搜档网
当前位置:搜档网 › 数形结合在高中数学各个知识模块中的应用

数形结合在高中数学各个知识模块中的应用

数形结合在高中数学各个知识模块中的应用
数形结合在高中数学各个知识模块中的应用

数形结合在高中数学各个知识模块中的应用

数学是研究客观世界的空间形式和数量关系的科学,数是形的抽象概括,形是数的直观表现。华罗庚教授曾说:“数缺形时少直觉,形少数时难入微。数形结合百般好,隔裂分家万事非。”数形结合的思想就是充分运用数的严谨和形的直观,将抽象的数学语言与直观的图形语言结合起来,使抽象思维和形象思维结合,通过图形的描述、代数的论证来研究和解决数学问题的一种数学思想方法。

数形结合是高中数学新课程所渗透的重要思想方法之一。新教材中的内容能很好地培养和发展学生的数形结合思想。教材中这一方法的渗透对发展学生的解题思路、寻找最佳解题方法有着指导性的作用,可对问题进行正确的分析、比较、合理联想,逐步形成正确的解题观,还可在学习中引导学生对抽象概念给予形象化的理解和记忆,提高数学认知能力,并提升对现实世界的认识能力,从而提高数学素养,不断完善自己。下面举例说明数形结合思想在各模块中的应用。

一、利用数形结合解决集合问题

图示法是集合的重要表示法之一,对一些比较抽象的集合问题,在解题时若借助韦恩图或用数轴、图象等数形结合的思想方法,往往可以使问题直观化、形象化,从而灵活、直观、简捷、准确地获解。

例1 若I为全集,M、N I,且M∩N=N,则()。

A.I M I N

B.M I N

C.I M I N

D.M I N

提示:由韦恩图可以很容易知道答案为C。

二、方程与函数中的数形结合

函数的图象是函数关系的一种表示,它是从“形”的方面来刻画函数的变化规律。函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得答案的重要工具。函数的图象和解析式是函数关系的主要表现形式,实质是相同的,在解题时经常要相互转化,在解决函数问题,尤其是较为繁琐的(如分类讨论、求参数的范围等)问题时要充分发挥图象的直观作用,如:求解函数的值域时,可给一些代数式赋予一定的几何意义,如直线的斜率,线段的长度(两点间的距离)等,把代数中的最值问题转化为几何问题,实现数形转换。

方程f(x)=g(x)的解的个数可以转换为函数y= f(x)和y=g(x)的图象的交点个数问题。

不等式f(x)>g(x)的解集可以转化为函数y=f(x)的图象位于函数y=g(x)的图象上方的那部分点的横坐标的集合。

例2 设函数若f(x0)>1,则x0的取值范围是()。

A.(-1,1)

B.(-1,+∞)

C.(-∞,-2)∪(0,+∞)

D.(-∞,-1)∪(1,+∞)

分析:本题主要考查函数的基本知识,利用函数的单调性解不等式以及借助数形结合思想解决问题的能力。

图1

解:如图1,在同一坐标系中,作出函数y=f(x)的图象和直线y=1,它们相交于(-1,1)和(1,1)两点。

由f(x)>1,得x<-1或x>1 。

答案:D。

例3 方程lg x=sin x解的个数为()。

A.1

B.2

C.3

D.4

分析:画出函数y=lg x与y=sin x的图象(如图2)。注意两个图象的相对位置关系。

图2

答案:C。

三、利用数形结合解决数列问题

数列可看成以n为自变量的函数,等差数列可看成自然数n的“一次函数”,前n项和可看成自然数n的缺常数项的“二次函数”,等比数列可看成自然数n的“指数函数”,在解决数列问题时可借助相应的函数图象来解决。

例4 若数列{a n}为等差数列,a p=q,a q=p,求a p+q。(如图3)

图3

分析:不妨设p<q,由于等差数列中,a n关于n的图象是一条直线上均匀排开的一群孤立的点,故三点(p,q),(q,p),(p+q,m)共线,设a p+q=m,由已知,得三点

(p,a q),(q,a p),(p+q,a p+q)共线。则k AB=k BC,即

得m=0,即a p+q=0。

四、不等式与解析几何中的数形结合

在解析几何中,借助直线、圆及圆锥曲线在直角坐标系中图象的特点,可从图形上寻求解题思路,启发思维,难题巧解。

例5 曲线(0≤x≤2)与直线y=k(x-2)+2有两个交点时,实数k的取值范围是()。

A.(,1)

