搜档网
当前位置:搜档网 › 二代测序之建库步骤

二代测序之建库步骤

二代测序之建库步骤
二代测序之建库步骤

第一部分DNA酶处理:试剂为PROMEGA( RQ1 RNase-Free DNase )

目的:失活DNase酶

RNA(TE洗脱)8微升

RQ1 RNase-Free DNase 10X Reaction Buffer 1微升

RQ1 RNase-Free DNase 1微升/微克RNA

合计10微升

37℃ 30分钟孵育

加1微升的RQ1 DNase 终止液

65℃ 10分钟使DNase酶失活

(PS:经验这一步最好在核酸提取之前就处理好,具体步骤如下:取样本反复冻融三次,然后一万转离心十分钟,取上清,用0.22微米的滤膜过滤,加DNase,提核酸)

第二部分RNA-seq system V2(cat.7102)

目的:生成并纯化cDNA

一、第一链合成

1. 融解第一链cDNA合成试剂(蓝色盖)和无核酸酶的水(绿色)

2. 短时离心A3ver1 放在冰上,votex A1Ver4和A2ver3,离心后放在冰上;无核酸酶水放在室温;

3. 在冰上,取2ul A1和5ul total RNA (500pg到100ng)放在0.2mlPCR管里;

4. 将PCR管放在PCR仪中运行程序1:

RNA量≤ 1ng时,65℃ 2min,4℃存放

RNA量> 1ng时,65℃ 5min,4℃存放;

5. PCR仪降到4℃后取出PCR管放在冰上,加入制备好的第一链合成试剂,每个样本加入3ul,混匀后,离心放在冰上:

第一链合成试剂:2.5ul buffer mixA2+ 0.5ul 酶混合液A3(共3ul)注意:加酶A3时要慢慢加入,反复吹打枪头至少5次确保酶加入进去

6. 把加入第一链合成剂和样本的PCR管放在PCR仪上运行程序2:

4℃ 1min,25℃ 10min,42℃ 10min,70℃ 15min,4℃hold

二、第二链合成

1. 重悬RNAclean XP beads,放在室温备用

2. 融解第二链合成试剂(黄盖)

3. 瞬时离心B2Ver2,放在冰上。,votex B1Ver3,离心后放在冰上;

4. 每个样本中加入10ul第二链合成混合液(9.7ul buffer mix B1+0.3ul B2 Enzyme mix),轻轻混匀,放在冰上;

5. 把PCR管放在PCR仪上,运行程序3:

4℃ 1min,25℃ 10min,50℃ 30min,80℃ 20min,4℃hold

6. PCR仪降到4℃后取出PCR管,放在冰上,进行cDNA纯化。

三、纯化cDNA

1. 确定RNAclean XP beads室温平衡,颠倒混匀(PS:需要提前取出室温平衡半个小时以上,用之前需重新混匀并马上离心使用)

2. 在上述反应体系中加入beads32ul,吹打混匀10次;

3. 室温放置10min;

4. 把管放在磁力架上,放置5min,吸出45ul结合buffer,加入200ul新鲜配制的70%乙醇,放置30sec,用加样器吸出乙醇,重复洗涤3次;最后洗涤后吸出多余的乙醇,室温干燥15-20min,确保不案子完全干燥没有乙醇残留;继续进行SPIA扩增。

四、SPIA扩增

1. 融解SPIA扩增试剂(红色盖);

2. 取C3ver7.5 颠倒混匀,瞬时离心后放在冰上,votex C1Ver9和C2ver11,离心后放在冰上;

3. 每个样本中加入SPIA master Mix40ul:20ul buffer Mix C2 +10ul primer Mix C1+10ul Enzyme mix C3 ,与beads充分混匀,放在冰上;

4. 把PCR管放在PCR仪上,运行程序4

4℃ 1min,47℃ 60min,80℃ 20min,4℃hold

5. PCR仪降到4℃后取出PCR管,放在冰上,进行扩增产物SPIA cDNA 纯化或者储存在-20℃。

五、纯化SPIAcDNA

用Qiagen minElute reaction cleanup kit 进行纯化。

DNA测序原理和方法.

