搜档网
当前位置:搜档网 › 一种实用的短路电流计算方法

一种实用的短路电流计算方法

一种实用的短路电流计算方法
一种实用的短路电流计算方法

一种实用的短路电流计算方法

尚德彬中原油田设计院

[摘要]本文针对短路电流计算复杂,易出差错等原因,根据自己实际工作中对短路电流的计算,总结出了一种简单、实用、易于掌握的计算方法。

[关键词]短路电流实用计算方法

一、概述

在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常的运行情况,因为它们会破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。按照传统的计算方法有标么值法和有名值法等。采用标么值法计算时,需要把不同电压等级中元件的阻抗,根据同一基准值进行换算,继而得出短路回路总的等值阻抗,再计算短路电流等。这种计算方法虽结果比较精确,但计算过程十分复杂且公式多、难记忆、易出差错。下面根据本人在实际工作中对短路电流的计算,介绍一种比较简便实用的计算方法。

二、供电系统各种元件电抗的计算

通常我们在计算短路电流时,首先要求出短路点前各供电元件的相对电抗值,为此先要绘出供电系统简图,并假设有关的短路点。供电系统中供电元件通常包括发电机、变压器、电抗器及架空线路(包括电缆线路)等。目前,一般用户都不直接由发电机供电,而是接自电力系统,因此也常把电力系统当作一个“元件”来看待。

假定的短路点往往取在母线上或相当于母线的地方。图1便是一个供电系统简图,其中短路点d1前的元件有容量为无穷大的电力系统,70km的110kV架空线路及3台15MVA的变压器,短路点d2前则除上述各元件外,还有6kV,0.3kA,相对额定电抗(XDK%)为4的电抗器一台。

下面以图1为例,说明各供电元件相对电抗(以下“相对”二字均略)的计算方法。

1、系统电抗的计算

系统电抗,百兆为1,容量增减,电抗反比。本句话的意思是当系统短路容量为100MVA时,系统电抗数值为1; 当系统短路容量不为100MVA,而是更大或更小时,电抗数值应反比而变。例如当系统短路容量为200MVA时,电抗便是0.5(100/200=0.5); 当系统短路容量为50MVA时,电抗便是2(100/50=2),图1中的系统容量为“∞”,则100/∞=0,所以其电抗为0。

图1 供电系统图

本计算依据一般计算短路电流书中所介绍的,均换算到100MVA基准容量条件下的相对电抗公式而编出的(以下均同),即X*xt=Sjz/Sxt (1) 式中: Sjz为基准容量取100MVA、Sxt为系统容量(MVA)。

2、变压器电抗的计算

若变压器高压侧为35kV,则电抗值为7除变压器容量(单位MVA,以下同); 若变压器高压侧为110kV,则电抗值为10.5除变压器容量; 若变压器高压侧为10(6)kV,则电抗值为4.5除变压器容量,如图1中每台变压器的电抗值应为10.5/15=0.7,又如一台高压侧35kV,5000kVA及一台高压侧6kV,2000kVA的变压器,其电抗值分别为7/5=1.4, 4.5/2=2.25

本计算依据公式为: X*b=(ud%/100).(Sjz/Seb) (2)

式中ud%为变压器短路电压百分数,Seb 为变压器的额定容量(MVA)

该公式中ud%由变压器产品而定,产品变化,ud%也略有变化。计算方法中按10(6)kV、35kV、110kV电压分别取ud%为4.5、7、10.5。

3、电抗器电抗的计算

用额定电抗百分数除电抗器的额定容量(单位MVA),再乘0.9即可。

一般来说电抗器只标额定电压与电流,计算其额定容量时按S=1.732UI。如图1中那台电抗器U=6kV, I=0.3kA ,Xk%=4,则Ske=1.732×6×0.3=3.114MVA,则电抗器的电抗值为(4/3.114)×0.9=1.156。

本计算所依据的公式是:

X*k=( Xk%/100).(Sjz/Sek).(Uek2/Ujz2) (3)

式中: Xk%为电抗器的额定电抗百分数,Sek 为电抗器额定容量(MVA),Uek为电抗器的额定电压(kV),Ujz为基准电压,用线路的平均额定电压代替,分别取6.3、10.5、37、115kV等。

本公式中的前2个因式,实际是Xk%除电抗器的额定容量(MVA)数; 后一因式是考虑电抗器额定电压不

等于线路平均额定电压,为此而再乘上一个系数,一般约为0.9,因此电抗器的相对电抗值应是用额定电抗除额定容量再乘0.9。

4、架空线路及电缆线路电抗值的计算

对于6kV架空线路其电抗值等于线路长度的公里数; 对于10kV架空线路其电抗值等于线路长度公里数的三分之一; 对于35kV架空线路其电抗值等于线路长度公里数的百分之三; 对于110kV架空线路其电抗值等于线路长度公里数的千分之三。

若为电缆线路: 其电抗值应分别取上述同电压等级架空线路电抗值的五分之一。

例如一回6km的6kV架空线路,其电抗值为6,若为6km的10kV架空线路,则电抗为6/3=2; 若为6km 的35kV架空线路,则电抗为6×0.03=0.18。图1中70km的110kV架空线路,则电抗为70×0.003=0.21。如果上述各电压等级的架空线路换为同长度的电缆线路,其电抗值应分别为:

6kV等于6/5=1.2、10kV等于2/5=0.4、35kV等于0.18/5=0.036。

计算所依据的公式是: X*XL=K.L/Up2 (4)

式中L为线路的长度(单位km); K为系数: 对6、10kV的电缆线路取8,架空线路取40; 对35~110kV架空线路取42.5; Up 取各级电压的额定电压即6,10,35,110kV等。

三、短路容量和短路电流计算

1、短路容量(单位MVA): 求出短路点前的总电抗值,然后用100除该值即可。

计算依据的公式为: Sd=Sjz/X*∑ (5)