B.(,+∞)

C.(,1]

D.[,+∞)

分析:曲线(0≤x≤2)的图形是以(1,0)为圆心,以1为半径的圆在x 轴上方(包括x轴)的部分。直线y=k(x-2)+2是过定点P(2,2)、斜率为k的直线。

在同一直角坐标系中,分别作出它们的图形,观察图4,符合要求的直线l介于直线l1、l2之间(包括l2,不包括l1),其中l1与半圆相切,l2过原点。

通过计算容易求得l2的斜率为1,l1的斜率为。所以<k≤1。

图4

答案:C。

例6 如果实数x、y满足等式(x-2)2+y2=3,那么的最大值是()。

A. B. C. D.

图5分析:等式(x-2)2+y2=3有明显的几何意义,它表示以(2,0)为圆心,r=为

半径的圆(如图5)。而则表示圆上的点(x,y)与坐标原点(0,0)的连线的斜率。如此以来,该问题可转化为如下几何问题:动点A在以(2,0)为圆心,以3为半径的圆上移动,求直线OA的斜率的最大值。由图5可见,当点A在第一象限,且与圆相切时,OA的斜率最大,经简单计算,得最大值为

tan 60°=。

答案:D。

五、求极值问题中的数形结合

许多代数极值问题,存在着图形背景,借助形的直观性解题是寻求解题思路的一种重要方法,通过图形给问题以几何直观描述,从数形结合中找出问题的逻辑关系,启发思维,难题巧解。

例7 直线y=a与函数f(x)=x3-3x的图象有相异的三个公共点,则a的取值范围为

()。

图5

A.(-2,1)

B.(-1,2)

C.(-2,2)

D.[-2,2]

分析:函数f(x)=x3-3x的导数为f '(x)=3x2-3。令f '(x)≥0,解得x≥1或x≤-1;令f '(x)≤0,解得-1≤x≤1;则函数f (x)在(1,+∞)上单调递增,在(-∞,-1)上单调递增。在(-1,1)上单调递减。由此画出f (x)的草图(图6)。

图6

由图形看出-2<a<2。

答案:C。

六、数形结合在复数中的应用

复数的几何意义包括两方面内容:一是与复平面上的点一一对应,二是与复平面上从原点出发的向量一一对应,这使得复数可以从解析几何的角度来审视,可借助数与形的互化来解题。

例8 已知z∈C,且︱z︱≤,求|z+1|的取值范围。

分析:利用复数在复平面上所对应的图形及其几何意义解决此类问题。

图7

解:︱z︱≤在复平面上对应的图形为以原点为圆心,以为半径的圆周及圆内部,|z+1|表示在复平面上z对应的点与-1对应点间的距离。由图7,|z+1|最大值为︱AC︱=32,

|z+1|最小值为︱AB︱= 。故|z+1|∈[,]。

七.数形结合概率中的应用

应用数形结合解题时要注意以下两点:其一,注意数与形转化的等价性,将复杂的问题转化成简单、熟知的数学问题,转化前后的问题应是等价的;其二,注意利用“数”的精确性和“形”的全面性,像判断公共点个数问题,转化成图形后要保证“数”的精确性,才能得出正确结论。有些问题所对应的图形不唯一,要根据不同的情况画出相应的图形后,再进行讨论求解。

总之,学生要真正掌握数形结合思想的精髓,必须有雄厚的基础知识和熟练的基本技巧,如果只理解了几个典型习题,就认为领会了数形结合这一思想方法,是错误的。所以要认真上好每一堂课,深入学习新教材的系统知识,掌握各种函数的图象特点,理解各种几何图形的性质。教师要引导学生根据问题的具体情况,注意改变观察和理解问题的角度,揭示问题的本质联系,用“数”的准确澄清“形”的模糊,用“形”的直观启迪“数”的计算,从而使问题得到解决。在平日的教学中,要紧紧抓住数形转化的策略,沟通知识联系,激发学生学习兴趣,提高学生的思维能力。只有这样,运用数形结合才能不断深化提高。

高中数学知识点总结(精华版)

高中数学必修+选修知识点归纳新课标人教A版 一、集合 1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集合相等。 3、常见集合:正整数集合: 或 ,整数集合: ,有理数集合: ,实数集合: . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作 .

