搜档网
当前位置:搜档网 › 化工原理课程设计(循环水冷却器设计说明书)

化工原理课程设计(循环水冷却器设计说明书)

化工原理课程设计(循环水冷却器设计说明书)
化工原理课程设计(循环水冷却器设计说明书)

齐齐哈尔大学

化工原理课程设计

题目循环水冷却器的设计

学院化学与化学工程学院

专业班级制药工程

学生夏天

指导教师吕君

成绩

2016年07月01日

目录

摘要……………………………………………………………………………错误!未定义书签。Abstract………………………………………………………………………………错误!未定义书签。

第1章绪论 (1)

1.1设计题目:循环水冷却器的设计 (1)

1.2设计日任务及操作条件 (1)

1.3厂址:地区 (1)

第2章主要物性参数表 (1)

第3章工艺计算 (2)

3.1确定设计方案 (2)

3.2核算总传热系数 (4)

3.3核算压强降 (6)

第4章设备参数的计算 (8)

4.1确定换热器的代号 (8)

(9)

4.2计算壳体径D

4.3管根数及排列要求 (9)

4.4计算换热器壳体的壁厚 (9)

4.5选择换热器的封头 (11)

4.6选择容器法兰 (11)

4.7选择管法兰和接管 (13)

4.8选择管箱 (14)

4.9折流挡板的设计 (15)

4.10支座选用 (16)

4.11拉杆的选用和设置 (16)

4.12垫片的使用 (18)

总结评述 (20)

参考文献 (21)

主要符号说明 (22)

附表1 (24)

附表2 (25)

致 (26)

摘要

在国外的化工生产工程中,列管式换热器在目前所用的换热器中应用极为广泛——由于它具有结构牢固,易于制造,生产成本较低等特点。

管壳式换热器作为一种传统的标准换热器,在许多部门中都被大量使用。其结构由许多管子所组成的管束,并把这些管束固定在管板上,热管板和外壳连接在一起。为了增加流体在管外的流速,以改善它的给热情况在筒体安装了多块挡板。

我们的进行作业时列管换热器的设计,根据所给的任务,进行综合考虑。

首先确定流体流径。我们选择冷却水通入管,儿循环水通过入管间。

其次,我们确定两流体的定性温度,由于温度引起的热效应不大,可以选择固定管板式换热器。根据初算的总传热系数和热负荷,以及换热器的换热面积,换热器的根数和长度,来确定管程数。并查阅相关资料。

初步工作完成之后,对设备的各种参数校核,包括换热器壳体,封头,管箱,管板,法兰的选用等等,接着进行一系列的检查。

选择这些附件,不仅要与所选换热很好的匹配,而且要兼顾经济的要求,让换热器既造价低廉又坚固耐用,以达到即经济又实惠的效果。

换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备,在热交换器中,至少有两种温度不同的流体,一种是流体温度较高,放出热量,另一种是温度较低,吸收热量。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随意我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。

关键字:换热器;列管式换热器;循环水;冷却器

Abstract

Heat exchanger is part of the thermal fluid heat transfer to cold fluid equipment, in order to realize the different temperature of heat transfer between fluid, also called heat exchanger. Heat exchanger is to realize the heat exchange and transmission in the process of chemical production indispensable equipment, in the heat exchanger, there are at least two different fluid temperature, fluid temperature is higher, one is gives off heat, the other is a low temperature, absorption of heat.

In chemical, petroleum, power, refrigeration, food and other industries widely used in all kinds of heat exchanger, and they are universal equipment, these industry occupies very important position. Optional constant development of the industry in our country, to the requirement of increasing the energy utilization, development and conservation, the requirement of the heat exchanger is also growing. The design and manufacture of heat exchanger structure improvement and the heat transfer mechanism of research is very active, appeared some new high efficiency heat exchanger. According to different purposes, the heat exchanger can be heat exchanger, heater, cooler, evaporator, condenser, etc. Because of the different conditions of use, heat exchanger can have various forms and structures. In production, heat exchanger is a separate equipment sometimes, sometimes, is a part of the process equipment.

Key Words:Heat exchanger;Shell and tube heat exchanger;Floating-head type

第1章绪论

1.1 设计题目

循环水冷却器的设计

1.2 设计任务及操作条件

1.2.1 设计任务

①处理能力:72000kg/h

②设备型式:列管式换热器

1.2.2 操作条件

①循环水:入口温度55℃,出口温度40℃

②冷却介质水:入口温度25℃,出口温度35℃

③管程和壳程的压强不大于1.0MPa

④换热器的热损失4%

1.3 厂址

地区

第2章主要物性参数表

=(25+35)/2=30℃

在定性温度下:t

定冷

=(55+40)/2=47.5℃

t

定循

表2-1 物性参数表

第3章 工艺计算

3.1 确定设计方案

3.1.1 选择换热器的类型

(1)两种流体的变化情况:

热流体(循环水)进口温度55℃,出口温度40℃; 冷流体(冷却水)进口温度25℃,出口温度35℃; 冷水定性温度: t 定冷=(25+35)/2=30℃ 循环水定性温度:t 定循=(55+40)/2=47.5℃

由于两流体温差小于50℃,不必考虑热补偿。因此初步确定选择用固定管板式换热器。

(2)流程安排:

由于该换热器是具有冷却水冷凝的换热器,应使循环水走壳程,以便于排除冷却水。

3.1.2计算热负荷和冷却水流量

(1)热负荷的计算

h Q =m h c ph △t 1 (3-1)

物性 密度㎏/m 2

比热容kJ/(kg ℃

粘度Pas 导热系数w/m ℃ 进口温度℃ 出口温度℃

壳程(循环水) 管程(冷却水)