例如图1中d1点短路时,系统的短路容量计算,其等效阻抗图如图1(b)所示,图中每个元件均标有编号,编号下面为元件的电抗值。

可以看出,从电源到d1点的总电抗: X*∑=0+0.21+0.7/3=0.443,其短路容量Sd =100/0.443=225.73MVA,从电源到d2点的总电抗,应再加上电抗器的电抗,即X*∑=0.443+1.156=1.599,则Sd

=100/1.599=62.54MVA。

2、短路电流的计算

若6kV电压等级,则短路电流(单位kA,以下同)等于9.2除总电抗X*∑(短路点前的,以下同); 若10kV电压等级,则等于5.5除总电抗X*∑; 若35kV电压等级,则等于1.6除总电抗X*∑; 若110kV电压等级,则等于0.5除总电抗X*∑; 若0.4kV电压等级,则等于150除总电抗X*∑。

计算依据的公式是: Id=Ijz/ X*∑ (6)

式中Ijz: 表示基准容量为100MVA时基准电流(kA),6kV取9.2kA,10kV取5.5kA,35kV取1.6kA,110kV取0.5kA,0.4kV则取150kA。

则图1中d1点的短路电流为: Id1=9.2/0.443=20.77kA

3、短路冲击电流的计算

计算方法: 对于6kV以上高压系统,Ich等于Id乘1.5,ich等于Id乘2.5; 对于0.4kV低压系统,由于电阻较大,Ich及ich均较小,所以实际计算中可取Ich=Id,ich=1.8Id。

则图1中d1点的短路时: Ichd1=1.5 Id1 =1.5×20.77=31.155kA; i chd1=2.5 Id

=2.5×20.77=51.925kA

四、计算实例

下面举一实际例子分别采用标么值法与本文所介绍的方法进行计算验证。

例如: 一供电系统如图2所示,参数图中所标,试分别用标么值法及本文所介绍的方法分别计算d1,d2,d3点短路时的Sd,Id,Ich及ich。

1、采用标么值法计算

选取基准容量Sj=100MVA,基准电压Uj=Up

由系统接线图得其等效阻抗图如图2(b)所示。

图2 某供电系统图

各元件电抗标么值计算如下:

系统: X*1=Sj/Sdxt=100/200=0.5 100/9183=0.011

120kV变压器X=0.11667

35kV线路: X*2=X.L.(Sj/Up2)=0.425×10×(100/372)=0.31 0

35kV变压器B1: X*3=(ud%/100).(Sj/Seb)=7/5=1.4 0.25

6kV变压器B2: X*4=(ud%/100).(Sj/Seb)=4.5/0.8=5.625

则d1点短路时:

总电抗值X*∑d1= X*1+ X*2 =0.5+0.31=0.81; 0.011+0.11667=0.12767

取Uj=37kV

Ij=Sj/(1.732×37)=100/1.732×37=1.56(kA)100/1.732*37=1.56

Id1=Ij/ X*∑d1=1.56/0.81=1.926(kA) 1.56/0.12767=12.22(kA)

Ichd1=1.52Id1=1.52×1.926=2.928(kA) 1.52*12.22=18.57(kA)

ichd1=2.55Id1=2.55×1.926=4.91(kA) 2.55*12.22=31.161(kA)

Sd1=Sj/ X*∑d1=100/0.81=123.5(MVA) 100/0.12767=783.3

d2点短路时:

总电抗值X*∑d2= X*1+ X*2 + X*3 /2=0.5+0.31+1.4/2=1.51;0.011+0.11667+0.25=0.37767取Uj=6.3kV

Ij=Sj/(1.732×6.3)=100/1.732×6.3=9.16(kA)100/1.732*10.5=5.498

Id2=Ij/ X*∑d2=9.16/1.51=6.066(kA) 5.498/0.37767=14.56

Ichd2=1.52Id2=1.52×6.066=9.22(kA)

ichd2=2.55Id2=2.55×6.066=15.47(kA)

Sd2=Sj/ X*∑d2=100/1.51=66.23(MVA)78.43MVA

d3点短路时:

总电抗值X*∑d3= X*1+ X*2 + X*3 /2+ X*4=0.5+0.31+1.4/2+5.625=7.135

取Uj=0.4kV

Ij=Sj/(1.732× 0.4)=100/1.732×0.4=144.3(kA);

Id3=Ij/ X*∑d3=144.3/7.135=20.224(kA)

Ichd3=1.09Id3=1.09×20.224=22.04(kA)

ichd3=1.84Id3=1.84×20.224=37.21(kA)

Sd3=Sj/ X*∑d3=100/7.135=14.015(MVA)

2、本文介绍的方法计算

各元件的电抗值计算如下:

系统电抗值: X*1=100/200=0.5

35kV架空线路电抗值: X*2 =10×3%=0.3

35kV变压器B1电抗值: X*3 =7/5=1.4

6kV变压器B2电抗值: X*4 =4.5/0.8=5.625

则d1点短路时:

总电抗值X*∑d1= X*1+ X*2 =0.5+0.3=0.8;

Sd1=100/ X*∑d1=100/0.8=125(MVA)

Id1=1.6/0.8=2(kA)

Ichd1=1.5Id1=3(kA)

ichd1=2.5Id1=5(kA)

则d2点短路时:

总电抗值X*∑d2= X*1+ X*2 + X*3/2=0.5+0.3+1.4/2=1.5;

Sd2=100/ X*∑d2=100/1.5=66.67(MVA)

Id2=9.2/1.5=6.13(kA)

Ichd2=1.5Id2=9.195(kA)

ichd2=2.5Id2=15.325(kA)

则d3点短路时:

总电抗值X*∑d3= X*1+ X*2 + X*3/2+ X*4 =0.5+0.3+1.4/2+5.625=7.125;

Sd3=100/ X*∑d3=100/7.125=14.035(MVA)