DNA测序原理和方法 DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PE ABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310型DNA测序仪的测序原理和操作规程。 【原理】ABI PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3''''末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD摄影机检测器,使DNA 测序缩短至2.5h,PCR片段大小分析和定量分析为10~40min。 由于该仪器具有DNA测序,PCR片段大小分析和定量分析等功能,因此可进行DNA测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。【试剂与器材】 1.BigDye测序反应试剂盒主要试剂是BigDye Mix,内含PE专利四色荧光标记的ddNTP 和普通dNTP,AmpliTaq DNA polymerase FS,反应缓冲液等。 2.pGEM-3Zf (+) 双链DNA对照模板0.2g/L,试剂盒配套试剂。 3.M13(-21)引物TGTAAAACGACGGCCAGT,3.2μmol/L,即3.2pmol/μl,试剂盒配套试剂。 4.DNA测序模板可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR 反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/μl。 5.引物需根据所要测定的DNA片段设计正向或反向引物,配制成3.2μmol/L,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。 6.灭菌去离子水或三蒸水。 7.0.2ml或和0.5ml的PCR管盖体分离,PE公司产品。 8.3mol/L 醋酸钠(pH5.2) 称取40.8g NaAc·3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。 9.70%乙醇和无水乙醇。 10.NaAc/乙醇混合液取37.5ml无水乙醇和2.5ml 3mol/L NaAc混匀,室温可保存1年。11.POP 6测序胶ABI产品。

高通量测序:第二代测序技术详细介绍

高通量测序:第二代测序技 术详细介绍 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

在过去几年里,新一代DNA 测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger 测序而言的。Sanger 测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA 片段,然后拼接成一幅完整的图画。 Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96 或384 毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa 高通量测序原理 --采用大规模并行合成测序法(SBS, Sequencing-By-Synthesis)和可逆性末端终结技术(Reversible Terminator Chemistry) --可减少因二级结构造成的一段区域的缺失。 --具有高精确度、高通量、高灵敏度和低成本等突出优势 --可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经 PCR 扩增后制成 Library 。 ----随后在含有接头(单链引物)的芯片( flow cell )上将已加入接头的 DNA 片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去的核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DNA 片段的序列。目前的配对末端读长可达到2×50 bp,更长的读长也能实现,但错误率会增高。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。 Roche 454 测序技术 “一个片段 = 一个磁珠 = 一条读长(One fragment =One bead = One read)”

DNA第一代,第二代,第三代测序的介绍

原理是:核酸模板在DNA聚合酶、引物、4 种单脱氧核苷三磷酸 ( d NTP,其中的一种用放射性P32标记 )存在条件下复制时,在四管反应系统中分别按比例引入4种双脱氧核苷三磷酸 ( dd NTP ),因为双脱氧核苷没有3’-O H,所以只要双脱氧核苷掺入链的末端,该链就停止延长,若链端掺入单脱氧核苷,链就可以继续延长。如此每管反应体系中便合成以各自 的双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分4个泳道进行凝胶电泳,分离长短不一的核酸片段,长度相邻的片段相差一个碱基。经过放射自显影后,根据片段3’端的双脱氧核苷,便可依次阅读合成片段的碱基排列顺序。Sanger法因操作简便,得到广泛的应用。后来在此基础上发展出多种DNA 测序技术,其中最重要的是荧光自动测序技术。 荧光自动测序技术荧光自动测序技术基于Sanger 原理,用荧光标记代替同位素标记,并用成像系统自动检测,从而大大提高了D NA测序的速度和准确性。20世纪80 年代初Jorgenson 和 Lukacs提出了毛细管电泳技术( c a p il l ar y el ect r ophor es i s )。1992 年美国的Mathies实验室首先提出阵列毛细管电泳 ( c a p il l ar y ar r a y el ectr ophor es i s ) 新方法,并采用激光聚焦荧光扫描检测装置,25只毛细管并列电泳,每只毛细管在内可读出350 bp,DNA 序列,分析效率可达6 000 bp/h。1995年Woolley研究组用该技术进行测序研究,使用四色荧光标记法,每个毛细管长,在9min内可读取150个碱基,准确率约 97 % 。目前, 应用最广泛的应用生物系统公司 ( ABI ) 37 30 系列自动测序仪即是基于毛细管电泳和荧光标记技术的D NA测序仪。如ABI3730XL 测序仪拥有 96 道毛细管, 4 种双脱氧核苷酸的碱基分别用不同的荧光标记, 在通过毛细管时 不同长度的 DNA 片段上的 4 种荧光基团被激光激发, 发出不同颜色的荧光, 被 CCD 检测系统识别, 并直接翻译成 DNA 序列。 杂交测序技术杂交法测序是20世纪80年代末出现的一种测序方法, 该方法不同于化学降解法和Sanger 法, 而是利用 DNA杂交原理, 将一系列已知序列的单链寡核苷酸片段固定在基片上, 把待测的 DN A 样品片段变性后与其杂交, 根据杂交情况排列出样品的序列