2、如果集合 ,但存在元素 ,且 ,则称集合A是集合B的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作: .并规定:空集合是任何集合的子集. 4、如果集合A中含有n个元素,则集合A有 个子集, 个真子集. §1.1.3、集合间的基本运算 1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作: . 2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作: . 3、全集、补集? §1.2.1、函数的概念

1、设A、B是非空的数集,如果按照某种确定的对应关系 ,使对于集合A中的任意一个数 ,在集合B中都有惟一确定的数 和它对应,那么就称 为集合A到集合B的一个函数,记作: . 2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设 那么 上是增函数; 上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

数形结合思想在高中数学教学中的应用

数形结合思想在高中数学教学中的应用 更新时间:2018-9-25 19:11:00 浏览量:1250 【摘要】数形结合思想是一种重要的数学思想,在高中数学教学中,必须要注重对这种思想的应用,培养学生的数形结合意识,从而提高学生的知识能力。针对这种情况,文章对数形结合思想在高中数学教学中的应用进行了相应的分析和探讨。 【关键词】数形结合思想;高中数学教学;应用 数形结合思想在高中数学教学中的应用,有利于提高学生的数学知识能力,培养学生的思维能力和解题能力,提升学生的学习效果。但是在当前高中数学教学过程中,对于数形结合思想的实际教学应用尚有不足,因此需要注重强化数形结合思想在教学中的应用,采取有效的应用措施,从而提升教学质量和效果。 一、高中数学数形结合教学的现状 (一)数形结合教学意识不足 当前在我国高中数学教学过程中,数形结合的教学思想还没有得到充分应用,对于相应思想的教学运用尚有不足。随着我国课程教学改革工作的不断推进,传统的应试教学观念已经逐渐被人们所摒弃,在高中数学教学中越来越注重对学生数学能力和思维能力的培养。但是在实际教学中,大部分教师还停留在传统的教学模式上,只重视对学生数学基础和应试能力的培养,忽视了数形结合教学思想在教学中的应用。在这种教学观念的影响下,

学生的综合素质发展受到了一定的限制,教学过程忽视了对学生的数学思维能力和数形结合意识的培养,使得教学效果受到了一定的影响。并且在教学过程中,由于教师过于注重学生的成绩,导致学生在学习中逐渐出现了高分低能的现象,不利于学生未来的发展。 (二)传统教学模式的制约 传统的教学模式是影响高中数学教学发展的一个重要因素,同时也限制了数形结合思想在高中教学中的应用。在高中数学教学中,传统的教学模式大都采用填鸭式、满堂灌的教学方式,由教师主导整个课堂教学活动,向学生进行知识的灌输。在这种教学模式下,学生只能被动地接受教师的知识灌输。数形结合教学思想分散在教学之中,没有形成一定的教学规模,导致学生的数形结合意识较弱。并且严重忽视了学生的学习主体性以及学生之间的个体差异,导致学生的学习积极性和学习兴趣逐渐下降,甚至会影响到学生的学习质量和效率。 二、数形结合思想在高中数学教学中的应用分析 在高中几何数学中,可以通过观察图形,建立“数”与“形”的对应关系,找到解决问题的方法。也可以通过几何图形将数量的关系形象地展示出来,在图形上分析数量之间的关系,进而解决问题。几何图形和数量關系是相辅相成的,数量可以在图形上展示出来,也可以用数量关系来表达图形联系。例如:在例1的教学中,直接将数量关系转化成式子不容易,但是教师

高中数学数形结合

数形结合 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。如等式()()x y -+-=21422 一、联想图形的交点 例1. 已知,则方程的实根个数为01<<=a a x x a |||log |() A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图 象,易知两图象只有两个交点,故方程有2个实根,选(B )。 例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象 y x y x x x y x 121222= +=+>=+ 在的上方的那段对应的横坐标, y x 2=如下图,不等式的解集为{|} x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22 练习:设定义域为R 函数?? ?=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同 实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如 果P 与Q 有且仅有一个正确,试求c 的范围。 因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即2 1> c 而P :函数x c y =在R 上单调递减,即1

