搜档网
当前位置:搜档网 › 规律探索综合题(几何)-全国各地2019年中考数学压轴题几何大题题型分类汇编(解析版)

规律探索综合题(几何)-全国各地2019年中考数学压轴题几何大题题型分类汇编(解析版)

规律探索综合题(几何)-全国各地2019年中考数学压轴题几何大题题型分类汇编(解析版)
规律探索综合题(几何)-全国各地2019年中考数学压轴题几何大题题型分类汇编(解析版)

2019全国各地中考数学压轴大题几何综合

八、规律探索综合题

1.(2019?十堰)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针

方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.

(1)填空:∠CDE=(用含α的代数式表示);

(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;

(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.

解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE

∴△ACD≌△BCE,∠DCE=α

∴CD=CE

∴∠CDE=

故答案为:

(2)AE=BE+CF

理由如下:如图,

∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE

∴△ACD≌△BCE

∴AD=BE,CD=CE,∠DCE=60°

∴△CDE是等边三角形,且CF⊥DE

∴DF=EF=

∵AE=AD+DF+EF

∴AE=BE+CF

(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,

∵∠ACB=90°,AC=BC=5,

∴∠CAB=∠ABC=45°,AB=10

∵∠ACB=90°=∠AGB

∴点C,点G,点B,点A四点共圆

∴∠AGC=∠ABC=45°,且CE⊥AG

∴∠AGC=∠ECG=45°

∴CE=GE

∵AB=10,GB=6,∠AGB=90°

∴AG==8

∵AC2=AE2+CE2,

∴(5)2=(8﹣CE)2+CE2,

∴CE=7(不合题意舍去),CE=1

若点G在AB的下方,过点C作CF⊥AG,

同理可得:CF=7

∴点C到AG的距离为1或7.

2.(2019?宜昌)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点

H,以EF为直径作半圆O.

(1)填空:点A在(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;

(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;

(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;

(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF的值.

解:(1)连接AO,

∵∠EAF=90°,O为EF中点,

∴AO=EF,

∴点A在⊙O上,

当=时,∠AEF=45°,

∴tan∠AEF=tan45°=1,

故答案为:在,1;

(2)∵EF⊥FH,

∴∠EFH=90°,

在矩形ABCD中,∠A=∠D=90°,

∴∠AEF+∠AFE=90°,

∠AFE+∠DFH=90°,

∴∠AEF=∠DFH,

又FE=FH,

∴△AEF≌△DFH(AAS),

∴AF=DH,AE=DF,

∴AD=AF+DF=AE+DH;

(3)延长EF交HD的延长线于点G,

∵F分别是边AD上的中点,

∴AF=DF,

∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),

∴AE=DG,EF=FG,

∵EF⊥FH,

∴EH=GH,

∴GH=DH+DG=DH+AE,

∴EH=AE+DH;

(4)过点M作MQ⊥AD于点Q.

设AF=x,AE=a,

∵FM=FEEF⊥FH,

∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,

∵FM=FE,

∠A=∠MQF=90°,

∠AEF=∠MFQ,

∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,

∵AE=AD,

∴AF=DQ=QM=x,

∵DC∥QM,

∴,

∵DC∥AB∥QM,

∴,

∴,

∵FE=FM,

∴,

∠FEM=∠FMN=45°,

∴△FEN~△HMN,

∴,

∴.

3.(2019?襄阳)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE

于点O,点G,F分别在边CD,AB上,GF⊥AE.

①求证:DQ=AE;

②推断:的值为1;

(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A 落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;

(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.

(1)①证明:∵四边形ABCD是正方形,

∴AB=DA,∠ABE=90°=∠DAQ.

∴∠QAO+∠OAD=90°.

∵AE⊥DH,

∴∠ADO+∠OAD=90°.

∴∠QAO=∠ADO.

∴△ABE≌△DAQ(ASA),

∴AE=DQ.

②解:结论:=1.

理由:∵DQ⊥AE,FG⊥AE,

∴DQ∥FG,

∵FQ∥DG,

∴四边形DQFG是平行四边形,

∴FG=DQ,

∵AE=DQ,

∴FG=AE,

∴=1.

故答案为1.

(2)解:结论:=k.

理由:如图2中,作GM⊥AB于M.

∵AE⊥GF,

∴∠AOF=∠GMF=∠ABE=90°,

∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,

∴∠BAE=∠FGM,

∴△ABE∽△GMF,

∴=,

∵∠AMG=∠D=∠DAM=90°,

∴四边形AMGD是矩形,

∴GM=AD,

∴===k.