Id3=150/7.125=21.053(kA)

Ichd3=Id3=21.053(kA)

ichd3=1.8Id3=37.895(kA)

五、结论

由计算比较可知,采用本文所介绍的计算方法与传统的标么值法计算结果基本相当。计算短路电流的目的,是为了在电气装置的设计和运行中,用来选择电气设备、选择限制短路电流的方式、设计继电保护装置和分析电网故障等。从这个意义上讲计算结果愈精确愈好。但考虑到电力系统的实际情况,要进行极准确的短路计算是相当复杂的,同时对解决大部分实际问题并不一定要十分精确的计算结果。为了简化计算,实际中的各种计算方法都只是对短路电流的预估,计算时都有一系列的假设条件。虽然本文方法的计算结果稍微偏大点,但计算过程较为简单,这对实用并无影响,而且将来系统发展后也有一定的适应性。

有兴趣的同行不妨以试,或许会给您的工作带来点方便。⊙

短路电流计算方法

一种实用的短路电流计算方法 尚德彬中原油田设计院 [摘要]本文针对短路电流计算复杂,易出差错等原因,根据自己实际工作中对短路电流的计算,总结出了一种简单、实用、易于掌握的计算方法。 [关键词]短路电流实用计算方法 一、概述 在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常的运行情况,因为它们会破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。按照传统的计算方法有标么值法和有名值法等。采用标么值法计算时,需要把不同电压等级中元件的阻抗,根据同一基准值进行换算,继而得出短路回路总的等值阻抗,再计算短路电流等。这种计算方法虽结果比较精确,但计算过程十分复杂且公式多、难记忆、易出差错。下面根据本人在实际工作中对短路电流的计算,介绍一种比较简便实用的计算方法。 二、供电系统各种元件电抗的计算 通常我们在计算短路电流时,首先要求出短路点前各供电元件的相对电抗值,为此先要绘出供电系统简图,并假设有关的短路点。供电系统中供电元件通常包括发电机、变压器、电抗器及架空线路(包括电缆线路)等。目前,一般用户都不直接由发电机供电,而是接自电力系统,因此也常把电力系统当作一个“元件”来看待。 假定的短路点往往取在母线上或相当于母线的地方。图1便是一个供电系统简图,其中短路点d1前的元件有容量为无穷大的电力系统,70km的110kV架空线路及3台15MVA的变压器,短路点d2前则除上述各元件外,还有6kV,0.3kA,相对额定电抗(XDK%)为4的电抗器一台。 下面以图1为例,说明各供电元件相对电抗(以下“相对”二字均略)的计算方法。 1、系统电抗的计算 系统电抗,百兆为1,容量增减,电抗反比。本句话的意思是当系统短路容量为100MVA时,系统电抗数值为1; 当系统短路容量不为100MVA,而是更大或更小时,电抗数值应反比而变。例如当系统短路容量为200MVA时,电抗便是0.5(100/200=0.5); 当系统短路容量为50MVA时,电抗便是2(100/50=2),图1中的系统容量为“∞”,则100/∞=0,所以其电抗为0。

题目短路电流及其计算

题目:短路电流及其计算 讲授内容提要:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 教学目的:掌握三相短路、两相短路及单相短路电流的计算,会根据短路条件进行设备校验。 教学重点:欧姆法和标幺值法计算短路电流的方法,掌握短路热稳定和动稳定校验的方法。 教学难点:欧姆法和标幺值法计算短路电流的方法 采用教具和教学手段:多媒体及板书 授课时间:年月日授课地点:新教学楼教室 注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第三章 短路电流及其计算 本次课主要内容:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 第三节 无限大容量电力系统中短路电流的计算 计算过程:绘出计算电路图、元件编号、绘等效电路、计算阻抗和总阻抗、计算短路电流和短路容量。 一、欧姆法进行三相短路计算 22 ) 3(3∑ ∑ += X R U I C K 计算高压短路时电阻较小,一般可忽略。 、电力系统的阻抗计算 OC C S S U X 2= 、电力变压器的阻抗计算 2)(N C K T S U P R ?≈ N C K T S U U X 2 100%? ≈ 、电力线路的阻抗计算 l R R WL 0= l X X WL 0= 、阻抗换算 2'' )(C C U U R R = 2'' )(C C U U X X = 三、标幺制法三相短路电流计算 、基准值 基准容量 MVA S d 100= (可以任意选取) 基准电压 c d U U = (通常取短路计算电压) 基准电流 C d d d d U S U S I 33==

基准电抗 d C d d d S U I U X 2 3= = 、元件标幺值: 电力系统电抗标幺值: OC d d C OC C d S S S S S U S U X X X ===*//22 电力变压器电抗标幺值: N d K d C N C K d T T S S U S U S U U X X X ?=?==*100%/100%2 2 电力线路电抗标幺值: 22/C d O d C O d WL WL U S l X S U l X X X X ?===* 、短路电流标幺值及短路电流计算 *)* 3()3(2) 3()3(1 3/3/∑ * ∑ ∑∑* = =====X I I I I X X S U U S X U I I I d d K K d C C d C d K K 、三相短路容量 ** ) 3()3(33∑ ∑== =X S X U I U I S d c d C K K 四、两相短路电流的计算 ∑ =Z U I C K 2) 2( 866.02/3/) 3()2(==K K I I 五、单相短路电流的计算 ∑ ∑∑++=321)1(3Z Z Z U I K ? 工程计算 0 )1(-= ??Z U I K 第四节 短路电流的效应和稳定度校验 一、短路电流的电动效应和动稳定度 动稳定度校验 一般电器: )3(max ) 3(max sh sh I I i i ≥≥