高中数学必修二知识体系整合

第二章点、直线、平面之间的位置关系 一、平面 1、含义:平面是无限延展的 2、“3个公理” 公理内容图形符号 公理1如果一条直线上的两点在一个 平面内,那么这条直线在此平面 内 A∈l,B∈l,且A∈ α,B∈α ?l?α 公理2过不在一条直线上的三点,有且 只有一个平面 A,B,C三点不共 线?存在唯一的α, 使A,B,C∈α 推论:①一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 公理3如果两个不重合的平面有一个公 共点,那么它们有且只有一条过 该点的公共直线 P∈α,P∈β ?α∩β=l,且P∈l 二、空间中点、直线、面的位置关系(“3种关系”) 1、空间两条直线的位置关系 位置关系特点 共面相交同一平面内,有且只有一个公共点平行同一平面内,没有公共点 异面直线不同在任何一个平面内,没有公共点

异面直线的画法 1.异面直线所成角θ的范围是【锐角(或直角)】00<θ≤900 2.当两条异面直线所成的角是直角时,我们就说这两条异面 直线互相垂直,记作a⊥b; 2.直线与平面的位置关系 位置关系直线a在平面α内 直线a在平面α外 直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点 符号表示a?αa∩α=A a∥α 图形表示 3.两个平面的位置关系 位置关系图示表示法公共点个数 两平面平行α∥β没有公共点 两平面相交α∩β=l 有无数个公共点(在一条直线 上)

三、平行(3种) 线线平行 线面平行 面面平行 ? ??? ?a ∥α a ?βα∩β= b ?a ∥b ? ??? ? a ?α b ?αa ∥b ?a ∥α β ααα ββ //////?????? ???? =???b a p b a b a ? ??? ?α∥β α∩γ=a β∩γ=b ?a ∥b αββα////a a ?? ?? ? β αααββ //////??? ? ? ??? ? ? ? ??? =???=???m b n a Q n m n m p b a b a ? ??? ?a ⊥αb ⊥α?a ∥b 垂直于同一平面的 两直线平行 βαβα//?? ?? ⊥⊥l l 垂直于同一条直线 的两平面平行

高中数学知识点体系框架超全超完美

高中数学基础知识整合 函数与方程区间建立函数模型 抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布 单调性:同增异减赋值法,典型的函数 零点函数的应用 A 中元素在 B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多 函数的基本性质 单调性奇偶性周期性 对称性 最值 1.求单调区间:定义法、导数法、用已知函数的单调性。 2.复合函数单调性:同增异减。 1.先看定义域是否关于原点对称,再看f (-x )=f (x )还是-f (x ). 2.奇函数图象关于原点对称,若x =0有意义,则f (0)=0. 3.偶函数图象关于y 轴对称,反之也成立。 f (x +T)=f (x );周期为T 的奇函数有:f (T)=f (T/2)= f (0)=0.二次函数、基本不等式,对勾函数、三角函数有界性、线性规划、导数、利用单调性、数形结合等。 函数的概念 定义 列表法解析法图象法 表示三要素使解析式有意义及实际意义 常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等 定义域 对应关系值域 函数常见的几种变换平移变换、对称变换翻折变换、伸缩变换 基本初等函数正(反)比例函数、一次(二次)函数幂函数 指数函数与对数函数三角函数 定义、图象、性质和应用 函数 映 射 第二部分映射、函数、导数、定积分与微积分 退出 上一页 第二部分映射、函数、导数、定积分与微积分 导数 导数概念函数的平均变化率运动的平均速度曲线的割线的斜率 函数的瞬时变化率运动的瞬时速度曲线的切线的斜率 ()()的区别 与0x f x f ' '0 t t t v a S v ==,() 0' x f k =导数概念 基本初等函数求导 导数的四则运算法则简单复合函数的导数()()()()()()()().ln 1ln ln 1 log sin cos cos sin 0''' ' 1' 'x x x x a n n e e a a a x x a x x x x x x nx x c c ==== -====-;;;;;;; 为常数()()()()[]()() ()()[]()()()()()()()()()()()[]2)3()2()1(x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f -=? ? ????+=?±=±是可导的,则有:,设()()[]()() x u u f x g f ' ' ' ?=1.极值点的导数为0,但导数为0的点不一定是极值点; 2.闭区间一定有最值,开区间不一定有最值。导数应用函数的单调性研究函数的极值与最值 曲线的切线变速运动的速度生活中最优化问题 ()()()(). 00''在该区间递减在该区间递增,x f x f x f x f ?1.曲线上某点处切线,只有一条;2.过某点的曲线的切线不一定只一条,要设切点坐标。 一般步骤:1.建模,列关系式;2.求导数,解导数方程;3.比较区间端点函数值与极值,找到最大(最小)值。 定 积分与微积分 定积分概念 定理应用 性质定理含意微积分基本 定理 曲边梯形的面积变力所做的功 ()的极限 和式i n i i x f ?∑-=1 1 ξ定义及几何意义 1.用定义求:分割、近似代替、求和、取极限; 2.用公式。 ()()()()[]()()()()()()()() c b a dx x f dx x f dx x f dx x f dx x f dx x g dx x f dx x g x f dx x f k dx x kf c b b a c a a b b a b a b a b a b a b a <<=-=±=±=?????????? .;;;()()()()()() 莱布尼兹公式牛顿则若--==?a F b F dx x f x f x F b a ,'1.求平面图形面积;2.在物理中的应用(1)求变速运动的路程: (2)求变力所作的功; ()?=b a dx x F W ()dt t v s a b ?=