符号 ρ C p1 μ1 λ T 1 T 2

数据 988.1 4.174 549.4×10-6

647.8×10-3

55 40

符号 ρ C p1 μ2 λ t 2 t 2

数据 995.7 4.174 800.7×10-6

617.6×10-3

25 35

=(72000/3600) ×4174×(55-40)

=1.252×106w

热负荷

Q=Q h-Q (3-2) h

=(1-5%)Q h

=0.96×1.252×106w

=1.202×106w

(2)冷却水流量的计算

Q=0.96m h c ph(T1-T2) (3-3) h

=m h c ph(t1-t2)

所以m c=0.96×72000×4.174×(55-40)/3600×4.174×(35-25)

=28.8㎏/s

3.1.3计算两流体的平均温差,确定管程数

(1)平均传热温差

△t m=△t1-△t2/ln(△t1-△t2)(按逆流计算)(3-4)

其中:△t1=55-35=10℃;△t2=40-25=15℃

△t m=17.38℃

P=t2-t1/T1-t1=0.33

R=T1-T2/t1-t2=1.5

由P、R值查阅《化工原理》(大学)(上册)图4-19,可得:Ψ△t=0.92,则有△t m=0.92×17.38=15.99℃

(2)确定管程数

由于Ψ△t=0.92〉0.8,故此换热器应选用单壳程。

3.1.4工艺结构尺寸

(1)初选换热器的规格

假设K=850 W/(mk)

则估算的传热面积为:

A=Q/K△tm=88.44㎡

(2)管径和管流速

选用Φ25×2.5的碳钢传热器

取管流速为u i=0.5m/s

(3)估算管程数和传热管数V=n s3.14/4d i2u i

由4.1.2可知:冷却水用量=28.8kg/s 则

Mc/ ρc=0.0289m 3/s

N s =4V/(3.14(0.02)2×0.5)=184根

根据列管式换热器传统标准,此数据可选取按单程算,所需的单程热管 长度 L=A/3.14d i n s =7.65m (3-5) 取传热管长l=8m

则该传热管的管程数为:Np=L/l=1 传热总根数N T =N p n s =1×184=184根 实际传热面积S o =N3.14d (1-0.1)=91.29㎡ 则要求过程的总传热系数为

Ko=Q/So △t m =693w/(㎡·℃) (3-6) 该换热器的基本结构参数如下:

表4-1换热器的基本结构参数

公称直径:500m 工程压强:1.0MPa 总管数:NT=184根

管间距:t=32mm 管数:184 管程数:m=1 管长:8.0m

工程面积:80㎡

管子排列方式:正三角形排列

3.2 核算总传热系数

3.2.1 管程对流传热系数

222

05778.01

184

02.0414.3n 4

m N d A p i i =??=?

?=

π

s m A V s s /5002.005778.0/0289.0/u i ===

37.1243500008007

.07

.9955002.002.0=??=

=

c

i

c i ei u

d R μρ

普兰特准数:

42.5617

.000008007.010174.43=??==

c

c

ph c P ri λμ

)

K W/(m 5.2631)42.5()4.12435(02.0617

.0023.0Pr Re 23

.0 23

.08.04.08

.0=???

==i

i

i d λ

α

3.2.2壳程传热系数

取换热器管心距t=32 mm 壳程流通截面积为:

)/1(0t d hD A -= (3-7)

其中:h -折流板间距。取为300㎜。 D -壳体公称直径,取为600㎜ d -管子外径,可取25㎜ t -中心距,可取32㎜。 壳程流体流速:

s m A V c /5125.0)039.01.9883600/(72000/u 00=??==

当量直径按三角形排列有:当量直径

m

d d t 0202.0)/()4/866.0(4d 02

02e =-=ππ

87.187090005494

.01

.9885125.00202.0Re 0

0=??=

=

c

c e u

d μρ

普兰特准数:

4.53478

.6010494.501074.14Pr 330=???==

-c

c

pc c λμ

用壳方流体的对流传热系数的关联式计算

)W/(m 8.373895.054.39.448100202

.06478

.036.0 231

55.00℃=????=α

带入数据得:

℃·/8.373895.0524.10202

.06478

.036.020m w =???=α

3.2.3 计算总传热系数

)1(1

0000o

so m i si i i R d bd d d R d d K αλα++++=

(3-9)

其中:10,αα——壳程管程对流传热系统w/㎡·℃ m i d d d ,,0——换热管外径径和外径的平均值mm 0,s si R R ——管侧外侧污垢热阻㎡·℃/w

b ——换热器壁厚,取 0.0025m

λ——碳钢的导热系数,取45 w/㎡·

℃ 管壁热阻碳钢在该条件下λ=45 w/㎡·℃ W m R w /·1006.045

0025.023℃-?==

20/87.980)100002.0025

.006.08.3738100009.002.0025.000009.05.263102.0025.0(

1

m w K =??+++?+?=

计算安全系数%40.15%100850

850

87.980=?-=-=

选选计k k k 核算表明该换热器可以完成任务。

3.3 核算压强降

3.3.1 管程流体阻力

t p i F N P P P ]

11[21)(?+?=∑? (3-10)

2,22i i i p u d L p N ρλ=?= (3-11)

(1)对于ΔP 1的计算:管程流通截

2220578.0414

.3118402.0·4·m N n d A P i i =??==π

由此可知s m A V u i i i /5.00578

.00289

.0===

37.1243510

07.805

.002.07.9955

-=???=

=

μ

ρi

i ei u d R 设管壁粗糙度005.020

1

.0,1.0==

=i

d mm ε

ε λ=0.037代入1P ?计算式

ΔP 1=0.037×Pa 23.9582

51.07.99502.06037.02

1=???=?)(P (2) 对于2P ?的计算

Pa u P 38.3732

)5.0(7.9953232

22=??==?ρ

(3) 对于i P ∑?的计算

则:Pa N F P P P p t i 53.372824.1)38.37323.958()('

2'1=??+=?+?=∑?

