的基本解法。

内容结构:

第一节差分方程的基本概念

一、差分方程的定义

二、差分方程解的问题研究

第二节一阶差分方程

一、一阶差分方程的类型

二、各类一阶差分方程的求解方法

三、一阶差分方程在金融工程中的应用

第三节高阶差分方程

一、高阶差分方程的一般概念、

二、高阶差分方程的求解方法

本章重点(重要问题):

掌握一阶差分方程的求解方法及其在金融工程中的应用。

第五章偏微分方程

内容结构:

第一节偏微分方程的一般概念

一、引论

二、拟线性一阶偏微分方程

第二节全积分、通积分和奇积分

一、曲面族的包络

二、全积分、通积分和奇积分

三、求全积分的例子

本章重点(重要问题):

拟线性偏微分方程

重点章节

第一章:第1、2节;

第二章:第2节;

第三章:第2节;

第四章:第2节;

第五章:第1节;

参考书目

⒈复旦大学数学系主编,1998:《常微分方程》,第3版,上海:上海科学技术

出版社

⒉胡祖炽译,1964,《偏常微分方程的有限差分方法》,第一版,上海:上海科

学技术出版社

⒊付鹂等,2000:《数学实验》,第1版,北京:科学出版社

⒋张晓峒,2000:《计量经济分析》,第1版,北京:经济科学出版社

⒌顾岚主译,1997,《时间序列分析预测与控制》,北京,中国统计出版社

⒍唐.埃思里奇著,朱刚译,1998,《应用经济学研究方法论》,第一版,北京:

经济科学出版社

7. 罗伯特S.平狄克著,钱小军译,1999:《计量经济模型与经济预测》,第4

版,北京:机械工业出版社

课时分配

说明:本课程为学期课,按每学期16教学周、 2 课时/周计算,共 32 课时。其中:讲授 22 课时,占 69%,实践环节课时,占31%。

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

常微分方程总结

(1) 概念 微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。 微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。如: 一阶:2dy x dx = 二阶:220.4d s dt =- 三阶:32243x y x y xy x ''''''+-= 四阶:()4410125sin 2y y y y y x ''''''-+-+= 一般n 阶微分方程的形式:()() ,,,,0n F x y y y '=。这里的()n y 是必须出现。 (2)微分方程的解 设函数()y x ?=在区间I 上有n 阶连续导数,如果在区间I 上, ()()()(),,0n F x x x x ?????'≡???? 则()y x ?=称为微分方程()(),,,,0n F x y y y '=的解。 注:一个函数有n 阶连续导数→该函数的n 阶导函数也是连续的。 函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。 导数→导函数简称导数,导数表示原函数在该点的斜率大小。 导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。 函数连续定义:设函数()y f x =在点0x 的某一邻域内有定义,如果()()0 0lim x x f x f x →=则称函数()f x 在点0x 连续。 左连续:()() ()000lim x x f x f x f x --→== 左极限存在且等于该点的函数值。 右连续:()() ()000lim x x f x f x f x ++→== 右极限存在且等于该点的函数值。 在区间上每一个点都连续的函数,叫做函数在该区间上连续。如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。 函数在0x 点连续?()()()()000 0lim lim lim x x x x x x f x f x f x f x -+→→→=== 1、()f x 在点0x 有定义 2、()0 lim x x f x →极限存在