picbio 三代测序原理

三代测序之PacBio SMRT技术全解析2017-05-11 11:29 来源:基因谷技术 气温回升,天气渐暖, 花儿开了一簇又一簇~ 在这美好的季节里, 我们准备聊点新话题。 今天小编要来和你分享: PacBio SMRT测序那些事儿~

测序技术在近几年中又有里程碑的发展,Pacific Biosciences公司成功推出商业化的第三代测序仪平台,让三代测序正式走入我们的视线。与前两代相比,第三代测序有什么不同呢?今天小编带大家详细了解测序界新宠-PacBio SMRT测序平台。 PacBio SMRT测序原理 Pacific Biosciences公司研发的单分子实时测序系统(Single Molecule Real Time,SMRT)应用了边合成边测序的原理,并以SMRT芯片为测序载体。基本原理如下: 聚合酶捕获文库DNA序列,锚定在零模波导孔底部 4种不同荧光标记的dNTP随机进入零模波导孔底部 荧光dNTP被激光照射,发出荧光,检测荧光 荧光dNTP与DNA模板的碱基匹配,在酶的作用下合成一个碱基 统计荧光信号存在时间长短,区分匹配碱基与游离碱基,获得DNA序列 酶反应过程中,一方面使链延伸,另一方面使dNTP上的荧光基团脱落 聚合反应持续进行,测序同时持续进行 PacBio SMRT测序原理 PacBio SMRT的单分子测序和超长读长是如何实现的?我们重点看一下该技术的两点关键创新:分别是零模波导孔(zero-mode waveguides, ZMWs)和荧光标记在核苷酸焦磷酸链上(Phospholinked nucleotides)。

高通量测序:第二代测序技术详细介绍

在过去几年里,新一代DNA 测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger 测序而言的。Sanger 测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA 片段,然后拼接成一幅完整的图画。 Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96或384 毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa高通量测序原理 --采用大规模并行合成测序法(SBS,Sequencing-By-Synthesis)和可逆性末端终结技术(ReversibleTerminatorChemistry) --可减少因二级结构造成的一段区域的缺失。 --具有高精确度、高通量、高灵敏度和低成本等突出优势 --可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经PCR扩增后制成Library。 ----随后在含有接头(单链引物)的芯片(flowcell)上将已加入接头的DNA片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去的核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DNA 片段的序列。目前的配对末端读长可达到2×50 bp,更长的读长也能实现,但错误率会增高。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。 Roche 454 测序技术 “一个片段= 一个磁珠= 一条读长(One fragment =One bead = One read)”

基因测序的前世今生(一代测序,二代测序,三代测序最详原理)

测序技术的前世今生 测序技术的发展历程 第一代测序技术(Sanger测序) 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解),在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 原理:ddNTP的3’无羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP (分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。