由此可知,管程流通阻力在允许围之。

3.3.2 壳程压强降校核

s s F N P P P ]12['2'10)(?+?=∑? (3-12) 其中: 2

)

1(20

0'

1

u N n Ff P B c ρ+=? (3-13)

2)

25.3(2

'2

u D h N P B ρ-=?

Fs 是壳程压强降届后校正因数,液体取1.15 Ns 是壳程数,为1

(1)对于'1P ?

的计算

由于换热器列管呈三角形排列F=0.5

9.141841.11.1===n N c 取折流板间距为300mm ;

1213

.08=-=b N 块

壳程的流通面积

㎡06809.0)025.09.146.0(3.0)(00=?-?=-=d n D h A c

3.006809

.01.988360072000000=??==

A V u

89.13365104.5491

.9883.0025.0Re 6

000=???=

=

ρ

u d

可见0Re >500故可应用下式计算0f

573.089.133650.5Re 0.5228.0228

.000=?==--f

Pa

u N n Ff B c 55.24672

)

3.0(1.988)

112(9.14573.05.02

)

1( P 2

20

0'1

=?+???=

+=?ρ

(2)对于'2P ? 的计算

Pa u D h N P B 94.13332)3.0(1.988)6.03.025.3(122)25.3(2

2

0'

2

=???-?=-=?ρ

(3)对于0P ∑ 的计算

Pa F N P P P s s 1.1064424.1)94.133355.2467()(]

12['2'10=??+=?+?=∑

计算表明: 管程压强降为2467.55Pa ,小于压强1.0MPa

壳程压强降为1333.94Pa ,亦小于设计压1.0MPa

综上可知,管程和壳程压强降均能满足题设要求

第4章 设备参数的计算

4.1 确定换热器的代号

4.1.1 换热器的代号

所选换热器的代号为 ]13[806.1500----G

4.1.2 确定方法

此代号根据工艺计算反列管式固定管板式换热器系列标准对G 系列列管式固定管板

换热器的规定。查化学化工出版杜《化工工艺设计手册》(上)第120页表3-10《列管式固定管板换热器标准图号和设备型号》得到壳体径D i ,公称压强,管根数及排列要求而确定。

4.2 计算壳体径Di

公式:'

2)1(b n D c i +-= (4-1) 其中:t ——管中心距, m 对5.225?Φ

c n ——横过管束中心线的管线,用n n c 1.1=计算

'b ——管束中心线上2管的中心到壳体辟的距离,取0'5.1d b = 计算:

mm m D i 500452.00025.05.12)192.14(032.0≈=??+-?=

4.3 管根数及排列要求

(1)换热器采用5.225?Φ的无缝钢管,材质选用可焊接性好的10号钢,管长8m ,共184根管。

(2)排列方式及管中心距的确定 1)可该换热器列管采用三角排列

2)管子与管板采用焊接,故可取25.1=t mm d 320=

4.4 计算换热器壳的壁厚

4.4.1 选适宜的壳体材料

根据《化工设备手册-材料与部件》()第102页压力容器用碳素碳及普通低合金厚板钢)69536(-B Y ,换热器公称压强为MPa 6.1选用F A 3钢板。

4.4.2该钢板的主要工艺参数性能

加工工艺性能好,可冷卷,气割下料开坡口,炭弧气刨挑焊根开坡口。冷冲压力热冲压性能好,使用温度℃475~20-,可以作中低压设备,所以简体材质选用F A 3钢板,钢板标准3274GB 。

4.4.3壁厚的计算

(1)公式: ?+++=21C C p δδ (4-2) 其中:p δ——钢板在不考虑加工裕量时的厚度,mm

δ——计算厚度,mm

1C ——钢板负偏差,mm 2C ——腐蚀裕量,mm ?——圆整值

式中为设计厚度,可用下式计算: ]

14[2][2C Pc

PcDi t

d +-Φ=

σδ (4-3) 其中:Pc ——设计压力,取MPa 6.1 Di ——壳体径,mm

t ][σ——设计温度下材料的许用应力,MPa Φ——焊缝系数

(2)查算:依据《化工设备机械基础》(华东理工大学)表14-3,《钢制压力容器中使用的钢板许用应力》可得t ][σ=113MPa ,依表14-4《焊缝系数》可得Φ=0.85,依表14-6《腐蚀裕量》可得2C =2mm 。

2.626

.185.01132500

6.1=+-???=

d δ

依《化工设备机械基础》(华东理工大学)表14-5,《钢板厚度常用规格及其负偏差》

得1C =0.6mm ,?=1.2mm 。

故mm C d p 0.82.16.02.6]15[1=++=?++=δδ 可根据65708/-JB 选用厚度为8mm 的钢板材质F A 3

(3)水压实验强度校核

水压试验应力为Φ+=e e i T T D P δδσ2)(]

16[ (4-4)

式中:MPa P P T 0.26.125.125.1=?==

mm C C p e 4.526.00.821=--=--=δδ

将有关数据代入原式可得

MPa 11.11085

.04.52)4.5500(0.2T =??+?=σ

查阅《化工设备机械基础》(华东理工大学)表14-3,《钢制压力容器中使用的钢许用应力》可得到F A 3钢制容器在常温水压试验时MPa s 235=σ

从而,有MPa s T 5.2112359.09.0][=?==σσ所以壳体壁厚满足水压试验的强度要求。

4.5 选择换热器的封头

(1)公式:

215.0][2C C p D p t

t

i

D d ++-Φ=

σσ (4-5) 其中:由于mm D i 1200500<=,用整块钢板冲压成型,此时 mm C mm C MPa Pc 0.2,6.0,0.1,121====Φ

(2)计算:mm d 62.50.26.06

.15.0189.1312500

6.1=++?-???=

σ

(3)选择适宜厚度,并确定封头型式规格

根据《化工设备手册材料与零部件》<上册>第327页椭圆封头731154-JB 应选封头mm ,且根据其选用一椭圆封头尺寸如下:

型式 公称直径 曲面高度 直边高度 椭圆形

500mm

125mm

0.309m 2

4.6 选择容器法兰

4.6.1 选择法兰的型式

选用甲型平焊容器法兰。已知换热器的公称压力为MPa PN 0.1=,公称直径500mm 。查阅《压力容器与化工设备使用手册》中3-1-1,《压力容器法兰分类》,宜采用甲型平焊容器法兰。法兰材料为板材Q235-B ,工作温度>-20摄氏度的最大工作压力为MPa 05.1,小于公称压力,故甲型平焊容器法兰最大允许工作压力满足要求。

4.6.2 确定法兰相关尺寸

查阅《压力容器与化工设备使用手册》第467页。表3-1-2(A)《甲型平焊法兰尺寸》和表3-1-2(B)《甲型平焊法兰质量》可得法兰相关尺寸如下表:

平面凸面凹面

法兰质量(kg)36.81 38.43 37.21

衬环质量(kg) 1.7 3.7 2.5

公称直径DN 法兰螺栓

D D1 D2 D3 D4 d 规格数量

500 630 590 555 545 542 44 23 20 28

4.6.3 选用法兰并确定标记

选用甲型平焊容器(凹凸密封面)为宜

标记为:法兰6.1

T

500-

/-

JB

4701

-AT2000

结构如图

FM

图4-3法兰

4.7选择管法兰和接管

4.7.1热流体进出口接管

取接管热流体流速为u=1.7/ m s ,则接管径为

mm

u V D 125]7.114.3/0289.04[)]./(4[21

2

1

11=??==π 可取接管:4133??mm,长150mm 两个

4.7.2冷流体进出口接管

取接管流体流速u 2=1.5m/s,则接管径为

mm

u V D 156)]65.114.3/(7.995/8.284[)]/(4[2

1

21

22=??==π

可取接管:Φ159×4.5,长150 mm 两

表4—3钢制管法兰(HGJ45-91)

4.7.3选择法兰

根据公式直径与公称压力选用板式干旱钢制管法兰。 HG20593-97 SO150-2.5RF 16M n

4.8 选择管箱

查阅《化工设备标准图册》,选择封头管箱,材料为 A3F 钢,其简图如下所示:

公称 直径DN

管子 外径 A

连接尺寸

螺栓柱 法 兰 径 B

法兰外 径D

螺栓孔 中心圆 直径K

螺栓孔直径L 螺栓 孔数 n

螺栓 长度

螺柱 长度

法兰 厚度 C

156 159 220 180 18 6 65 85 18 110 125

133

250

210

18

6

70

90

20

135

图4-4封头管箱

4.9 折流挡板的设计

查阅《换热器原理及计算》根据换热器的要求,选择厚度为5mm的圆缺形挡板。

其参数如下:

两板间距离: h=D(0.2-1)=300mm

折流板高度: H=500(1-25%)=375mm

折流挡板个数: N=L/h -1=8/0.3 -1=12块

折流挡板厚度:δ=5mm

4.10支座选用

查阅《化工设备设计手册材料与零部件》第625页, 选用A 3F 材料,采用鞍式支座 Dg500AJB1167-73. 尺寸如下表

表5-4鞍式支座DG500AJB1167-73

图4-6鞍式支座

4.11 拉杆的选用和设置

4.11.1拉杆的选用

查阅《化工过程和设备设计》 第15页表可知:

公称直径 DN 每个支座允许负荷 t b

L

B

K1

b

m

500

23.0

160 460 120 330 90 200

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

循环水冷却器

化工原理课程设计————循环水冷却器设计 学院:化工学院 专业班级:高分子061班 姓名:李猛 学号: 2006016050 指导教师:徐功娣 时间:2009年6月25-30日

目录 1 设计任务书 (1) 2 设计摘要 (2) 3 主要物性参数表 (4) 4 工艺计算 (5) 4.1 确定设计方案 (5) 4.1.1 选择换热器的类型 (5) 4.1.2 计算热负荷和冷却水流量 (5) 4.1.3 计算两流体的平均温差,确定管程数 (6) 4.1.4 工艺结构尺寸 (6) 4.2 核算总传热系数 (8) 4.2.1 管程对流传热系数Ai (8) (9) 4.2.2 壳程流体传热系数 o 4.2.3 计算总传热系数K0 (10) 4.3 核算压强降 (12) 4.3.1 管程压强降 (12) 4.3.2 壳程压强降校核 (13) 5 设备参数的计算 (16) 5.1 确定换热器的代号 (16) 5.1.1 换热器的代号 (16) 5.1.2 确定方法 (16) D (16) 5.2 计算壳体内径 i 5.3 管根数及排列要求 (16) 5.4 计算换热器壳体壁厚 (17) 5.4.1 选适宜的壳体材料 (17) 5.4.2 该钢板的主要工艺参数性能 (17) 5.4.3 壁厚的计算 (17)