常微分方程教学大纲

《常微分方程》课程教学大纲 课程代码: 090131009 课程英文名称:Ordinary Differential Equations 课程总学时:48 讲课:48 实验:0 上机:0 适用专业:信息与计算科学 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 本课程是信息与计算科学专业的一门专业基础课,通过本课程的学习,可以使学生获得关于常微分方程的基本理论知识,掌握普通的线性微分方程的求解办法,为对非线性微分方程的求解打下一定的基础,同时,使学生能够简单地利用数学手段去研究自然现象和社会现象,或解决工程技术问题, 是进一步学习偏微分方程、微分几何、泛函分析等后继课程的基础。 通过本课程的学习,学生将达到以下要求: 1. 掌握一阶线性微分方程的初等解法及理论、高阶线性微分方程的解法及理论,线性微分方程组理论,着重培养学生解决问题的基本技能。 2. 熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:要求学生掌握一阶微分方程的初等解法;一阶微分方程解的存在唯一性定理、解对初值的连续性和可微性定理及解的延拓;高阶微分方程理论、常系数线性微分方程的解法、以及高阶微分方程的降阶和幂级数解法;求矩阵指数,求解常系数线性微分方程组;非线性微分方程的稳定性、V函数方法。 2.基本理论和方法:掌握一阶和高阶线性微分方程以及方程组的求解方法,理解解的存在唯一性定理及解的延拓、解对初值的连续依赖定理等理论,并能应用到具体的证明题中。了解非线性微分方程的基本理论,会对稳定性等做出讨论。培养学生逻辑推理能力和抽象思维能力;对微分方程的建模、求解的分析能力;利用微分方程理论解决实际问题的能力。 3.基本技能:使学生获得求解一阶和高阶微分方程、线性微分方程组的运算技能。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业基础课,在教学中采用多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行。本课程主要的先修课程有数学分析3、高等代数2。 (五)对习题课、实践环节的要求 1. 至少两章安排一次习题课,总学时在6学时左右。 2. 习题课的教学内容要配合主讲课程的教学进度,由老师和同学在课堂上通过讲、练结合的方式进行。主讲教师通过批改学生的作业,将作业情况反馈给学生,要补充有一定难度和综合度的练习题,以拓宽同学们的思路。

常微分方程简明教程-王玉文等编-习题解答-(1)

1.4习题答案 1. (1) 12150, (2) 2.52. 2(1) 0,200P P = =, (2) 0200P <<, (3) 200P >. 3.(1) 0,50,200P P P = = =, (2) 50200P <<, (3) 050,200P P << >. 4.解: 因为当 0dy dt =时, ()y t 将保持不变; 当0dy dt >时, ()y t 将增加; 当0dy dt <时, ()y t 将减少. 由3220dy y y y dt =--知, (1) 当3 2 200y y y --=, 即0,4,5y y y = =-=时, ()y t 将保持不变. (2) 当3 2 200y y y -->, 即40y -<< 或5y > 时, ()y t 将增加. (3) 当3 2 200y y y --<, 即4y <- 或05y << 时, ()y t 将减少. 5. 7071. 6.解: (1) 设 ()N t 为在时刻t 的放射性同位素质量. 则模型为dN kN dt =-, 0k >为比例系数, 方程的解为 ()kt N t ce -=, 由0t = 时, (0)50N =, 得(0)50N c ==,于是 ()50kt N t e -=, 又因为 2t = 时, (2)50(110%)45N =?-=, 得 24550k e -=, 110 ln 0.05329 k =≈, 因此 0.053()50t N t e -=. (2) 当 4t = 时, 0.0534 (4)5040.5N e -?== (3) 质量减半时 ()25N t =, 得1 0.053ln 2 t -=, 13t ≈. 7. (1) ln 20.000125730≈, (2) ln 2 0.866438 ≈, (3) 一样. 8.(1) 1065, (2) 17669, (3) 32600, (4) 168 9. 解: (1) (1)10dS S k S dt N =--. (2) 1 (1)3dS S k S S dt N =--. (3) (1)dS S k S dt N =--其中 l 是捕获量与总量平方根的比例系数. 10.(1) 趋向于2000, (2) 鱼的数量递减趋于0. 11.2()23y t t =+. 12.()ln ,0g t t t t =- >.

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

偏微分方程课程教学大纲

《概率论与数理统计选讲》课程教学大纲 适用专业:数学与应用数学 执笔: 审定: 批准执行: 南京财经大学应用数学系

《概率论与数理统计选讲》教学大纲 课程代码:120012 英文名:Selected Topics in Probability and Mathematical Statistics 课程类别:专业限定选修课 适用专业:数学与应用数学 前置课:数学分析,高等代数,概率论,数理统计,常微分方程 学分:3学分 课时:54课时 主讲老师:万树文等 选定教材:茆诗松等,概率论与数理统计教程(第二版) 北京:高等教育出版社,2011 课程概述: 《概率论与数理统计选讲》课程主要是针对数学与应用数学专业的重要专业课概率论和数理统计进行全面复习。复习的主要内容有随机事件和概率,随机变量及其分布,多维随机变量及其分布,大数定律与中心极限定理,统计量及其分布,参数估计,假设检验等。 教学目的: 通过本课程的学习,使学生进一步了解概率论与数理统计的基本原理和方法,强化学生解决问题的能力,更熟练地掌握概率论与数理统计各种问题的解决,为学生的考研和深造提供帮助。 教学方法: 以课堂讲述为主,适当辅以多媒体教学,安排课堂讨论和习题课,课后学生做练习题。