(3)解:如图2﹣1中,作PM⊥BC交BC的延长线于M.

∵FB∥GC,FE∥GP,

∴∠CGP=∠BFE,

∴tan∠CGP=tan∠BFE==,

∴可以假设BE=3k,BF=4k,EF=AF=5k,

∵=,FG=2,

∴AE=3,

∴(3k)2+(9k)2=(3)2,

∴K=1或﹣1(舍弃),

∴BE=3,AB=9,

∵BC:AB=2:3,

∴BC=6,

∴BE=CE=3,AD=PE=BC=6,

∵∠BEF=∠FEP=∠PME=90°,

∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,

∴∠FEB=∠EPM,

∴△FBE∽△EMP,

∴==,

∴==,

∴EM=,PM=,

∴CM=EM=EC=﹣3=,

∴PC==.

4.(2019?天门)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.

(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+AC=AD;

(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;

(3)如图③,若BC=5,BD=4,求的值.

解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,

∴△ABE和△BCD都是等边三角形,

∴∠DBE=∠ABC,AB=BE,BC=BD,

∴△BED≌△BAC(SAS),

∴DE=AC,

∴AD=AE+DE=AB+AC;

故答案为:AB+AC=AD.

(2)AB+AC=AD.理由如下:

如图②,延长AB至点M,使BM=AC,连接DM,

∵四边形ABDC内接于圆O,

∴∠MBD=∠ACD,

∵∠BAD=∠CAD=45°,

∴BD=CD,

∴△MBD≌△ACD(SAS),

∴MD=AD,∠M=∠ACD=45°,

∴MD⊥AD.

∴AM=,即AB+BM=,

∴AB+AC=;

(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,

∴∠NBD=∠ACD,

∵∠BAD=∠CAD,

∴BD=CD,

∴△NBD≌△ACD(SAS),

∴ND=AD,∠N=∠CAD,

∴∠N=∠NAD=∠DBC=∠DCB,

∴△NAD∽△CBD,

∴,

∴,

又AN=AB+BN=AB+AC,BC=5,BD=4,

∴=.

5.(2019?岳阳)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线

EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;

(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;

(3)类比探究:若DE=a,CF=b.

①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,

并证明;

②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关

系.(不要求写证明过程)

(1)证明:如图1中,

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠DEF=∠EFB,

由翻折可知:∠DEF=∠BEF,

∴∠BEF=∠EFB,

∴BE=BF.

(2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB.

∵DE=EB=BF=5,CF=2,

∴AD=BC=7,AE=2,

在Rt△ABE中,∵∠A=90°,BE=5,AE=2,

∴AB==,

∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF,∴?BF?EH=?BE?PM+?BF?PN,

∵BE=BF,

∴PM+PN=EH=,

∵四边形PMQN是平行四边形,

∴四边形PMQN的周长=2(PM+PN)=2.(3)①证明:如图3中,连接BP,作EH⊥BC于H.

∵ED=EB=BF=a,CF=b,

∴AD=BC=a+b,

∴AE=AD﹣DE=b,

∴EH=AB=,

∵S△EBP﹣S△BFP=S△EBF,

∴BE?PM﹣?BF?PN=?BF?EH,

∵BE=BF,

∴PM﹣PN=EH=,

∵四边形PMQN是平行四边形,

∴QN﹣QM=(PM﹣PN)=.

②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=.

6.(2019?常德)在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC交AC于点N.

(1)在图1中,求证:△BMC≌△CNB;

(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN于点F,求证:PE+PF=BM;

(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC 交NB的延长线于点F,求证:AM?PF+OM?BN=AM?PE.

证明:(1)∵AB=AC,

∴∠ABC=∠ACB,

∵CM⊥AB,BN⊥AC,

∴∠BMC=∠CNB=90°,

在△BMC和△CNB中,

∴△BMC≌△CNB(AAS);

(2)∵△BMC≌△CNB,

∴BM=NC,

∵PE∥AB,

∴△CEP∽△CMB,

∴=,

∵PF∥AC,

∴△BFP∽△BNC,

∴=,

∴+=+=1,

∴PE+PF=BM;

(3)同(2)的方法得到,PE﹣PF=BM,∵△BMC≌△CNB,

∴MC=BN,

∵∠ANB=90°,

∴∠MAC+∠ABN=90°,

∵∠OMB=90°,

∴∠MOB+∠ABN=90°,

∴∠MAC=∠MOB,又∠AMC=∠OMB=90°,

∴△AMC∽△OMB,

∴=,

∴AM?MB=OM?MC,

∴AM×(PE﹣PF)=OM?BN,

∴AM?PF+OM?BN=AM?PE.