5.5 选择换热器的封头 (19) 5.6 选择容器法兰 (20) 5.6.1 选择法兰的型式 (20) 5.6.2 确定法兰相关尺寸 (20) 5.6.3 选用法兰并确定其标记 (21) 5.7 选择管法兰和接管 (22) 5.7.1 热流体进出口接管 (22) 5.7.2 冷流体进出口接管 (22) 5.7.3 选择管法兰 (23) 5.8 选择管箱 (23) 5.9 折流档板的设计 (24) 5.10 支座的选用 (24) 5.11 拉杆的选用和设置 (25) 5.11.1 拉杆的选用 (25) 5.11.2 拉杆的设置 (26) 5.12 确定管板尺寸 (26) 5.13 垫片的选用 (27) 5.13.1 设备法兰用垫片 (27) 5.13.2 管法兰用垫片 (28) 6 数据汇总 (29) 7 总结评述 (30) 8 参考文献 (32) 9 主要符号说明 (33) 10 附表 (35)

循环水管理规定

循环水使用指导书 1.目的 为确保公司循环水稳定运行,循环水新系统、新设备及新管线投用前正确的处理,确保设备的换热效率和使用年限,保障公司的循环水安全使用,特制订循环水使用指导书。 2.适用范围 本文件适用于宁波万华工业园各循环水用户的使用及操作参考。 3.换热器投用前的操作注意事项 新的冷却水换热设备及管线使用前需要进行预处理,根据实际情况制做预处理方案,对其进行冲洗、预膜、钝化等处理后,再投入使用,否则会有结垢或者腐蚀的风险,具体步骤见清洗预膜方案。 4.循环水换热器投用后的运行参考 4.1管程换热器,循环冷却水管程流速不宜小于0.9m/s;壳程换热器,循环冷却水壳程流速小于0.3m/s时,当换热器流速过低时,会导致循环水内的污泥沉积,从而加速腐蚀速率,必要时应采取防腐涂层、反向冲洗等措施; 4.2设备传热面冷却水侧壁温不高于70度; 4.3短期停车时不要关闭换热器阀门,以免形成死水,会有积沉腐蚀的风险,若停车时间超过一周以上,需要将换热器进出水阀门关闭,将换热器内的水放空,必要时采用氮气保护,开车时对换热器进行循环水冲刷排放; 4.4不同材质换热器性能比较

当物料泄漏至循环水后,会对循环水水质造成影响,容易滋生微生物等,加速循环水系统的腐蚀速率;所以当发生物料泄漏至循环水后,泄漏装置确认泄漏点,并告知所在循环水系统运行部门泄漏物质及泄漏量,循环水系统关注冷却水水质影响,并联系水处理公司至现场查找原因。 确认泄露后,循环水系统运行部门加强循环水水质监控,联系水处理公司提供技术支持,换热设备循环水侧打开后可联系水处理公司做换热器定检报告。 6. 换热器的检修维护说明 6.1检修期间,必要时需用高压水枪对换热器(石墨换热器不能使用水枪冲洗)进行冲洗,物理剥除存在的锈瘤; 6.2管板、管口是最易发生腐蚀的地方,宁波水质很软,腐蚀压力极大,必要时需要对管板涂防腐漆。 6.3封头、管板处水流较缓,易发生颗粒物粘附沉积,引起垢下腐蚀,必要时可以涂防锈漆。 6.4装置开车后进行清洗预膜后再投入使用; 7.循环水系统清洗预膜方案 预处理目的 所有的冷却水系统应在开工前清洗并预膜,一个良好的预处理方案可以延长设备使用寿命和最大程度的发挥生产能力。 清洗预膜方案与操作详见附件 清洗预膜.doc

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

化工课程设计小结

化工原理课程设计小结 随着毕业日子的到来,课程设计也接近了尾声。经过几周的奋战我的课程设计终于完成了。在没有做课程设计以前觉得课程设计只是对这几年来所学知识的单纯总结,但是通过这次做课程设计发现自己的看法有点太片面。课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次课程设计使我明白了自己原来知识还比较欠缺。自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。 在这次课程设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。 我的心得也就这么多了,总之,不管学会的还是学不会的的确觉得困难比较多,真是万事开头难,不知道如何入手。最后终于做完了有种如释重负的感觉。此外,还得出一个结论:知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现是两回事,所以我认为只有到真正会用的时候才是真的学会了。 在此要感谢我们的指导老师罗老师、朱老师和李老师对我们悉心的指导,感谢老师们给我们的帮助。在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。 课程设计报告主要包括以下几个方面. 1.封面(根据自己的个性设计)2.目录3.主界面(介绍这次设计的课题、人员、目标、任务、人员分工)4.主要过程(要告诉别人你的这个作品该怎么用)5.程序流程图(用图来表示主要过程)6.核心源程序(你觉得这个作品它具备的主要功能是什么,就将实现这个功能的代码给COPY下来)7.主要函数(你程序代码里用的函数中你觉得重要的或是难的)8.心得9.附录(你完成这次课程设计参考的书,这个可以多写一点,以示用心认真) 我第一次做课程设计时写报告就是这么写的.你参考参考.希望能对你有些帮助

化工原理课程设计(循环水冷却器设计说明书)

齐齐哈尔大学 化工原理课程设计 题目循环水冷却器的设计 学院化学与化学工程学院 专业班级制药工程 学生姓名夏天 指导教师吕君 成绩 2016年 07月 01日 目录