每讲教学要求及教学要点 第一讲概率的定义与性质 课时分配:3课时 教学要求: 掌握概率的不同定义与计算 教学内容: 概率的公理化定义,古典概型,几何概型以及相关计算 第二讲概率的基本公式与计算 课时分配:3课时 教学要求: 掌握概率论的一些基本公式与计算 教学内容: 概率的加法公式,概率的乘法公式,条件概率,事件之间的关系和运算 第三讲全概率和贝叶斯公式 课时分配:3课时 教学要求: 掌握全概率和贝叶斯公式 教学内容: 全概率和贝叶斯公式以及相关的不同难度的题型分析 第四讲随机变量的概念与分类 课时分配:3课时 教学要求: 掌握变量的准确定义和分类 教学内容: 变量的定义,变量的分类,变量的概率分布,变量的分布函数与性质

微分方程几种求解方法

第五章 控制系统仿真 §5.2 微分方程求解方法 以一个自由振动系统实例为例进行讨论。 如下图1所示弹簧-阻尼系统,参数如下: M=5 kg, b=1 N.s/m, k=2 N/m, F=1N F 图1 弹簧-阻尼系统 假设初始条件为:00=t 时,将m 拉向右方,忽略小车的摩擦阻力,m x 0)0(= s m x /0)0(=? 求系统的响应。 )用常微分方程的数值求解函数求解包括ode45、 ode23、ode113、ode15s 、ode23s 等。 wffc1.m myfun1.m 一、常微分方程的数值求解函数ode45求解 解:系统方程为 F kx x b x m =++??? 这是一个单变量二阶常微分方程。

将上式写成一个一阶方程组的形式,这是函数ode45调用规定的格式。 令: x x =)1( (位移) )1()2(? ?==x x x (速度) 上式可表示成: ??????--=??????=??? ???????)1(*4.0)2(*2.02.0)2()2()2()1(x x x x x x x && 下面就可以进行程序的编制。 %写出函数文件myfun1.m function xdot=myfun1(t,x) xdot=[x(2);0.2-0.2*x(2)-0.4*x(1)]; % 主程序wffc1.m t=[0 30]; x0=[0;0]; [tt,yy]=ode45(@myfun1,t,x0); plot(tt,yy(:,1),':b',tt,yy(:,2),'-r') hold on plot(tt,0.2-0.2*yy(:,2)-0.4*yy(:,1),'-k') legend('位移','速度',’加速度’)

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

教学大纲-偏微分方程

《偏微分方程》教学大纲 课程编号:121322B 课程类型:□通识教育必修课□通识教育选修课 □专业必修课 专业选修课 □学科基础课 总学时:32 讲课学时:32 实验(上机)学时:0 学分:2 适用对象:数学与应用数学(金融方向) 先修课程:数学分析、高等代数、实变函数与泛函分析、常微分方程 (以上标题为黑体,四号字;内容为宋体,四号字) 一、教学目标(黑体,小四号字) 目标1:本课程是偏微分方程理论的入门课,以数学分析、高等代数、实变函数与泛函分析、常微分方程为先修课程,并且是先修课程的运用和知识的深化。 目标2:本课程具有较强的应用性,在物理、经济、金融等学科中有广泛的应用。物理、经济、金融中的偏微分方程的学习和研究对理解相关领域前沿本质问题有深刻的作用。 目标3:本课程的学习使学生对进一步研究更深的数学、金融、经济前沿科学知识打下坚实的基础