同步发电机突然三相短路的物理过程及短路电流分析

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此

单相短路电流计算

1、替代定理 在任意具有唯一解的电路中,某支路的电流为i k ,电压为u k ,那么该支路可以用独立电压源u k ,或者独立电流源i k 来等效替代,如下图所示。替代后的电路和原电路具有相同的解。 图 叠加定理 由全部独立电源在线性电阻电路中产生的任一电压或电流,等于每一个独立电源单独作用所产生的相应电压或电流的代数和。 注意点:(1)只适用于线性电路;(2)一个电源作用,其余电源为零,如电压源为零即电压为零——>短路,电流源为零即电流为零——>开路;(3)各回路电压和电流可以叠加,但功率不能叠加。 3、三相系统及相量图的应用 交流变量 正常的电力系统为三相系统,每相的电压和电流分量均随着时间作正弦变化,三相间相互角偏差为120°,比如以A 相为基准,A 相超前B ,B 相超前C 各120°,就构成正序网络,如下式所示: ) 120sin()360240sin()240sin(); 120sin(); sin( t U t U t U u t U u t U u m m m c m b m a 以A 相为例,因为三角函数sin 是以360°(或2π)为周期变化,所以随着时间t 的流逝,当 t 值每增长360°(或2π)时,电压ua 就经过了一个周期的循环,如下图所示:

图 如上图,t代表时间, 代表t=0时刻的角度(例如上图中ua当t=0时位于原点, ), 表示角速度即每秒变化多少度。例如电网的频率为50Hz,每即代表0 秒变化50个周期,即变化50*360°或者50*2π。此处360°和2π仅是单位制的不同,分别为角度制和弧度制,都是代表一个圆周;值得注意的是用360°来分析问题更加形象,而2π为国际单位制中的标准单位,计算时更通用。 向量的应用 用三角函数分析问题涉及较为繁琐的三角函数计算,图的正弦波形图可表示出不同周期分量的峰值和相差角度,但使用范围有限。为此,利用交流分量随时间做周期变化,且变化和圆周关系密切的特点,引入向量如下,方便交流分量的加减乘除计算:

电力系统短路电流计算书

电力系统短路电流计算书 1 短路电流计算的目的 a. 电气接线方案的比较和选择。 b. 选择和校验电气设备、载流导体。 c. 继电保护的选择与整定。 d. 接地装置的设计及确定中性点接地方式。 e. 大、中型电动机起动。 2 短路电流计算中常用符号含义及其用途 a. 2I -次暂态短路电流,用于继电保护整定及校验断路器额定断充容量。 b. ch I -三相短路电流第一周期全电流有效值,用于校验电气设备和母线的动稳 定及断路器额定断流容量。 c. ch i -三相短路冲击电流,用于校验电气设备及母线的动稳定。 d. I ∞-三相短路电流稳态有效值,用于校验电气设备和导体的热稳定。 e. "z S -次暂态三相短路容量,用于检验断路器遮断容量。 f. S ∞-稳态三相短路容量,用于校验电气设备及导体的热稳定. 3 短路电流计算的几个基本假设前提 a. 磁路饱和、磁滞忽略不计。即系统中各元件呈线性,参数恒定,可以运用叠加原理。 b. 在系统中三相除不对称故障处以外,都认为是三相对称的。 c. 各元件的电阻比电抗小得多,可以忽略不计,所以各元件均可用纯电抗表示。 d. 短路性质为金属性短路,过渡电阻忽略不计。 4 基准值的选择 为了计算方便,通常取基准容量S b =100MVA ,基准电压U b 取各级电压的平均 电压,即 U b =U p =,基准电流 b b I S =;基准电抗 2b b b b X U U S ==。

常用基准值表(S 基准电压U b (kV ) 37 115 230 基准电流I b (kA ) 基准电抗X b (Ω) 132 530 各电气元件电抗标么值计算公式 元件名称 标 么 值 备 注 发电机(或电动机) " % "*100 cos d b N X S d P X φ =? "%d X 为发电机次暂态电抗的百 分值 变压器 %" * 100 k b N U S T S X = ? %k U 为变压器短路电压百分值, S N 为最大容量线圈额定容量 电抗器 2%*100 3k N b N b X U S k I U X =? ? %k X 为电抗器的百分电抗值 线路 2*0b b S l U X X l =? 其中X 0为每相电抗的欧姆值 系统阻抗 *b b kd S S c S S X = = S kd 为与系统连接的断路器的开断容量;S 为已知系统短路容量 其中线路电抗值的计算中,X 0为: a. 6~220kV 架空线 取 Ω/kM b. 35kV 三芯电缆 取 Ω/kM c. 6~10kV 三芯电缆 取 Ω/kM 上表中S N 、S b 单位为MVA ,U N 、U b 单位为kV ,I N 、I b 单位为kA 。 5 长岭炼油厂短路电流计算各主要元件参数 系统到长炼110kV 母线的线路阻抗(标么值) a. 峡山变单线路供电时: 最大运行方式下:正序; 最小运行方式下:正序 b. 巴陵变单线路供电时: 最大运行方式下:正序

短路电流计算方法

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(Ω) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值

短路电流及其计算

短路电流及其计算 第一节短路电流概述 本节将了解短路的原因及危害,掌握短路的种类,并知道短路电流计算的基本方法。 一、短路的概念 短路时至三相电力供电系统中,相与相或相与地的导体之间非正常连接。 在电力系统设计和运行中,不仅要考虑正常工作状态,而且还必须考虑到发生事故障碍时所照成的不正常工作状态。实际运行表明,在三相供电系统中,破坏供电系统正常运新的故障最为常见而且危害最大的就是各种短路。当发生短路时,电源电压被短接,短路回路阻抗很小,于是在回路中流通很大的短路电流。 对中性点不接地的系统又相遇相之间的短路;对于中性点接地的系统又相遇相之间的短路,一项于几项与大地相连接以及三相四线制系统中相与零项的连接等,其中两相接地的短路实际上是两相短路。常见的短路形式如图3—1所示 2.短路的基本种类 在三相供电系统中,短路的类型主要有: (1)三相电路 三相短路是指供电系统中,三相在同一点发生短接。用“d(3)”表示,如图3-1a所示。(2)两相电路 两相短路是指三相供电系统中,任意两项在同一地点发生短接。用“d(2)”表示,如图3-1b 所示。 (3)单相电路 单相短路是指在中性点直接接地的电力系统中,任一项与地发生短接。用“d(1)”表示,如图3-1c所示。 (4)两相接地电路 两相接地的短路是指在中性点直接接地的电力系统中,不同的两项同时接地所形成的两相短路,用“d(1-1)”表示,如图3-1d所示。 按短路电流的对称性来说,发生三相短路时,三项阻抗相等,系统中的各处电压和电流仍保持对称,属于对称性短路,其他形式的短路三相阻抗都不相等,三相电压和电流不对称,均为不对称短路。