7.(2019?连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于

AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.

问题探究:在“问题情境”的基础上.

(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;

(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.

问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD 沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=,请直接写出FH的长.

问题情境:

解:线段DN、MB、EC之间的数量关系为:DN+MB=EC;理由如下:

∵四边形ABCD是正方形,

∴∠ABE=∠BCD=90°,AB=BC=CD,AB∥CD,

过点B作BF∥MN分别交AE、CD于点G、F,如图1所示:

∴四边形MBFN为平行四边形,

∴NF=MB,

∴BF⊥AE,

∴∠BGE=90°,

∴∠CBF+∠AEB=90°,

∵∠BAE+∠AEB=90°,

∴∠CBF=∠BAE,

在△ABE和△BCF中,,

∴△ABE≌△BCF(ASA),

∴BE=CF,

∵DN+NF+CF=BE+EC,

∴DN+MB=EC;

问题探究:

解:(1)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,如图2所示:∵四边形ABCD是正方形,

∴四边形ABIH为矩形,

∴HI⊥AD,HI⊥BC,HI=AB=AD,

∵BD是正方形ABCD的对角线,

∴∠BDA=45°,

∴△DHQ是等腰直角三角形,HD=HQ,AH=QI,

∵MN是AE的垂直平分线,

∴AQ=QE,

在Rt△AHQ和Rt△QIE中,,

∴Rt△AHQ≌Rt△QIE(HL),

∴∠AQH=∠QEI,

∴∠AQH+∠EQI=90°,

∴∠AQE=90°,

∴△AQE是等腰直角三角形,

∴∠EAQ=∠AEQ=45°,即∠AEF=45°;

(2)连接AC交BD于点O,如图3所示:

则△APN的直角顶点P在OB上运动,

设点P与点B重合时,则点P′与点D重合;设点P与点O重合时,则点P′的落点为O′,

∵AO=OD,∠AOD=90°,

∴∠ODA=∠ADO′=45°,

当点P在线段BO上运动时,过点P作PG⊥CD于点G,过点P′作P′H⊥CD交CD延长线于点H,连接PC,

2020中考数学几何探究题解析

2020中考数学几何探究题解析 分析: 第一小题比较简单,一看就知道是个正方形; 第二小题看图的话,感觉像是两个线段相等,那么要证明F是CE'中点,而这个时候要注意FE'是在正方形中的,所以要懂得线段的转换; 第三小题只有两个线段长度,咋一看感觉应该有难度吧,但是如果善于发现,就很容易找到突破口了。

解答: (1)正方形 理由:BE=BE', ∠EBE'=∠BE'F=90° 所以BE//FE' 同时可得EF//BE' 所以四边形FEBE'是矩形, 同时又邻边相等 所以正方形成立; (2)分析的时候已经说了,不能忘记FE'是在刚才的正方形中的,而同时两个线段都在线段CE'上,所以要好好研究这个CE' 根据旋转可知CE'=AE 而题中刚好又给了DA=DE 这不等腰三角形吗 有等腰三角形,那么首先就想到了三线合一,干脆画出来 如图,作DH⊥AE于H,则AH=EH 别忘了刚才的AE=CE' 现在AE倒被分成了两个线段的线段, 那么如果F是CE'中点,那么CF和FE'不是就和AH、EH一样吗所以我们如果能够得到FE'等于AE的一半不是也行嘛 根据条件可以得证 △DAH≌△ABE 所以AH=BE=BE'

现在正方形派上用场了,所以FE'=BE=AH=HE 即AE=2FE' 那么CE'=2FE' 所以CF=FE' (3)这一小题给出的两个线段其实是有联系的,不知道看到这的你是否发现了 CF=3,AB=15 看看CF在什么位置,不是在刚才的CE'上吗,凑上FE'就刚好变成CE'了,而CE'=AE,同时还有FE'=BE, 所以我们如果假设FEBE'的边长为x, 那么BE=x,AE=CE'=3+x,AB=15 勾股定理走起, 可得x2+(3+x)2=152 根据经验可以直接判断BE=9,AE=12,符合3、4、5的比例嘛 现在知道了BE和AE,那么题上让求DE, 我们可以让DE处于直角三角形,利用勾股定理解决 这里可以过D向AE作垂线,也可以过E向AD作垂线, 前者刚好能构造出前面用过的全等,所以作DM⊥AE于M