二、教学内容及其与毕业要求的对应关系(黑体,小四号字) 本课程包括经典线性偏微分方程的推导、理论和应用。精讲偏微分方程的背景和严格推导、二阶双曲型偏微分方程理论、二阶抛物型偏微分方程理论、二阶椭圆型偏微分方程理论,及偏微分方程在金融、经济中的应用等;选讲偏微分方程的变分原理、反问题等。通过对实际问题的分析、模拟、以往知识的回顾,循序渐进讲授重点内容。学生要活学活用已学知识认真完成课后作业。该课程能有效地开阔学生的学术视野,增强知识能力,为进一步研究学习前沿科学厚实学识基础。 三、各教学环节学时分配(黑体,小四号字) 以表格方式表现各章节的学时分配,表格如下:(宋体,小四号字) 教学课时分配

四、教学内容(黑体,小四号字) 第一章方程的导出和定解条件 第一节守恒律 第二节变分原理 第三节定解问题的适定性 1 、重点、难点 多重指标记号 2、考核要求: 掌握多重指标记号, 偏微分方程中的基本概念和定解问题的意义。 3、复习思考题: 复习主要偏微分方程的物理背景、定解的适定性。 第二章波动方程 第一节一阶线性方程的特征线解法 第二节初值问题(一维情形) 第三节初值问题(高维情形) 第四节混合问题 1 、重点、难点 波动方程的解法及其初值问题和初边值解的唯一性及稳定性。

《复变函数》教学大纲

《复变函数》教学大纲 说明 1.本大纲适用数学与应用数学本科教学 2.学科性质: 复变函数论是成人高等师范数学专业基础课程之一,它在微分方程、概率论、力学等学科中都有应用,复变函数论方法是工程、科技的常用方法之一。复变函数论主要研究解析函数。解析函数定义的几种等价形式,表现了解析函数这一概念在不同方面的特性。复变函数论的基本理论以柯西定理为主要定理,柯西公式为重要公式,留数基本定理是柯西定理的推广。保形映照是复变函数几何理论的基本概念。;留数理论和保形映照也为实际应用提供了特有的复变函数论方法。 3.教学目的: 复变函数论是微积分学在复数域上的推广和发展,通过复变函数论的学习能使学生对微积分学的某些内容加深理解,提高认识。复变函数论在联系和指导中学数学教学方面也有重要的作用,学生通过复变函数论的学习对中学数学的某些知识有比较透彻的理解与认识,从而增加做好中学数学教育工作的能力。 4.教学基本要求: 通过本课程的学习,要求学生达到: 1.握基本概念和基本理论; 2.熟练的引进基本计算(复数、判断可导性及解析性、复积分、函数 的展式、孤立奇点的判断、留数的计算及应用、求线性映照及简单映 照等); 2.固和加深理解微积分学的有关知识。 5.教学时数分配: 本课程共讲授72学时(包括习题课),学时分配如下表: 教学时数分配表

以上是二年制脱产数学本科的教学时数。函授面授学时不低于脱产的40%,可安排28~30学时。 教学内容 第一章复数与复变函数 复变函数的自变量和因变量都是复数,因此,复数和平面点集是研究复变函数的基础。复变函数及其极限理论与微积分学的相应内容类似,但因复变函数是研究平面上的问题,因此有其新的含义与特点。 (一)教学内容