短路电流的十个问题的总结

短路电流的十个问题的总结 一)为什么计算最大短路电流?为什么计算最小短路电流? 目的:测试对于短路计算意义的理解 答案:计算最大短路计算用以校验配电元件(如断路器)分段能力;计算最小短路计算用于校验配电设备(如断路器)灵敏度和继电保护计算整定。 0.38kV系统一般不需要进行设备动、热稳定的校验,因为元件制造时已经考虑好了。10KV 以上电力设备需要根据最大短路电流校验设备动、热稳定。 常见设计误区: 1、根本不考虑短路校验。不一定都算,但心里一定要有这根弦。 2、只注意计算最大短路校验开关分断能力,忽视考虑最小短路校验保护灵敏度。 拓展: 1、什么是三相短路?什么是两项短路?什么是单相短路? 2、回路上为什么有时装3个互感器?有时装2个互感器?装1个互感器?各用在什么场合? 二)对于一般10/0.4KV变电系统,最大短路电流通常发生在那里? 目的:测试对于系统短路点的认识。 答案:系统中最大短路电流的发生位置(短路点)在变压器出口侧,可以等效近似认为低压母线侧。所以一般最大短路点取低压母线侧。 常见设计误区: 1 不知道各个短路点意义,不知道应该计算几个或哪个短路点的短路电流。 拓展:什么是最大运行方式?什么是最小运行方式?运行方式对于最大、最小短路电流的选取与配电元件校验有什么影响? 三)在一条母线上应该校验哪条回路的断路器的分断能力? 目的:测试关于配电元件分断校验的问题 答案:低压母线上最小的断路器(假定断路器为同一系列)。同一条低压母线上的短路电流被认为是近似相等的,连接在上面的最小的断路器一般来讲分断能力最低。只要它满足了系统短路状态分断能力的要求,其他断路器就大致没有问题。 常见设计误区: 1、不校验断路器在短路状态的分断能力。 2、每个断路器都校验一遍。 拓展:当断路器分断能力不够时,举出3种解决方法。

电力系统下课程设短路电流计算

《电力系统分析》课程设计报告题目:3G9bus短路电流计算 系别电气工程学院 专业班级10级电气四班 学生姓名 学号 指导教师 提交日期 2012年12月10日

目录 一、设计目的 (3) 二、短路电流计算的基本原理和方法 (3) 2.1电力系统节点方程的建立 (3) 2.2利用节点阻抗矩阵计算短路电流 (4) 三、3G9bus短路电流在计算机的编程 (6) 3.1、三机九节点系统 (6) 3.3输出并计算结果 (13) 四.总结 (15)

一、设计目的 1.掌握电力系统短路计算的基本原理; 2.掌握并能熟练运用一门计算机语言(MATLAB 语言或FORTRAN 或C 语言或C++语言); 3.采用计算机语言对短路计算进行计算机编程计算。 二、短路电流计算的基本原理和方法 2.1电力系统节点方程的建立 利用节点方程作故障计算,需要形成系统的节点导纳(或阻抗)矩阵。一般短路电流计算以前要作电力系统的潮流计算,假定潮流计算的节点导纳矩阵已经形成,在此基础上通过追加支路的方式形成电力短路电流计算的节点导纳矩阵YN 。 1)对发电机节点 在每一发电机节点增加接地有源支路 i E 与i i i Z R jX =+串联 求短路稳态解: i Qi E E = i i qi Z R jX =+ 求短路起始次暂态电流解:i i E E ''= i i i Z R jX ''=+ 一般情况下发电机定子绕组电阻忽略掉,并将i E 与i i i Z R jX =+的有源支路转化成电流源 i i i I E Z =与导纳 1 i i i i i Y G B R jX =+= +并联的形式 2)负荷节点的处理 负荷节点在短路计一算中一般作为节点的接地支路,并用恒定阻抗表示,其数值由短路前瞬间的负荷功率和节点实际电压算出,即首先根据给定的电力系统运行方式制订系统的等值电路,并进行各元件标么值参数的计算,然后利用变压器和线路的参数形成不含发电机和负荷的节点导纳矩阵 YN 。 2?k LDk LDk LDk LDk V Z R jX S =+= 2 ?LDk LDk LDk LDk k S Y G jB V =+=

(完整版)短路电流的计算方法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称; 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