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题 一、选择题 1.已知函数f (x )=???? ?3x ,x≤0,log 2 x ,x>0,下列结论正确的是( ) A .函数f (x )为奇函数 B .f (f (14))=1 9 C .函数f (x )的图象关于直线y =x 对称 D .函数f (x )在R 上是增函数 2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1) 3.函数f (x )=ln|x +cos x |的图象为( )

4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x ) x <0的解集为( ) A .(-2,0)∩(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2) 5.实数x ,y 满足不等式组???? ?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( ) A.215 5 B .21 C .20 D .25 6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,1 2) B .(1 2,1) C .(1,2) D .(2,+∞) 7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y x +y 的最小值为( ) A.53 B .2 C.35 D.12 8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0

高中数学知识点大全

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若

高中数学数形结合思想在解题中的应用

高中数学数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2 =++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10)k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202 解,得;解,得()()I x II x 0220≤<-≤<

初高中数学衔接之数学思想方法

初高中数学衔接之数学思想方法

初高中数学衔接 ——数学思想方法目录 一、方程与函数思想 1.1方程思想 1.2函数思想 二、数形结合思想 2.1数形结合思想 三、分类讨论思想

1.1 方程思想 方程知识是初中数学的核心内容。理解、掌握方程思想并应用与解题当中十分重要。所谓方程思想就是从分析问题的数量关系入手,适当设定未知数,把已知量与未知量之间的数量关系转化为方程(组)模型,从而使问题得到解决的思维方法。对方程思想的考查主要有两个方面:一是列方程(组)解应用题;二是列方程(组)解决代数或几何问题。 (1)高中体现 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决 举例: 例1已知函数f (x )=log m 3 3+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明; (2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由 解 (1)?>+-03 3x x x <–3或x >3 ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有0) 3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数 (2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数 ∴??? ????-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m

高中数学中的数形结合思想

第十四讲 数形结合思想 基础知识点: 1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。 2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。 4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。 经典例题剖析 1.选择题 (1)(2007浙江)设21()1x x f x x x ??=?

高中数学知识点完整结构图

高中数学知识点1 集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ?????????? ????????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ?? ?? ?????????? ???????? ??????????????????????? ?????????????????????=???????