第二代测序技术(NGS) 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。经过不断的技术开发和改进,以Roche公司的454技术、illumina公司的Solexa、Hiseq技术和ABI公司的Solid技术为标记的第二代测序技术诞生了。其大大降低了测序成本的同时,还大幅提高了测序速度,并且保持了高准确性,以前完成一个人类基因组的测序需要3年时间,而使用二代测序技术则仅仅需要1周,但在序列读长方面比起第一代测序技术则要短很多,大多只有100bp-150bp。 1.illumina Illumina公司的Solexa和Hiseq是目前全球使用量最大的第二代测序机器,占全球75%以上,以HiSeq系列为主,技术核心原理都是边合成边测序的方法,测序过程主要分为以下4步:

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

一代、二代、三代测序技术

三代基因组测序技术原理简介 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和 ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

一代、二代、三代测序技术

一代、二代、三代测序技术 (2014-01-22 10:42:13) 转载▼ 第一代测序技术-Sanger链终止法 一代测序技术是20世纪70年代中期由Fred Sanger及其同事首先发明。其基本原理是,聚丙烯酰胺凝胶电泳能够把长度只差一个核苷酸的单链DNA分子区分开来。一代测序实验的起始材料是均一的单链DNA分子。第一步是短寡聚核苷酸在每个分子的相同位置上退火,然后该寡聚核苷酸就充当引物来合成与模板互补的新的DNA链。用双脱氧核苷酸作为链终止试剂(双脱氧核苷酸在脱氧核糖上没有聚合酶延伸链所需要的3-OH基团,所以可被用作链终止试剂)通过聚合酶的引物延伸产生一系列大小不同的分子后再进行分离的方法。测序引物与单链DNA模板分子结合后,DNA聚合酶用dNTP延伸引物。延伸反应分四组进行,每一组分别用四种ddNTP(双脱氧核苷酸)中的一种来进行终止,再用PAGE分析四组样品。从得到的PAGE胶上可以读出我们需要的序列。 第二代测序技术-大规模平行测序 大规模平行测序平台(massively parallel DNA sequencing platform)的出现不仅令DNA测序费用降到了以前的百分之一,还让基因组测序这项以前专属于大型测序中心的“特权”能够被众多研究人员分享。新一代DNA测序技术有助于人们以更低廉的价格,更全面、更深入地分析基因组、转录组及蛋白质之间交互作用组的各项数据。市面上出现了很多新一代测序仪产品,例如美国Roche Applied Science公司的454基因组测序仪、美国Illumina公司和英国Solexa technology公司合作开发的Illumina测序仪、美国Applied Biosystems公司的SOLiD 测序仪。Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。以Illumina测序仪说明二代测序的一般流程,(1)文库制备,将DNA用雾化或超声波随机片段化成几百碱基或更短的小片段。用聚合酶和外切核酸酶把DNA片段切成平末端,紧接着磷酸化并增加一个核苷酸黏性末端。然后将Illumina测序接头与片段连接。(2)簇的创建,将模板分子加入芯片用于产生克隆簇和测序循环。芯片有8个纵向泳道的硅基片。每个泳道内芯片表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。通过不断循环获得上百万条成簇分布的双链待测片段。(3)测序,分三步:DNA聚合酶结合荧光可逆终止子,荧光标记簇成像,在下一个循环开始前将结合的核苷酸剪切并分解。(4)数据分析 第三代测序技术-高通量、单分子测序 被称为第三代的测序的He-licos单分子测序仪,PacificBioscience的SMRT技术和 Oxford Nanopore Technologies 公司正在研究的纳米孔单分子测序技术正向着高通量低成 本长读取长度的方向发展。不同于第二代测序依赖于DNA模板与固体表面相结合然后边合成边测序,第三代分子测序,不需要进行PCR扩增。(1)Helico BioScience 单分子测序技术。该测序是基于边合成边测序的思想,将待测序列随机打断成小分子片段并用末端转移