摘要.......................................................................................错误!未定义书签。Abstract..........................................................................................错误!未定义书签。第1章绪论 (1) 1.1设计题目:循环水冷却器的设计 (1) 1.2设计日任务及操作条件 (1) 1.3厂址:齐齐哈尔地区 (1) 第2章主要物性参数表 (1) 第3章工艺计算 (2) 3.1确定设计方案 (2) 3.2核算总传热系数 (4) 3.3核算压强降 (6) 第4章设备参数的计算 (8) 4.1确定换热器的代号 (8) 4.2计算壳体内径DⅠ (9) 4.3管根数及排列要求 (9) 4.4计算换热器壳体的壁厚 (9) 4.5选择换热器的封头 (11) 4.6选择容器法兰 (11) 4.7选择管法兰和接管 (13) 4.8选择管箱 (14) 4.9折流挡板的设计 (15) 4.10支座选用 (16) 4.11拉杆的选用和设置 (16) 4.12垫片的使用 (18) 总结评述 (20) 参考文献 (21) 主要符号说明 (22)

附表1 (24) 附表2 (25) 致谢 (26)

循环水冷却知识汇总

循环水冷却知识汇总 问:给排水循环水冷却塔是什么? 答:干式冷却塔干式冷却难的热水在散热翅管内流动,靠与管外空气的温差,形成接触传热而冷却。所以干式冷却塔的特点是:①没有水的蒸发损失,也无风吹和排污损失,所以干式冷却塔适合于缺水地区,如我国的北方地区。因为没有蒸发,所以也没有但空气从冷却塔出口排出所造成的污染。②水的冷却靠接触传热,冷却极限为空气的干球温度效率低,冷却水温高。③需要大量的金属管(铝管或钢管),因此造价为同容量湿式塔的4~6倍。因干式冷却塔有后两点不利因素,所以在有条件的地区,应尽量采用湿塔。干塔可以用自然通风,也可以用机械通风。以火电厂常用的干式冷却塔为例,分为间接冷却和直接冷却两类。间接冷却是指用冷却塔中冷却后的水,送往凝汽器中冷却由汽轮机井出的乏汽。直接冷却是指不用凝汽器,将汽轮机排出的乏汽,用管道引人冷却塔直接冷却,变为凝结水,用水泵送回锅炉重复使用。海勒(Heller)系统间接空冷干式自然通风冷却塔。它的特点是使用喷射式凝汽器,汽轮机排出的乏汽与从冷却塔来的冷水,在凝汽器内直接混合,因此端差很小。混合后的水,约2%送回锅炉,其余的水送到冷却塔冷却。因冷却水和锅炉水为同一种水,所以对水质要求高。另外一个特点是,经冷却塔冷却后的水仍有较大的余压,在送人凝汽器以前,先用小型水轮发电机口收能量。它的散热器放在塔简的外边,类似湿式横流塔。散热器也可以像湿式逆流塔一样放在塔筒里面,但为了排走散热器中的水,散热器不是完全水平布置,而有一定的坡度。另外一种间接空冷塔,使用表面式凝汽器,乏汽和冷却水互不相混。散热器用翅片管或螺纹管,材质为钢或铝。管断面为椭圆形或圆形。直接空冷塔从汽轮机排出的乏汽,通过管道直接送入冷却塔内的散热管,用风机通风冷却成凝结水,不要凝汽器,所以称直接空冷。因为是将蒸汽直接送人散热管,而不像间接空冷送人冷却塔的是热水、因蒸汽体积比水大得多,所以送汽管特别粗,直径约为间接空冷的三倍多。另外,输汽管道不能漏汽,不然就会直接影响汽轮机真空,降低出力。干湿式冷却塔这种塔为湿式塔和干式塔的结合,干部在上、湿部在下。也有的塔四面进风,相对两边为湿部;另外两边为干部。采用这种塔的目的,部分是为了省水,但大多数是为了消除从塔出口排出的饱和空气的凝结,因而造成塔周围的污染。从塔下部湿段排出的湿空气,在同塔周围的冷空气接触后,即变成过饱和的空气而凝结,形成雾,造成污染。塔上部用干段,则由塔下部湿段排出的饱和湿空气,流经干段时,会被加热而变成不饱和的空气,因而出塔后不会凝结。喷流式冷却塔。为美国

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

循环水冷却器设计

循环水冷却器设计 [摘要]:传热过程是化工生产过程中存在的及其普遍的过程,实现这一过程的换热设备种类繁多,是不可缺少的工艺设备之一。由于使用条件不同,换热设备可以有各种各样的型式和结构。其中以管壳式换热器应用更为广泛。现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中仍处于主导地位。 循环水冷却器是换热设备中的一种,是企业生产中的重要设备。它的作用是通过温度相对较低的水来把其他设备所产生的热量带走,从而使设备部分的温度保持在一个生产所需要的水平,使设备正常工作。因此,循环水冷却器的设计对企业的生产是很重要的,它很可能影响企业的经济损失,对其的设计具有很强的实际意义。 本设计是对管壳式换热器中固定管板式换热器的研究。固定管板式换热器属于管壳式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。在本设计中以GB 150-2011《压力容器》、GB 151-1999《管壳式换热器》等标准和《固定式压力容器安全技术监察规程》为依据,并参考《换热器设计手册》,首先通过方案的论证,确定物料的物性参数,再结合工作条件,选定换热器的形式。根据设计任务,完成对换热面积、总换热系数等工艺参数的确定,同时进行换热面积、壁温和压力降的核算。再根据工艺参数进行机械设计,机械设计主要包括对筒体、管箱、管板、折流板、封头、换热管、鞍座及其它零部件,如拉杆、定距管等的计算和选型等,并进行必要的强度核算,最后运用AutoCAD绘制固定管板式换热器的装配图及零部件图,并编写说明书。 [关键词]:换热器、换热面积、管板、换热管。