继续修正-注册电气师公式计算总结

标准一 110kV-750kV架空输电线路设计规范公式一导、地线在弧垂最低点的最大张力: max ,p p c c T T T K K ≤:导、地线的拉断力;:导、地线的设计安全系数。 1)导、地线在弧垂最低点的设计安全系数不应小于2.5,悬挂点的设计安全系数不应小于2.25.地线的设计安全系数不应小于导线的设计安全系数。 2)导、地线在稀有风速或稀有覆冰气象条件时,弧垂最低点的最大张力不应超过其导、地线拉断力的70%。悬挂点的最大张力不应超过导、地线拉断力的77%。(按上述公式,取2.5或2.25时只有40%或44%,在这种稀有条件下,相当于条件放宽了) 公式二绝缘子机械强度的安全系数: 1 T R R T K T T =,:绝缘子的额定机械破坏负荷(kN); :分别取绝缘子承受的最大使用荷载、断线荷载、断联荷载、验算荷载或常年荷载(kN)。 1)常年荷载指年平均气温条件下绝缘子所受的荷载。验算荷载是验算条件下 绝缘子所受荷载。断线的气象条件是无风、有冰、—5℃,断联络的气象条件是 无风、无冰、—5℃。设计悬垂串时导、地线张力可按本规范第10.1节的规定取 值。 2)安全系数应符合表6.0.1规定(P15)。双联及多联绝缘子串应验算断一联后 的机械强度,其荷载应按断联情况考虑(K=1.5)。 3)金具强度的安全系数:最大使用荷载不应小于2.5。断线、断联、验算情况 不应小于1.5。 公式三绝缘子串片数选择: 操作及雷电过电压要求的悬垂绝缘子最小片数 1)耐张绝缘子串的片数,在上表基础上,110-330kV加1片,500kV加2片,

750kV 不增加。 2) 全高超过40m 有地线的杆塔,高度每增加10m ,应比本规范表增加1片相 当于高度146mm 的绝缘子,全高超过100m 的杆塔,片数应根据运行经验结合计算确定。750kV 超过40m ,应根据实际情况验算。 3) 采用爬电比距法时,绝缘子片数计算: 01 1000/145220kV 1.39I 11e U n n m K L λλ≥ ,:海拔时每联绝缘子所需片数; :爬电比距(cm kV ),330kV 以上为 .,及以下为 ; 变电所爬电比距,对级污秽区取同级线路的.倍。 U :系统标称电压(kV );L01:单片绝缘子的几何爬电距离(cm ); Ke :绝缘子爬电距离的有效系数。XP-70、XP-160型绝缘子为1。 注:轻、中污秽区复合绝缘子爬电距离不宜小于盘型绝缘子;在重污秽区,其爬电距离不应小于盘型绝缘子最小值的3/4且不应小于2.8cm/kV ;用于220kV 以上输电线路复合绝缘子两段都应加均压环,其有效绝缘长度需满足雷电过电压的要求。 4) 高海拔地区悬垂绝缘子串的片数,宜按下式计算: 10.1215(-1000)/1000=m H H n ne m 1:特征指数,取值见附录C 。 耐张绝缘子片数: =[1+0.1(-1)]H N N H ,H :海拔高度,km 。(导体选择) 公式四 空气放电电压海拔修正系数: /8150=mH a K e m :海拔修正因子,工频、雷电电压m=1;操作过电压见P20图7.0.12。 公式五 杆塔上两根地线间的距离:不应超过地线与导线间垂直距离的5倍。 在一般档距中央,导线与地线间的距离: 0.012+1S L ≥ S :导线与地线间距离(m);L :档距(m )。注:气象条件:15℃,无风、无冰。 注:对于大档距导线,在档距>'t l v τ(v ’:波的传播相速,取225m/us ;t τ:波头长度)时,20.1S I ≈。

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 1.1 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 1.2 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 2.1 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。2.2电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络

短路电流的实用计算题库

第五章短路电流的实用计算题库 本文来自: 专业工控技术学习交流平台---99工控论坛作者: 小电工日期: 2009-11-9 20:22 阅读: 376人打印收藏大中小 一、填空题 1.短路种类有()、()、()和()。 2.无限大容量系统是指()。 3.在暂态过程中短路电流包含两个分量:一是()。另一是()。 4.短路功率与短路电流标么值的关系是()。 5.单相接地短路的附加电抗是(),两相接地短路的附加电抗是()。 6.已知变压器的短路电压百分比,以额定值为基准值的电抗标么值为()。 二、选择题 1.短路电流计算中,电路元件的参数采用()。 A.基准值 B.标么值 C.额定值 D.有名值 2.短路电流计算中,下列假设条件错误的是()。 A.三向系统对称运行B各电源的电动势相位相同C各元件的磁路不饱和D.同步电机不设自动励磁装置 3.220KV系统的基准电压为()。 A.220KV B.242KV C.230KV D.200KV 4.短路电流的计算按系统内()。 A.正常运行方式 B. 最小运行方式 C. 最大运行方式 D. 满足负荷运行方式

5.只有发生()故障,零序电流才会出现。 A.相间故障 B.振荡时 C.不对称接地故障或非全相运行时 D.短路 6.在负序网络中,负序阻抗与正序阻抗不相同的是()。 A.变压器 B.发电机 C.电抗器 D.架空线路 7.发生三相对称短路时,短路电流为()。 A.正序分量 B.负序分量 C.零序分量 D.正序和负序分量 8.零序电流的分布主要取决于()。 A.发电机是否接地 B.运行中变压器中性点、接地点的分布 C.用电设备的外壳是否接地 D.故障电流 9.电路元件的标么值为()。 A.有名值与基准值之比 B. 有名值与额定值之比 C. 基准值与有名值之比 D.额定值与有名值之比 三、简答题 1.什么是电力系统的短路?短路故障有哪几种类型?哪些是对称短路?哪些是不对称短路? 2.什么是标幺值?标么值有何特点? 3.是无穷大容量电力系统? 4.无穷大容量电力系统中发生短路时,短路电流如何变化? 5.什么是短路电流的周期分量、非周期分量、冲击短路电流、母线残压?