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学压轴题动态几何题型精选解析

2013中考数学压轴题动态几何题型精选解析(三) 例题如图1,在直角坐标系中,已知点A(0,2)、点B(﹣2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE. (1)填空:点D的坐标为,点E的坐标为. (2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式. (3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y 轴上时,正方形和抛物线均停止运动. ①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围. ②运动停止时,求抛物线的顶点坐标. 思路分析: (1)构造全等三角形,由全等三角形对应线段之间的相等关系,求出点D、点E的坐标; (2)利用待定系数法求出抛物线的解析式; (3)本问非常复杂,须小心思考与计算: ①为求s的表达式,需要识别正方形(与抛物线)的运动过程.正方形的平移,从开始到结束,总共历时秒,期间可以划分成三个阶段:当0<t≤时,对应图(3)a;当<t≤1时,对应图(3)b;当1<t≤时,对应图(3)c.每个阶段的表达式不同,请对照图形认真思考; ②当运动停止时,点E到达y轴,点E(﹣3,2)运动到点E′(0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.由此得到平移之后的抛物线解析式,进而求出其顶点坐标. 解:(1)由题意可知:OB=2,OC=1. 如图(1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G. 易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(﹣1,3); 同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(﹣3,2). ∴D(﹣1,3)、E(﹣3,2). (2)抛物线经过(0,2)、(﹣1,3)、(﹣3,2), 则 解得

2020年中考数学复习——探究性几何问题 练习题

探究性几何问题 1.如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC 上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x. (1)试说明不论x为何值时,总有△QBM∽△ABC; (2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由; (3)当x为何值时,四边形BMNQ的面积最大,并求出最大值. 2.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE. (1)当点F在AC上时,求证:DF∥AB; (2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由; (3)当B,F,E三点共线时.求AE的长.

3.如图1和2,Y ABCD中,AB=3,BC=15,tan∠DAB 4 3 .点P为AB延 长线上一点,过点A作⊙O切CP于点P,设BP=x. (1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系; (2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧?PQ长度的大小; (3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围. 4.如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD 上一点(与点A、D不重合),射线PE与BC的延长线交于点Q. (1)求证:△PDE≌△QCE; (2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时, ①求证:四边形AFEP是平行四边形; ②请判断四边形AFEP是否为菱形,并说明理由.

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

中考数学压轴题十大类型经典题目75665

中考数学压轴题十大类型 目录 第一讲中考压轴题十大类型之动点问题 1 第二讲中考压轴题十大类型之函数类问题7 第三讲中考压轴题十大类型之面积问题13 第四讲中考压轴题十大类型之三角形存在性问题19 第五讲中考压轴题十大类型之四边形存在性问题25 第六讲中考压轴题十大类型之线段之间的关系31 第七讲中考压轴题十大类型之定值问题38 第八讲中考压轴题十大类型之几何三大变换问题44 第九讲中考压轴题十大类型之实践操作、问题探究50 第十讲中考压轴题十大类型之圆56 第十一讲中考压轴题综合训练一62 第十二讲中考压轴题综合训练二68

第一讲 中考压轴题十大类型之动点问题 一、知识提要 基本方法: ______________________________________________________; ______________________________________________________; ______________________________________________________. 二、精讲精练 1. (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E , AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△P AQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题: (1) 当x =2s 时,y =_____ cm 2;当x =9 2 s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出15 4 y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.

几何图形变换中考数学压轴题整顿

几何图形变换压轴题中考整理 1(黑龙江省哈尔滨市)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图l,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD; (2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是____________________________________; (3)在(2)的条件下,若AG=2 5,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别 3,求线段PQ的长. 与线段BM、线段BN相交于P、Q两点,若NG= 2 (湖北省随州市)如图①,已知△ABC是等腰三直角角形,∠BAC=90°,点D是BC 的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论. (2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由. (3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.