闭式循环冷却水系统

第三章闭式循环冷却水系统 第一节闭式冷却水系统投运前的检查与操作 3.1.1 检修工作已结束,所有工作票终结,系统完好、现场整洁。 3.1.2 闭式冷却水泵与电机对轮连接完好,地脚螺栓坚固,联轴器防护罩完整牢固,电机接线良好,接地线连接完好。 3.1.3 热工各种表计齐全完整,并投入运行,确证热工保护投入运行。 3.1.4 闭式冷却水系统电动门送电,气动门控制气源送上,压缩空气压力不低于0.5MPa,各阀门开关正常。 3.1.5 关闭闭式冷却水系统所有放水门,开启闭式冷却水系统所有放空气门,系统各用户阀门根据具体情况投入。 3.1.6 开启膨胀水箱出口门及两台闭式冷却水泵入口门。 3.1.7 检查辅机冷却水系统已投入运行20分钟以上,投入一台闭式冷却水冷却器,另一台闭式冷却水冷却器备用。闭式冷却水冷却器投入时先投开式冷却水侧,再投闭式冷却水侧。 3.1.8 检查除盐水正常,凝结水补水系统已准备好。 3.1.9 开启除盐水向膨胀水箱补水门,闭式冷却水系统开始注水。 3.1.10 闭式冷却水系统各空气门见水后关闭。 3.1.11 膨胀水箱水位补至 1000—1600mm,投入膨胀水箱补水调门自动。 3.1.12 按规定进行闭式冷却水泵联锁试验合格。 3.1.13 闭式冷却水泵电机测绝缘合格后送电。 3.1.14 检查闭式冷却水泵出口电动门关闭。 3.1.15 检查投入部分闭式冷却水用户。 3.1.16 通知化学准备化验闭式冷却水水质。 第二节闭式冷却水系统的报警、联锁与保护 3.2.1 报警条件 1. 闭式膨胀水箱水位≤1000mm, 水位低报警, 联开补水调门; ≥1600mm, 联关补水调门; ≥1800mm,水位高报警。 2. 闭式循环水冷却器出口母管压力≤0.35MPa 报警,延时3s 联启备用泵。 3. 闭式循环水冷却器出口母管温度≥38℃报警。 4. 闭式循环泵电机线圈温度≥110℃报警。 5. 闭式循环泵电机轴承温度≥75℃报警,≥80℃延时3s 跳泵。 6. 闭式循环泵轴承温度≥75℃报警,≥80℃延时3s 跳泵。 7. 闭冷水膨胀水箱液位≤200,延时5s跳泵; 8. 闭式循环冷却水泵运行且出口电动门关,延时5S跳泵; 9. 闭式循环冷却水泵运行且入口电动门关,延时3S跳泵。 3.2.2 闭式冷却水泵允许启的条件: 1. 电机各相线圈温度低于110℃;

化工原理课程设计

安阳工学院课程设计说明书 课程名称:化工原理课程设计 设计题目:列管式换热器 院系:化学与环境工程学院 学生姓名:赵安顺 学号:201005020025 专业班级:应用化学一班 指导教师:路有昌

列 设计一台列管式换热器 一、设计任务及操作条件 (1)处理能力 2.5×105 t/a热水 (2)设备型式列管式换热器 (3)操作条件 ①热水:入口温度80℃,出口温度60℃. ②冷却介质:循环水,入口温度32℃,出口温度40℃. ③允许压降:不大于105Pa. ④每年按300天计算,每天24小时连续运行. 二、设计要求及内容 (1)根据换热任务和有关要求确认设计方案; (2)初步确认换热器的结构和尺寸; (3)核算换热器的传热面积和流体阻力; (4)确认换热器的工艺结构. 摘要:通过对列管式换热器的设计,首先要确定设计的方案,选择合适的计算步骤。查得计算中用到的各种数据,对该换热器的传热系数传热面积工艺结构尺寸等等要进行核算,与要设计的目标进行对照是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和参考,来完成本次课程设计。 关键词:标准方案核算结构尺寸

目录 一.概述 (4) 二.方案的设计与拟定 (4) 三.设计计算 (8) 3.1确定设计方案 (9) 3.1.1选择换热器的类型 (9) 3.1.2流动空间及管子的确定 (9) 3.2确定物性数据 (9) 3.3初选换热器规格 (10) 3.3.1热流量 (10) 3.3.2冷却水用量 (10) 3.3.3平均温度差 (10) 3.3.4换热器规格 (11) 3.4核算总传热系数 (11) 3.4.1计算管程传热系数 (11) 3.4.2 计算壳程传热系数 (12) 3.4.3 确定污垢热阻 (13) 3.3.4 总传热系数 (13) 3.5计算压强降 (14) 3.5.1计算管程压强降 (14) 3.5.2计算壳程压强降 (14)

循环水冷却器

化工原理课程设计 ————循环水冷却器设计 学院:化工学院 专业班级:高分子061班 姓名:李猛 学号: 2006016050 指导教师:徐功娣 时间:2009年6月25-30日 目录 1 设计任务书1 2 设计摘要2 3 主要物性参数表4 4 工艺计算5 4.1 确定设计方案5 4.1.1 选择换热器的类型5 4.1.2 计算热负荷和冷却水流量5 4.1.3 计算两流体的平均温差,确定管程数6 4.1.4 工艺结构尺寸6 4.2 核算总传热系数8 4.2.1 管程对流传热系数Ai8 4.2.2 壳程流体传热系数9

4.2.3 计算总传热系数K010 4.3 核算压强降12 4.3.1 管程压强降12 4.3.2 壳程压强降校核13 5 设备参数的计算16 5.1 确定换热器的代号16 5.1.1 换热器的代号16 5.1.2 确定方法16 5.2 计算壳体内径16 5.3 管根数及排列要求16 5.4 计算换热器壳体壁厚17 5.4.1 选适宜的壳体材料17 5.4.2 该钢板的主要工艺参数性能17 5.4.3 壁厚的计算17 5.5 选择换热器的封头19 5.6 选择容器法兰20 5.6.1 选择法兰的型式20 5.6.2 确定法兰相关尺寸20 5.6.3 选用法兰并确定其标记21 5.7 选择管法兰和接管22 5.7.1 热流体进出口接管22