工厂供电短路电流及其计算

短路电流及其计算总结 第一节短路的原因、后果及其形式 一、短路的原因 1、电气设备载流部分绝缘损坏 2、运行人员误操作 3、鸟兽为害事故 二、短路的后果 电流剧烈增加,系统中的电压大幅度下降产生严重后果: 1、短路电流的热效应会使设备发热急剧增加,可能导致设 备过热而损坏甚至烧毁; 2、短路电流产生很大的电动力,可引起设备机械变形、扭 曲甚至损坏; 3、短路时系统电压大幅度下降,严重影响电气设备的正常 工作; 4、严重的短路可导致并列运行的发电厂失去同步而解列, 破坏系统的稳定性; 5、不对称短路产生的不平衡磁场,会对附近的通讯系统及 弱电设备产生电磁干扰,影响其正常工作; 三、短路的形式 三相短路、两相短路、单相短路、两相接地短路。 第二节无限大容量电力系统发生三相短路时的物

理过程和物理量 一、无限大容量电力系统发生三相短路时的物理过程: 无限大容量电力系统,是指供电容量相对于用户供电系统容量大得多的电力系统。 二、短路有关的物理量 1、短路电流周期分量 2、短路电流非周期分量 3、短路全电流 4、短路冲击电流 ) 高压电路发生三相短路时,一般可取,因此 在及以下的电力变压器和低压电路发生三相短路时,一般可取,因此 5、短路稳态电流 短路稳态电流是短路电流非周期分量衰减完毕以后的短路全电

流,其有效值用表示。 第三节无限大容量电力系统中短路电流的计算 1、概述 短路电流的计算方法,常用的有欧姆法和标幺制法。 2、采用欧姆法进行三相短路计算 在无限大容量系统中发生三相短路时,其三相短路电流周期分量有效值如下: 如果不计电阻,则三相短路电流周期分量有效值为 三相短路容量为 = 1、电力系统的阻抗计算 电力系统的电抗 2、电力变压器的阻抗计算 3、电力线路的阻抗计算 4、阻抗换算公式 3、采用标幺制法进行三相短路计算 电力系统电抗标幺制 电力变压器的电抗标幺值

电力系统短路电流计算书

电力系统短路电流计算书 Final revision by standardization team on December 10, 2020.

电力系统短路电流计算书 1短路电流计算的目的 a.电气接线方案的比较和选择。 b.选择和校验电气设备、载流导体。 c.继电保护的选择与整定。 d.接地装置的设计及确定中性点接地方式。 e.大、中型电动机起动。 2短路电流计算中常用符号含义及其用途 I-次暂态短路电流,用于继电保护整定及校验断路器额定断充容量。 a. 2 I-三相短路电流第一周期全电流有效值,用于校验电气设备和母线的动稳定及b. ch 断路器额定断流容量。 i-三相短路冲击电流,用于校验电气设备及母线的动稳定。 c. ch d.I∞-三相短路电流稳态有效值,用于校验电气设备和导体的热稳定。 e."z S-次暂态三相短路容量,用于检验断路器遮断容量。 f.S∞-稳态三相短路容量,用于校验电气设备及导体的热稳定. 3短路电流计算的几个基本假设前提 a.磁路饱和、磁滞忽略不计。即系统中各元件呈线性,参数恒定,可以运用叠加原 理。 b.在系统中三相除不对称故障处以外,都认为是三相对称的。 c.各元件的电阻比电抗小得多,可以忽略不计,所以各元件均可用纯电抗表示。

d.短路性质为金属性短路,过渡电阻忽略不计。 4基准值的选择 为了计算方便,通常取基准容量S b=100MVA,基准电压U b取各级电压的平均电压,即 U b =U p = ,基准电流 b b I S = ;基准电抗2 b b b b X U U ==。 常用基准值表(S b=100MVA) 各电气元件电抗标么值计算公式

短路电流计算公式修订稿

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数

Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量 Sjz =100 MVA 基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)因为S=*U*I 所以 IJZ (KA)(2)标么值计算 容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量 S* = 200/100=2.

[电气工程师]短路电流计算公式归纳

3U B 3U B S T U U S 短路电流计算 在电力系统短路电流计算中,假设各元件的磁路不饱和的目的 :可以应用叠加原理, 在短路的实用计算中,通常只用周期分量电流的有效值来计算短路功率 标么值:任意一个物理量对基准值的比值。U I Z , S U I S U 2 基准值 S B 3U B I B , I B B , Z B B S B 发电机标么值电抗: X X G % ( U GN )2 B G 100 U B S 变压器标么值电抗: X U k % ( U N ) 2 S B 线路标么值电抗: X L X 100 U B B L 2 B X % U S 电抗器标么值电抗: X R B R 100 2 B 不同基准值的标幺值之间的换算: X X ( U N )2 S B B N U B S N 三相短路:短路点电压为零,各相短路电流相等,短路电流只包含正序分量。 无限大系统供电网络短路时,电源电压保持不变,U 1,短路容量的标么值和短路电 流的标么值相等,短路电流周期分量标么值 I f U X f 1 X f S f ,短路电流: I f I f B ,短路容量:S f S f S B ,S f 3U av I f 短路容量用来校验开关的切断 能力。 转移阻抗:任意两个接点之间的等值电抗。 无限大功率电源供电电路的短路电流在暂态过程中包含交流分量和直流分量。 短路冲击电流:短路电流最大瞬时值,在短路发生后约半个周期出现,短路后 0.01s 的 瞬时值, i m 2K m I f 用于校验设备的动稳定。K m 为冲击系数,当短路发生在发电机 电压母线时, K m 1.9 ,当短路发生在发电厂高压母线时, K m 1.85 ,当短路发生在其他地点, K m 1.8 。 非周期电流的初值越大,暂态过程中短路电流最大瞬时值越大。它与短路发生时刻有关, 与短路发生时电源电势的初始相角(合闸角) 有关。短路电流冲击值在短路前空载, 电压初相位为0的情况下最大。 序阻抗:静止磁耦合元件(线路、电抗器、变压器)正序阻抗和负序阻抗相等 Z 1 Z 2 ; 零序电抗比正序电抗大。变压器零序等值电路与外电路的连接,取决于零序电流的流通 S GN S N