偏微分方程求解方法及其比较

偏微分方程求解方法及其比较 发表时间:2008-12-11T09:32:01.530Z 来源:《科海故事博览科教创新》2008年第10期供稿作者:曹海洋吕淑娟王淑芬 [导读] 近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 摘要:近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 关键词:谱方法;偏微分;收敛;逼近; 1偏微分方程及其谱方法的介绍 偏微分方程主要借助于未知函数及其导数来刻画客观世界的物理量的一般变化规律。理论上,对偏微分方程解法的研究已经有很长的历史了。最初的研究工作主要集中在物理,力学,几何学等方面的具体问题,其经典代表是波动方程,热传导方程和位势方程(调和方程)。通过对这些问题的研究,形成了至今仍然使用的有效方法,例如,分离变量法,fourier变换法等。早期的偏微分方程研究主要集中在理论上,而在实际操作中其研究方法和研究结果都难以得到广泛的应用。求解的主要方法为:有限差分法,有限元法,谱方法。 谱方法起源于Ritz-Galerkin方法,它是以正交多项式(三角多项式,切比雪夫多项式,勒让得多项式等)作为基函数的Galerkin方法、Tau 方法或配置法,它们分别称为谱方法、Tau方法或拟谱方法(配点法),通称为谱方法。谱方法是以正交函数或固有函数为近似函数的计算方法。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。而这些方法的基础就是建立空间基函数。 下面介绍几种正交多项式各种节点的取值方法及权重。 1) Chebyshev-Gauss: 2) Chebyshev-Gauss-Radau: x0 =1, 3) Chebyshev-Gauss-Lobatto: x0 =1, xN =1, 4)Legendre-Gauss: xj 是的零点且 5) Legendre-Gauss-Radau: xj 是的N+1个零点且 6) Legendre-Gauss-Lobatto: x0=-1,xN=1其它N-1个点是的零点且 下面介绍谱方法中最重要的Jacobi正交多项式其迭代公式为: 其中: Jacobi正交多项式满足正交性: 而Chebyshev多项式是令时Jacobi多项式的特殊形式,另外Legendre多项式是令时Jacobi多项式的特殊形式。 2 几种典型的谱方法 谱方法是以正交函数或固有函数为近似函数的计算方法。谱近似可以分为函数近似和方程近似两种近似方式。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。从方程近似角度看,谱方法可分为在物理空间离散求解的Collocation法、在谱空间进行离散求解的Galerkin法,以及先在物理空间离散求积,再变换到谱空间求解的Pseudo-spectral法。Collocation法适用于非线性问题.Galerkin法适用于线性问题,而Pseudo-spectral法适用于展开方程时的非线性项的处理。谱方法的特点是对光滑函数指数性逼近的谱精度;以较少的网格点得到较高的精度;无相位误差;适合多尺度的波动性问题;计算精度高于其他方法。快速傅立叶变化的提出大大促进了谱方法的发展,迄今已有各种的谱方法计算格式被提出.并被应用于天文学、电磁学、地理学等各种问题的计算。 下面介绍一下应用于各个区域的几种谱方法: 1)以Fourier谱方法为例介绍谱方法解方程的主要过程 以一阶波动方程为例: 其中u(x,t)为方程的解,L是包含u和u关于空间变量的导数的算子,除了方程以有初始条件和适当的边界条件。 故可设其中为试探空间的基函数,ak(t)为展开系数,对于傅立叶谱方法中的共轭有: 其中从而利用其正交性和周期性可以减少工作量,另外再结合边界条件就可以求出来。 2) Galerkin方法是谱方法中十分经典的解偏微分方程的方法,但还有其局限性,而利用Hermite谱方法中依赖时间的权函数对经典的Galerkin方法进行拓展后的新的方法能适用范围扩大了很多。它能很好的应用在微分方程最优控制问题有限元方法的分析中,并且如果能够灵活运用利用Chebyshev方法、Galerkin方法和配置方法,则会形成更强的计算方法。如将Tau方法的思想成功地应用于奇数阶微分方程Petrov-Galerkin谱方法。 3)在无界区域上谱方法和拟谱方法发展了以Hermite函数和Laguerre函数为基函数的正交逼近和插值理论,在这些结果的基础上发展了全空间和半空间上数理方程的谱方法和拟谱方法,从而形成一种新的能更好解决误解区域问题的方法,此种方法被很好的应用于统计物理、量子力学和流体力学中。 4) 我们利用非一致带权Sobolev空间中的Jacobi多项式正交逼近和Jacobi-Gauss型插值理论,提出以Jacobi多项式为基函数的Jacobi谱方法和拟谱方法用来解决一些奇异问题和计算某些特定的无界区域问题。 5)有限谱方法是基于有限点、有限项的局域谱方法。这种方法要求近似函数应具有等同隔网格和非周期性的性质。有限谱方法分为基于非