数形结合思想及其在高中数学教学中的应用实践

数形结合思想及其在高中数学教学中的应用实践-中学数学 论文 数形结合思想及其在高中数学教学中的应用实践 文/景占东 【摘要】在高中数学的教学过程当中,数形结合方法贯穿整个教学的始终。而数形结合方法实质上就是按照数据和图形之间的对应关系,将比较抽象的语言,通过图形表达出来,或者是将图形用数学语言表达出来。在高中数学的某些问题的解题过程当中,通过应用数形结合思想,会使问题变得更加的简单化、直观化,开拓了学生的解题思路,使学生能够对一些比较难的问题也有了解题思路。因此,在高中数学的教学过程当中,要积极培养学生在这方面的能力,将数形结合思想真正的应用到答题当中。 关键词数形结合思想;高中数学;应用 在历年的高考题当中,数形结合思想一直是众多思想方法当中考查的重点,与此同时,数形结合思想也是数学研究领域经常使用的方法。因此,在高中数学的教学过程当中,我们应该加大对学生数形结合思想应用的训练力度,使学生们真正地认识到数与形之间的关系,并且能够灵活的通过数形转换,进而解决数学中的一些难题,锻炼学生的思维能力。 一、数形结合思想遵循的原则 在数形结合思想的应用过程当中,要遵循下面的两个原则,才能真正的正确的使用数形结合思想。 1.等价原则。等价原则就是说在进行数与形的转换过程当中,要保证数的代数意义与形的几何意义是相同的,也就是说在同一个问题当中,数与形所反映的问题

的反差关系是一致的,要准确构建图形与数字的关系。 2.双向性原则。双向性原则就是说不仅要通过图形的直观分析,也要进行数学语言的研究,因为数学的语言表达和计算自身的严谨性等优势,能够避免一些图形的约束性,达到更好的解题效果。 二、数形结合在高中数学中的应用 在数学的解题过程当中,数形结合思想能够具有双面的效应,我们可以通过将数形合理的进行转换,达到一定的解题效果。 (一)数到形的转换 其一,在数学的方程和不等式问题当中,我们可以利用方程和不等式和函数图像,直线之间的位置关系和交点,或者是利用函数图像所具有的其他特征,来解答相关问题。与此同时,在日常的学习当中,学生们要将基础知识记牢,将函数图像所具有的一些性质掌握,并且能够在此基础上发散思维,保证答题的完整性。其二,在一些考题当中,要求学生求解代数式的相关几何性质,像这样的考题,我们可以根据平面向量的数量和模的相关性质,将代数式转换到图形当中,从而解决相关的问题。 其三,在一些考题当中,要求同学们根据代数式的结构,求解相关的几何图形或者是根据几何的图形的性质,求得相关问题,但是有的题目中并未给出明确的图像,或者是提供的图像不具有代表性,不能够全面的解答问题,这个时候我们就需要认真剖析代数式的结构和题中给出的相关条件,画出相应的图形,并根据图形的一些定理、公式以及性质等,来解答问题,比如说勾股定理、正弦定理、余弦定理等。 其四,在一些考题当中,要求解答代数式的图形背景和相关性质,此时,我们可

高中数学 数形结合思想

数形结合思想 由于新教材新大纲把常见的数学思想纳入基础知识的范畴,通过对数学知识 的考查反映考生对数学思想和方法的理解和掌握的程度。数形结合的思想重点考查以形释数,同时考查以数解形,题型会渗透到解答题,题量会加大.数形结合常用于解方程、解不等式、求函数值域、解复数和三角问题中,充分发挥形的形象性、直观性、数的深刻性、精确性,弥补形的表面性,数的抽象性,从而起到优化解题途径的作用。 例题1.关于x 的方程2x 2-3x -2k =0在(-1, 1)内有一个实根,则k 的取值范围是什么? 分析:原方程变形为2x 2-3x =2k 后可转化为函数 y =2x 2-3x 。和函数y =2k 的交点个数问题. 解:作出函数y =2x 2-3x 的图像后,用y =2k 去截抛物线,随着k 的变化,易知2k =-89 或-1≤2k <5时只 有一个公共点.∴ k =- 16 9或- 2 1≤k < 2 5. 点拨解疑:方程(组)解的个数问题一般都是通过相应的函数图象的交点问题去解决.这是用形(交点)解决数(实根)的问题. 例题2.求函数u =t t -++642的最值. 分析:观察得2t +4+2(6-t )=16,若设x =42+t ,y =t -6,则有x 2+2y 2=16, 再令u =x +y 则转化为直线与椭圆的关系问题来解决. 解:令42+t =x , t -6=y , 则x 2+2y 2=16, x ≥0, y ≥0, 再设u =x +y , 由于直线与椭圆的交点随着u 的变化而变化,易知,当直线与椭圆相切时截距u 取得最大值,过点(0,22)时,u 取得最小值22, 解方程组 ???=++-=16 22 2y x u x y ,得3x 2-4ux +2u 2-16=0, 令△=0, 解得u =±26 . ∴ u 的最大值为26,最小值为22. 点拨解疑:数学观察能力要求透过现象,发现本质,挖掘题中的隐含条件. 例题3.已知s = 1 322 +-t t ,则s 的最小值为 。 分析:等式右边形似点到直线距离公式. 解:|s |= 1 |32|2 +-t t , 则|s |可看成点(0, 0)到直线tx +y +2t -3=0的距离,又直线tx +y +2t -3=0变形为:(x +2)t +y -3=0后易知过定点P (-2,3),从而原点到直线 tx +y +2t -3=0的最短距离为|OP |=13, ∴ -13≤s ≤13.