3短路电流及其计算课后习题解析(精选、)

习题和思考题 3-1.什么叫短路?短路的类型有哪些?造成短路故障的原因有哪些?短路有哪些危害?短路电流计算的目的是什么? 答:所谓短路,就是指供电系统中不等电位的导体在电气上被短接,如相与相之间、相与地之间的短接等。其特征就是短接前后两点的电位差会发生显著的变化。 在三相供电系统中可能发生的主要短路类型有三相短路、两相短路、两相接地短路及单相接地短路。三相短路称为对称短路,其余均称为不对称短路。在供电系统实际运行中,发生单相接地短路的几率最大,发生三相对称短路的几率最小,但通常三相短路的短路电流最大,危害也最严重,所以短路电流计算的重点是三相短路电流计算。 供电系统发生短路的原因有: (1)电力系统中电气设备载流导体的绝缘损坏。造成绝缘损坏的原因主要有设备长期运行绝缘自然老化、设备缺陷、设计安装有误、操作过电压以及绝缘受到机械损伤等。 (2)运行人员不遵守操作规程发生的误操作。如带负荷拉、合隔离开关(内部仅有简单的灭弧装置或不含灭弧装置),检修后忘拆除地线合闸等; (3)自然灾害。如雷电过电压击穿设备绝缘,大风、冰雪、地震造成线路倒杆以及鸟兽跨越在裸导体上引起短路等。 发生短路故障时,由于短路回路中的阻抗大大减小,短路电流与正常工作电流相比增加很大(通常是正常工作电流的十几倍到几十倍)。同时,系统电压降低,离短路点越近电压降低越大,三相短路时,短路点的电压可能降低到零。因此,短路将会造成严重危害。 (1)短路产生很大的热量,造成导体温度升高,将绝缘损坏; (2)短路产生巨大的电动力,使电气设备受到变形或机械损坏; (3)短路使系统电压严重降低,电器设备正常工作受到破坏,例如,异步电动机的转矩与外施电压的平方成正比,当电压降低时,其转矩降低使转速减慢,造成电动机过热而烧坏; (4)短路造成停电,给国民经济带来损失,给人民生活带来不便; (5)严重的短路影响电力系统运行稳定性,使并列的同步发电机失步,造成系统解列,甚至崩溃; (6)单相对地短路时,电流产生较强的不平衡磁场,对附近通信线路和弱电设备产生严重电磁干扰,影响其正常工作。 计算短路电流的目的是: (1)选择电气设备和载流导体,必须用短路电流校验其热稳定性和动稳定性。

短路电流计算

短路电流计算 第一节概述 一、电力系统或电气设备的短路故障原因 (1)自然方面的原因。如雷击、雾闪、暴风雪、动物活动、大气污染、其他外力破坏等等,造成单相接地短路和相间短路。 (2)人为原因。如误操作、运行方式不当、运行维护不良或安装调试错误,导致电气地设备过负荷、过电压、设备损坏等等造成单相接地短路和相间短路。 (3)设备本身原因。如设备制造质量、设备本身缺陷、绝缘老化等等造成单相接地短路和相间短路。 二、短路种类 1.单相接地短路 电力系统及电气设备最常见的短路是单相接地,约占全部短路的75%以上。对大电流接地系统,继电保护应尽快切断单相接地短路。对中性点经小电阻或中阻接地系统,继电保护应瞬时或延时切断单相接地短路。对中性点不接地系统,当单相接地电流超过允许值时,继电保护亦应有选择性地切断单相接地短路。对中性点经消弧线圈接地或不接地系统,单相接地电流不超过允许值时,允许短时间单相接地运行,但要求尽快消除单相接地短路点。 2.两相接地短路 两相接地短路一般不超过全部短路的10%。大电流接地系统中,两相接地短路大部分发生于同一地点,少数在不同地点发生两相接地短路。中性点非直接接地的系统中,常见是发生一点接地,而后其他两相对地电压升高,在绝缘薄弱处将绝缘击穿造成第二点接地,此两点多数不在同一点,但也有时在同一点,继电保护应尽快切断两相接地短路。 3.两相及三相短路 两相及三相短路不超过全部短路的10%。这种短路更为严重,继电保护应迅速切断两相及三相短路。

4.断相或断相接地 线路断相一般伴随相接地。而发电厂的断相,大都是断路器合闸或分闸时有一相拒动造成两相运行,或电机绕组一相开焊的断相,或三相熔断器熔断一相的两相运行,两相运行一般不允许长期存在,应由继电保护自动或运行人员手动断开健全相。 5.绕组匝间短路 这种短路多发生在发电机、变压器、电动机、调相机等电机电器的绕组中,虽然占全部短路的概率很少,但对某一电机来说却不一定。例如,变压器绕组匝间短路占变压器全部短路的比例相当大,这种短路能严重损坏设备,要求继电保护迅速切除这种短路。 6.转换性故障和重叠性故障 发生以上五种故障之一,有时由于故障的演变和扩大,可能由一种故障转换为另一种故障,或发生两种及两种以上的故障(称之复故障),这种故障不超过全部故障的5%。 第二节 对称短路电流计算 一、阻抗归算 为方便和简化科计算,通常将发电机、变压器、电抗器、线路等元件的阻抗归算至同一基准容量bs S (一般取100MVA 或1000MVA 基准容量)和基准电压bs U (一般取电网的平均额定电压bv U )时的基准标么阻抗(以下不作单独说明,简称标么阻抗);归算至额定容量的标么阻抗称相对阻抗。 (一)标么阻抗的归算 1.发电机等旋转电机阻抗的归算 发电机等旋转电机一般给出的是额定条件下阻抗对值,其标么可按下式计算 bs G G GN S X X S * = (1-1) 式中 G X * ——发电机在基准条件下电抗的标么值; G X ——发电机额定条件电抗的标对值; G X ——基准容量(MVA );

相关主题