3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 3.在△ABC 中,点P 为BC 的中点. (1)如图1,求证:AP < 2 1 (AB +BC ); (2)延长AB 到D ,使得BD =AC ,延长AC 到E ,使得CE =AB ,连结DE . ①如图2,连结BE ,若∠BAC =60°,请你探究线段BE 与线段AP 之间的数量关系.写出你的结论,并加以证明; ②请在图3中证明:BC ≥ 2 1 DE . 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13- 1 A ( G ) B ( E ) C O D ( F )

2020中考数学 几何综合探究 专题练习(含答案)

2020中考数学 几何综合探究 专题练习 例题1. 如图,在等腰梯形ABCD 中,AD BC ∥,5075135AB DC AD BC ====,,,点P 从点B 出发沿 折线段BA AD DC --以每秒5个单位长度的速度向点C 匀速运动,点Q 从点C 出发沿线段CB 方向以每秒3个单位长度的速度匀速运动,过点Q 向上作射线QK BC ⊥,交折线段CD DA AB --于点E ,点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止,设点P 、Q 运动的时间是t 秒()0t > (1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ DC ∥? (3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD DA ,上时,S 与t 的函数关系式;(不必写出t 的取值范围) 【答案】⑴507550 355 t ++= =()s 时,点P 到达终点C , 此时,353105QC =?=,所以BQ 的长为 13510530-=. ⑵如图1,若PQ DC ∥,又AD BC ∥,则四边形PQCD 为平行四边形,从而PD QC =, 由35QC t BA AP t =+=, 得507553t t +-=,解得125 8 t =, 经检验:当125 8 t =时,有PQ DC ∥. ⑶①当点E 在CD 上运动时,如图2,分别过点A 、D 作AF BC ⊥于点F ,DH BC ⊥于点H , 则四边形ADHF 为矩形,且ABF DCH △≌△, 从而75FH AD ==,于是30BF CH ==,∴40DH AF ==. 又3QC t =,从而tan 34DH QE QC C t t CH =?=?=(注:用相似三角形求解亦可) ∴21 62 QCE S S QE QC t ==?=△. ②当点E 在DA 上运动时,如图1,过点D 作DH BC ⊥于点H , 由①知4030DH CH ==,, 又3QC t =,从而330ED QH QC CH t ==-=- ∴()1 1206002 QCDE S S ED QC DH t ==+=-梯形. C 图1 C 图2

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版) 几何综合 参考答案与试题解析 一.选择题(共6小题) 1.(2020?贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为() A.24 B.18 C.12 D.9 解:∵E是AC中点, ∵EF∥BC,交AB于点F, ∴EF是△ABC的中位线, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周长是4×6=24. 故选:A. 2.(2020?遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为() A.10 B.12 C.16 D.18 解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN , ∴S △DFP =S△PBE=×2×8=8, ∴S 阴=8+ 8=16, 故选:C. 3.(2020?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为() A.B.1 C.D. 解:连接BC, 由网格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 4.(2020?遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

中考数学压轴题几何代数综合题(PDF版)

第三课时 几何代数综合题1.已知:如图①,在矩形ABCD 中,AB=5,AD=320 ,AE ⊥BD ,垂足是 E.点F 是点E 关于AB 的对称点,连接 AF 、BF. (1)求AE 和BE 的长; (2)若将△ABF 沿着射线BD 方向平移,设平移的距离为 m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值. (3)如图②,将△ABF 绕点B 顺时针旋转一个角(0°<<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程 中,设A ′F ′所在的直线与直线 AD 交于点P.与直线BD 交于点Q.是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由 . 解:(1)在Rt △ABD 中,AB=5,AD = ,由勾股定理得:BD === . ∵S △ABD =BD?AE =AB?AD , ∴AE===4. 在Rt △ABE 中,AB=5,AE=4,由勾股定理得: BE=3.(2)设平移中的三角形为△ A ′ B ′F ′,如答图2所示:由对称点性质可知,∠ 1=∠2.由平移性质可知,AB ∥A ′B ′,∠4=∠1,BF=B ′F ′=3. ①当点F ′落在AB 上时,∵AB ∥A ′B ′, ∴∠3=∠4,∴∠3=∠2, ∴BB ′=B ′F ′=3,即m=3; ②当点F ′落在AD 上时,∵AB ∥A ′B ′, ∴∠6=∠2,∵∠1=∠2,∠5=∠1, ∴∠5=∠6,又易知A ′B ′⊥AD , ∴△B ′F ′D 为等腰三角形, ∴B ′D=B ′F ′=3, ∴BB ′=B D ﹣B ′D =﹣3=,即m=. (3)存在.理由如下:

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

南昌中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交 于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2 x y =?? =-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