高中数学模块分类

高中数学 卷面结构(150分) 一、选择:12题,5分,60分。 考查知识点:1、集合;2、复数;3、函数;4、数列;5、向量;6、概率;7、三角函数的单调性;8、算法;9、不等式——线性规划;10、解析几何;11、求离心率;12、解析几何。 二、填空:4题,5分,20分 考查知识点:1、算法、向量;2、抛物线;3、解析几何;4、二项式定理; 三、计算:必选5题,12分,60分;选修1题,10分。 17、三角函数或是数列 18、概率、统计 19、立体几何 20、解析几何——椭圆、抛物线 21、函数——导数 22-24、几何证明,极坐标,不等式 高中数学八大专项 1、集合,函数导数,理科还包含积分,注重知识的交汇训练,导数12分压轴大题,难度较大,选择题也是较难处理的,这部分主要解决基础知识和图像性质应用,分数稳定在120分,重点解决压轴题。 2、三角函数、平面向量、解三角形。此题解三角形是重点,高考第一大题,在解三角形和数列两个考点之间,选一个考点。分值12分。

3、数列,注重和其他知识点的交汇。 4、立体几何。文科注重线、面关系的证明,理科注重空间建系求解,二面角12分大题,球或线面关系判断5分小题。 5、概率统计。二列表的独立性检验,理科还包含分布列,排列组合,二项式定理。 6、不等式,坐标系参数方程,推理证明。 7、解析几何。压轴题12分和小题5分,集中解决知识点和基本图像性质,注重椭圆、抛物线、双曲线与直线关系。 8、复数,框图(算法),逻辑连接词等小知识复习。 高考英语 卷面结构(150分) 第一部分阅读理解(共两节,满分40分) 第一节阅读短文(4篇,15小题,2分,满分30分) 选材广泛,词汇量稳定在2000-2500词之间,生词不超过3%。 题型:细节理解题,推测判断题,主旨大意题,观念态度题,词义猜测题。 第二节七选五(根据短文容,选句子,5题,10分) 考查对于段落大意的总结,上下文的逻辑关系,上下文间的过渡。

高中数学知识点总结精华版

高中数学必修+选修知识点归纳 新课标人教A版

一、集合 1、 把研究的对象统称为元素,把一些元素组成的总 体叫做集合。集合三要素:确定性、互异性、无 序性。 2、 只要构成两个集合的元素是一样的,就称这两个 集合相等。 3、 常见集合:正整数集合:*N 或+N ,整数集合: Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般地,对于两个集合A 、B ,如果集合A 中任 意一个元素都是集合B 中的元素,则称集合A 是 集合B 的子集。记作B A ?. 2、 如果集合B A ?,但存在元素B x ∈,且A x ?, 则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:?.并规定: 空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n 2个子 集,21n -个真子集. §1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成 的集合,称为集合A 与B 的并集.记作:B A Y . 2、 一般地,由属于集合A 且属于集合B 的所有元素 组成的集合,称为A 与B 的交集.记作:B A I . 3、全集、补集?{|,}U C A x x U x U =∈?且 §1.2.1、函数的概念 1、 设A 、B 是非空的数集,如果按照某种确定的对应 关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值 域.如果两个函数的定义域相同,并且对应关系完 全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则: ()()21x f x f -=… (2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性 1、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f =-,那么就称函数()x f 为 偶函数.偶函数图象关于y 轴对称. 2、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f -=-,那么就称函数()x f 为 奇函数.奇函数图象关于原点对称. 知识链接:函数与导数 1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在 ))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方 程是))((000x x x f y y -'=-. 2、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ;

相关主题