《偏微分方程数值解》教学大纲

偏微分方程数值解 一.教学目的 大量科学技术问题的数值计算都归结为偏微分方程的数值解法,应用数学专业计算方向的学生应该掌握偏微分方程数值解的基本知识和方法,重点介绍当今流行的偏微分方程数值解的两类主要方法,即有限差分法和有限元法。二.教学内容及学时分配 总学时为48学时 1、抛物型方程的有限差分法(9学时) 差分逼近的基本概念,抛物型方程的几种古典差分格式,差分格式的收敛性和稳定性概念, Lax等价性定理,研究稳定性的直接法和分离变量法,变系数方程与非线性方程的差分方法,多维问题交替方向法及分裂格式。 2、双曲型方程的差分方法(9学时) 一阶线性双曲型方程(组)的差分格式及稳定性分析,二阶线性双曲型方程的差分方法,拟线性双曲型方程(组)特征差分格式,守恒型方程的差分方法。 3、椭圆型方程差分方法(6学时) 二维poisson方程差分方程的建立,极坐标系下的差分格式,边界条件的处理,极值原理及先验估计,差分格式的收敛性。 4、变分原理与广义解(7学时) 引言,泛函的变分与泛函的极值,两点边值问题的变分原理,二阶椭圆边值问题的变分原理,Sobo1ev空间简介与微分方程广义解,古典Ritz—Galerkin 方法。 5、有限元离散方法(7学时) 两点边值问题的有限元法,二维边值问题的有限元法,有限元法解题的一般步骤。 6、形状函数与有限元空间(6学时) 一维高次元,二维矩形剖分的形状函数,三角形单元的形状函数,等参数单元,三维情形。 7、有限元解的收敛性与误差估计(4学时) Sobolev空间中的插值理论,有限元方法的收敛性与误差估计。 三.教学对象及先修课程

本课程为计算数学方向本科生 先修课程:数学分析,高等代数,数理方程,数值分析,泛函分析四.教材及主要参考书 偏微分方程数值解,陆金甫,关浩,清华大学出版社,1987 微分方程数值方法,胡建伟,胡建伟,科学出版社,1999

常微分方程教学大纲试用

《常微分方程与泛函分析》 课程教学大纲 课程编号:72073 制定单位:统计学院 制定人(执笔人):徐慧植 审核人:刘庆 制定(或修订)时间:2016年 8 月 31 日 江西财经大学教务处

《微分方程与泛函分析》课程教学大纲 一、课程总述 本课程大纲是以2015年统计学本科专业人才培养方案为依据编制的。 课程名称 微分方程与泛函分析 课程代码 72073 英文名称 Differential equation and functional analysis 课程性质 主干 先修课程 数学分析、高等代数 总学时数 48 周学时数 3 开课学院 统计学院 任课教师 徐慧植 编 写 人 徐慧植 编写时间 2016.08.31 课程负责人 刘庆 大纲主审人 刘庆 使用教材 王高雄,周之铭,朱思铭,王寿松编,常微分方程,高等教育出版社 教学参考资料 [1]张棣主编,常微分方程,西北大学出版社 [2]叶彦谦编,常微分方程讲义,高等教育出版社 [3]王柔坏,伍卓群编,常微分方程讲义,人民教育出版社 [4]东北师范大学数学系微分方程教研室编,常微分方程,高等教育出版社 课程教学目的 通过该课程的学习,要使学生系统地获得常微分方程的基本知识、基本理论,培养和训练学生运算技能及解决问题的能力;要求学生具有熟练的计算推导能力,逻辑推理能力,空间想象能力及综合运用所学知识分析和解决问题的能力;同时为学习后继课程奠定必要的基础。 课程教学要求 通过该课程的学习,要使学生系统地获得常微分方程的基本知识、 基本理论,掌握一阶、二阶微分方程胡解法及其应用。 本课程的重点和难点 一阶微分方程解的存在定、高阶微分方程、线性微分方程组 课程考试 院考,闭卷,平时成绩20%,期末成绩80%