高通量测序:第二代测序技术详细介绍

在过去几年里,新一代DNA测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generationsequencing), 就就是相对于传统San ger测序而言得。Sanger 测序法一直以来因可靠、准确,可以产生长得读长而被广泛应用,但就就是它得致命缺陷就就是相当慢。十三年,一个人类基因组,这显然不就就是理想得速度,我们需要更高通量得测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理得能力读取多个短DNA 片段,然后拼接成一幅完整得图画。 Sanger测序大家都比较了解,就就是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP终止得,荧光标记得产物梯度,在测序仪得96或384毛细管中进行高分辨率得电泳分离。当不同分子量得荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化得基因组DNA 两侧连上接头,随后运用不同得步骤来产生几百万个空间固定得PCR 克隆阵列(polony)。每个克隆由单个文库片段得多个拷贝组成。之后进行引物杂交与酶延伸反应。由于所有得克隆都就就是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入得荧光标记得成像检测也能同时进行,来获取测序数据。酶拷问与成像得持续反复构成了相邻得测序阅读片段。

Solexa高通量测序原理 --采用大规模并行合成测序法(SBS,Sequencing-By-Synthesis)与可逆性末端终结技术(Reversible TerminatorChemistry) --可减少因二级结构造成得一段区域得缺失。 --具有高精确度、高通量、高灵敏度与低成本等突出优势 --可以同时完成传统基因组学研究(测序与注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经PCR扩增后制成Library。 ----随后在含有接头(单链引物)得芯片(flowcell )上将已加入接头得DNA 片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端与附近得另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)得原理,加入改造过得DNA 聚合酶与带有4 种荧光标记得dNTP。这些dNTP就就是“可逆终止子”,其3’羟基末端带有可化学切割得基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去得核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到得荧光信号结果,就可以得知每个模板DNA片段得序列。目前得配对末端读长可达到2×50 bp,更长得读长也能实现,但错误率会增高。读长会受到多个引起信号衰减得因素所影响,如荧光标记得不完全切割。 Roche454测序技术 “一个片段=一个磁珠= 一条读长(One fragment =Onebead= Oneread)”?1)样品输入并片段化:GS FLX 系统支持各种不同来源得样品,包括基因组DNA、PCR 产物、BAC、cDNA、小分子RNA 等等。大得样品例如基因组DNA 或者BAC 等被打断成300-800 bp 得片段;对于小分子得非编码RNA或者PCR 扩增产物,这一步则不需要。短得PCR产物则可以直接跳到步骤3)。

第二代测序技术简介

第二代测序技术(Next-Generation Sequencing) NGS之基础篇 2001年,美、英、法、德、日、中六国合作,历时十年,耗资数十亿美元的人类基因组计划(Human Genome Project,HGP)宣告完成。转眼又是十年过去,在此期间,各国科学家仍在为解读基因的密码而不懈努力,这其中最大的突破,就是第二代测序技术的推出。HGP的顺利完成证明了我们有能力对自身的遗传信息进行研究,然而,高昂的成本、漫长的时间、巨大的人力需求,无不限制着对遗传密码的进一步认识。从HGP开始的第一天期,科学家们就在寻求更好的方法来对基因组进行研究,“鸟枪法”就是其中之一。2006年,美国X大奖基金会(https://www.sodocs.net/doc/be11442586.html,)设立了奖金高达1000万美元的基因组Archon X大奖,旨在奖励第一个在10天内以低于100万美元的成本完成100个人类基因组测序的民间团队。而罗氏(Roche)、应用生物系统(Applied Biosystems,ABI)、Illumina三家公司先后推出了各自的第二代高通量测序平台,成为NGS领域的领头羊。 2005年底,454公司推出第一个基于焦磷酸测序原理的高通量基因组测序系统——Genome Sequencer 20 System,这是核酸测序技术发展史上里程碑式的事件。随后,罗氏公司以1.55亿美元收购了454公司,并在2006年推出了更新的GS FLX测序系统,该系统可在10小时的运行中获得100万条读长(reads),4~6亿个碱基信息(base pair),且准确率达到99%以上。2008年,GS FLX系统再次升级,通量提高了

相关主题