中考数学中的探究性问题动态几何(终审稿)

中考数学中的探究性问 题动态几何 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学中的《探究性问题——动态几何》 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查 学生的综合分析和解决问题的能力。 有关动态几何的概念,在很多资料上有说明,但是没有一个统一的定义,在这里就不在赘述了。本人只是用2005 年的部分中考数学试题加以说明。 一、知识网络 《动态几何》涉及的几种情况动点问题? 动线问题动形问题? ? 二、例题经典 1.【05 重庆课改】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2 个单位长度的速度向点A 移动,设点P、Q 移动的时间为t 秒. (1) 求直线AB 的解析式; y (2) 当t 为何值时,△APQ 与△AOB 相似 24 A (3) 当t 为何值时,△APQ 的面积为 个平方单位 5 P Q

【解】(1)设直线AB 的解析式为y=k x+b 由题意,得b=6 8k+b=0 3 解得k=-b=6 4 3 所以,直线AB 的解析式为y=-x+6. 4 (2)由AO=6,BO=8 得AB=10 所以AP=t ,AQ=10-2t 1°当∠APQ=∠AOB 时,△APQ∽△AOB. t 10 2t 30 所以=解得t= (秒) 6 10 11 2°当∠AQP=∠AOB 时,△AQP∽△AOB. t 10 2t 50 所以=解得t= 10 6 13 (秒) (3)过点Q 作QE 垂直AO 于点E. BO 4 在Rt△AOB 中,Sin∠BAO= = AB 5 O y y A P Q O A Q y B B B x x x

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

近年来中考数学压轴题大集合

近年来中考数学压轴题大集合 【一】函数与几何综合的压轴题 1.〔2004安徽芜湖〕如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 假如有一抛物线通过A ,E ,C 三点,求此抛物线方程. (3) 假如AB 位置不变,再将DC 水平向右移动k (k >0)个单位,如今AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解]〔1〕 〔本小题介绍二种方法,供参考〕 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ' '''== 又∵DO ′+BO ′=DB ∴1EO EO AB DC ' ' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ' '=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D 〔1,0〕,A 〔-2,-6〕,得DA 直线方程:y =2x -2① 再由B 〔-2,0〕,C 〔1,-3〕,得BC 直线方程:y =-x -2② 联立①②得 2 x y =?? =-? ∴E 点坐标〔0,-2〕,即E 点在y 轴上 〔2〕设抛物线的方程y =ax 2+bx +c (a ≠0)过A 〔-2,-6〕,C 〔1,-3〕 E 〔0,-2〕三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 〔3〕〔本小题给出三种方法,供参考〕 由〔1〕当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同〔1〕可得:1E F E F AB DC ''+=得:E ′F =2 图①

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于 E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. ~ [解] (1)(本小题介绍二种方法,供参考) ' 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2x y =??=-? 》 ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? ( = 1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

广东省深圳市中考数学专题专练 几何探究专题

几何探究专题 1.已知正方形ABCD 的边长为1,点P 为正方形内一动点,若点M 在AB 上,且满足△PBC∽△PAM,延长BP 交AD 于点N ,连接CM. (1)如图①,若点M 在线段AB 上,求证:AP⊥BN;AM =AN. (2)①如图②,在点P 运动过程中,满足△PBC∽△PAM 的点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 是否成立(不需说明理由)? ②是否存在满足条件的点P ,使得PC =1 2 ?请说明理由. 2.已知:如图,在矩形ABCD 中,AB =6 cm ,BC =8 cm.对角线AC ,BD 交于点O ,点P 从点A 出发,沿AD 方向匀速运动,速度为1 cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1 cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF∥AC,交BD 于点F.设运动时间为t(s)(0

AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF. (1)观察猜想 如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:____________. ②BC ,CD ,CF 之间的数量关系为:____________(将结论直接写在横线上). (2)数学思考 如图②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸 如图③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB =22,CD =1 4BC ,请求出 GE 的长. 4.(1)阅读理解: 如图①,在△ABC 中,若AB =10,AC =6,求BC 边上的中线AD 的取值范围. 解决此问题可以用如下方法:延长AD 到点E 使DE =AD ,再连接BE(或将△ACD 绕着点D 逆时针旋转180°得到△EBD).把AB ,AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断. 中线AD 的取值范围是________; (2)问题解决: 如图②,在△ABC 中,D 是BC 边上的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF.求证:BE +CF >EF ;

相关主题