5.7.2 冷流体进出口接管22 5.7.3 选择管法兰23 5.8 选择管箱23 5.9 折流档板的设计24 5.10 支座的选用24 5.11 拉杆的选用和设置25 5.11.1 拉杆的选用25 5.11.2 拉杆的设置26 5.12 确定管板尺寸26 5.13 垫片的选用27 5.13.1 设备法兰用垫片27 5.13.2 管法兰用垫片28 6 数据汇总29 7 总结评述30 8 参考文献32 9 主要符号说明33 10 附表35

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

闭式循环水冷却器

你知道拼装式板式换热器在辐射供冷暖中的应用吗? 辐射供冷暖空调系统在欧洲和北美已有多年的使用和发展历史,与传统对流式空调系统不同的是,辐射供冷暖空调系统中,辐射换热量占总热交换量的50%以上,属于低温辐射传热为主的空调系统,其工作原理是夏季向辐射末端内输入18℃左右的冷水,形成冷辐射面;冬季则向辐射末端提供45℃左右的热水,形成热辐射面,依靠辐射面与人体、家具以及围护结构其余表面的辐射热交换进行降温(供暖)。若冷热源提供的冷热水温度过低或过高,不能满足辐射末端温度要求时,通常采用板式换热器或其他方法(如混水等)使冷(热)媒水温度达到系统设计要求。 在辐射供冷中的应用 辐射供冷时,辐射末端内冷水温度不宜过低,否则在辐射表面处易产生凝结水,造成结露现象.通常,采用控制辐射末端冷水进水温度的方法,使辐射板表面温度高于空气露点温度1~2℃,以防止结露.辐射供冷系统使用的冷水温度(16~18℃)通常高于常规空调系统(7℃),较高的冷水温度为蒸发冷却等天然冷源的使用提供了选择[6-8],但也使得常规的冷水机组产生的冷冻水(供回水温度为7/12℃)不能直接满足辐射供冷系统对对冷水温度的要求,通常可采用混水的方法得到辐射供冷所需的高温冷水,但为了防止冷水直接通入显热换热末端(特别是毛细管)后在换热器内表面产生水垢而堵塞,也可采用高效板式换热器将冷水机组产生的冷水进行逆流换热后再送入显热末端.辐射供冷时显热末端常用的进口水温为16~18℃,回水温度一般为21~23℃。 在辐射供暖中的应用 板式换热器在低温辐射供热中的应用分为水-水换热工况和汽-水换热工况2种.当采用蒸汽为热源时,蒸汽须采用低压饱和蒸汽,工程中常用的压力为:表压0.3MPa或者表压0.4MPa,此时的蒸汽温度分别为144℃和152℃.当采用热水为热源时,所采用的热水供回水温度一般为95/70℃.辐射供暖时,供给辐射末端的热水温度也不宜过高,一般不超过60℃,其主要原因是: 1、由于辐射面积较大,水温无需太高即可达到室温设计要求; 2、人体舒适要求地面温度不能过高; 3、较高水温下,辐射供暖常用的塑料管材寿命大大降低.根据建筑保温及居住者的不同要求,地面温度通常控制在24~30℃范围内,温度过高影响舒适性,造成不必要的浪费;温度过低则达不到采暖要求.

化工设计课程学习总结范文三篇

化工设计课程学习总结范文三篇 化工设计课程学习总结范文三篇 本学期顺利完成了化学工程与工艺专业共100名同学的化工原 理课程设计,总体来看学生的工艺计算、过程设计及绘图等专业能力得到了真正有效的提高,可以较好地把理论学习中的分散知识点和实际生产操作有机结合起来,得到较为合理的设计成果,达到了课程综合训练的目的,提高了学生分析和解决化工实际问题的能力。同时,在设计过程中也存在者一些共性的问题,主要表现在: 一、设计中存在的问题 1.设计过程缺乏工程意识。 学生在做课程设计时所设计的结果没有与生产实际需要作参考,只是为了纯粹计算为设计,缺乏对问题的工程概念的解决方法。 2.学生对单元设备概念不强。 对化工制图、设备元件、材料与标准不熟悉,依葫芦画瓢的不 在少数,没有达到课程设计与实际结合、强化“工程”概念的目的。

绘图能力欠缺,如:带控制点工艺流程图图幅设置、比例及线型选取、文字、尺寸标注以及设备、仪表、管件表示等绘制不规范。 3.物性参数选择以及计算。 在化工原理课程设计工程中首要的问题就是物性参数选择以及 计算,然而学生该开始并不清楚需要计算哪些物性参数以及如何计算。这对这些问题,指导老师应在开课之初给学生讲一下每个单元操作所需的物性参数,每个物性参数查取方法以及混合物系物性参数的计算方法,还有如何确定体系的定性温度。 二、解决措施 1.加强工程意识。 设计过程中鼓励学生多做深层次思考,综合考虑经济性、实用性、安全可靠性和先进性,强化学生综合和创新能力的培养;引导学生积极查阅资料和复习有关教科书,学会正确使用标准和规范,强化学生的工程实践能力。为了增强学生的工程意识提出以下措施:一是在化工原理课程讲述过程中应加强对学生工程意识的培养,让同学明确什么是工程概念,比如:理论上的正确性,技术上的可行性,操作上的安全性,经济上的合理性,了解工程问题的计算方法。比如试差

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

相关主题