编译原理简明教程答案.doc

编译原理简明教程答案 【篇一:8000 份课程课后习题答案与大家分享~~】 > 还有很多,可以去课后答案网 (/bbs )查找。 ################## 【公共基础课-答案】 #################### 新视野大学英语读写教程答案(全) 【khdaw 】 /bbs/viewthread.php?tid=108fromuid=1429267 概率论与数理统 计教程(茆诗松著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=234fromuid=1429267 高等数学(第五 版)含上下册高等教育出版社课后答案 d.php?tid=29fromuid=1429267 新视野英语听力原文及答案课后答 案 【khdaw 】 /bbs/viewthread.php?tid=586fromuid=1429267 线性代数(同济 大学应用数学系著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=31fromuid=1429267 21 世纪大学英语 第3 册(1-4)答案 【khdaw 】 /bbs/viewthread.php?tid=285fromuid=1429267 概率与数理统计 第二,三版(浙江大学盛骤谢式千潘承毅著) 高等教育出版社课后答案 d.php?tid=32fromuid=1429267 复变函数全解及导学[西安交大第四版] 【khdaw 】 /bbs/viewthread.php?tid=142fromuid=1429267 大学英语精读第 三版2 册课后习题答案 /bbs/viewthread.php?tid=411fromuid=1429267 线性代数(第二版) 习题答案 /bbs/viewthread.php?tid=97fromuid=1429267 21 世纪(第三册) 课后答案及课文翻译(5-8)【khdaw 】 /bbs/viewthread.php?tid=365fromuid=1429267 大学英语精读第 2 册课文翻译(上外)

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

常微分方程课程教学大纲知识分享

常微分方程课程教学 大纲

常微分方程课程教学大纲 英文名称:Ordinary differential equation 课程类 型: 专业基础课 理论学时:64实验学 时: 学分: 4 开课学 期: 第3学期 适用对象:数学与应用数学专业本科生考核方 式: 考试 先修课 程: 数学分析、高等代数与解析几何 一、课程简介 常微分方程是数学系本科生的必修课.通过本课程的学习,利用数学分析、高等代数的一些工具,牢固掌握微分方程学科最基本的内容,如一阶常微分方程、高阶微分方程与线性微分方程组的基本理论与解法,初步掌握其在实际问题中的应用及微分方程定性和稳定性理论的基本概念和重要结果,一般了解一阶线性偏微分方程. 二、课程教学目标 本门课程的主要任务是:通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力;使学生掌握常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础. 三、教学内容及要求 第一章绪论 主要内容: 1、常微分方程基本概念; 2、导出微分方程的实例; 3、微分方程的几何意义。 基本要求和教学重点:

1、了解常微分方程的基本概念; 2、领会常微分方程所讨论问题的基本内容; 3、了解常微分方程的实际背景及应用。 第二章初等积分法 主要内容: 1、变量分离方程; 2、齐次方程; 3、一阶线性方程与常数变易法; 4、全微分方程与积分因子; 5、一阶隐式微分方程。 基本要求和教学重点: 1、熟练地掌握一阶方程各种类型的初等解法. 2、学会根据所给方程的特点,引进适当的变换,增强解题能力; 3、能够合理的处理某些一阶微分方程的求解问题。 第三章一阶微分方程的解的存在定理主要内容: 1、解的存在性与唯一性定理 2、解的延拓 3、解对初值和参数的连续依赖性 4、解对初值和参数的可微性 基本要求和教学重点: 1、熟悉和理解定理证明方法; 2、掌握逐步逼近法。 第四章高阶线性微分方程 主要内容: 1、高阶线性微分方程的一般理论; 2、高阶常系数线性齐次方程的解法; 3、高阶常系数线性非齐次方程的解法; 4、变系数线性微分方程。 5、幂级数解法 基本要求和教学重点: 1、理解和掌握关于线性方程解的基本性质;

求解偏微分方程三种数值方法

数值模拟偏微分方程的三种方法介绍 (有限差分方法、有限元方法、有限体积方法) I.三者简介 有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛使用。该方法包括区域剖分和差商代替导数两个步骤。首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替进行离散,从而建立以网格节点上的值为未知量的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且十分成熟的数值方法。 差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。从差分的空间离散形式来考虑,有中心格式和迎风格式。对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。差分方法主要适用于结构网格,网格的大小一般根据问题模型和Courant 稳定条件来决定。 有限元方法(Finite Element Methods)的基础是虚位移原理和分片多项式插值。该方法的构造过程包括以下三个步骤。首先,利用虚位移原理得到偏微分方程的弱形式,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等),在每个单元上选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。 有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。有限元方法最早应用于结构力学,随着计算机的发展已经渗透到计算物理、流体力学与电磁学等各个数值模拟领域。

相关主题