搜档网
当前位置:搜档网 › 证明调和级数∑∞N=1 1/N 发散的7种方法

证明调和级数∑∞N=1 1/N 发散的7种方法

证明调和级数∑∞N=1 1/N 发散的7种方法
证明调和级数∑∞N=1 1/N 发散的7种方法

数项级数敛散性判别法。(总结)

华北水利水电学院 数项级数敛散性判别法。(总结) 课程名称:高等数学(下) 专业班级: 成员组成 联系方式: 2012年5月18日

摘要:在学习数项级数的时候,对于单一的方法所出的例题,大家都知道用何种方法去解决。但是等到所有的方法学完之后,再给出题目,大家似乎一头雾水,不知道用哪一种方法。有些同学甚至挨个拭每一种方法,虽然也可行。但是对于同一个级数,用不同的方法判断敛散性的难易程度不同,如果选用合适的方式,可以到到事半功倍的效果,但是如果悬选择了错误的方法,可能费了九牛二虎之力之后,得出的结果还是错误的。所以我们有必要总结一下判断敛散性的方法,了解它们的特性,才能更好地运用它们。 关键词:数项级数,敛散性,判断,方法。 英文题目 Abstract:Single out examples to learn a number of series,we all know which way to go.But wait until all of the methods after completing their studies are given topics,everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible.But for one series,using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect,but if the hanging has chosen the wrong way,may have spent nine cattle tigers after the power, the result is wrong.So we need to sum up to determine the convergence and divergence,and to understand their characteristics,in order to make better use of them. Key words:A number of series,convergence and divergence of judgment. 引言:以下介绍书中所提到的判断数项级数敛散性的定理,并通过一些例题,讲解它们各自的适用范围。并总结出判断敛散性的一般思维过程。

无穷积分的敛散判别法

无穷积分的敛散判别法 摘 要:本文主要介绍了无穷积分的几种敛散判别方法,并对这些方法作一些规律性的分析,总结. 关键词:无穷积分;收敛;柯西准则;发散 The convergence and divergence method of infinite integral Abstract :this article mainly introduces several kinds of infinite integral convergence and divergence discrimination method ,and the method for some regularity analysis ,summary. Key Words :Infinite integral; Convergence ;Cauchy criterion;Divergence 前言 我们知道当讨论定积分时要考虑两个条件:一是积分区间时必须是有限闭区间;二是 被积函数必须是有界函数.但实际应用中会遇到积分的上限或下限趋于无穷大的情况,这时虽然可以用牛顿-莱布尼茨公式再求极限来解决,但是,如果被积函数的原函数不是初等函数,那么,就不能用上面的方法来解决问题了.这时,这个问题就变成积分上限函数当上限趋于无穷大时的极限是否存在的问题.这即是所谓的反常积分的敛散性问题.这里我们给出几种判断无穷积分敛散的方法. 1 无穷积分的定义 定义:设函数f 定义在无穷积分区间[,)a +∞上,且在任何有限区间[,]a u 上可积.如果存在极限 l i m ()u u a f x d x J →∞=? 则称此极限J 为函数f 在[,)a +∞上的无穷限反常积分(简称无穷积分),记作 ()a f x dx J +∞ =? 并称()a f x dx +∞? 收敛.如果极限不存在,为方便起见,亦称()a f x dx +∞? 发散. 类似地,可定义f 在(,]b -∞上的无穷积分: ()()lim b u b u f x dx f x dx →∞-∞=?? 对于在(,)-∞+∞上的无穷积分,他用前面两种无穷积分来定义: ()()()b a f x dx f x dx f x dx +∞ +∞ -∞-∞ =+??? , 其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.

高数辅导之专题二十:交错级数、任意项级数的敛散性判别法

专题二十 基础知识 定理1(交错级数的莱布尼兹定理)若交错级数 ∑∞ =-1 ) 1(n n n u ( ,3,2,1=n ) 满足: (1)1+≥n n u u ( ,3,2,1=n ) (2)0lim =∞ →n n u 则 ∑∞ =-1 ) 1(n n n u 收敛,且11 )1(u u n n n ≤-∑∞ =。 注:交错级数 ∑∞ =-1 ) 1(n n n u 收敛要求数列}{n u 单调递减且趋向于零。 对于任意项级数 ∑∞ =1 n n u ,引入绝对值级数的概念:级数 ∑∞ =1 ||n n u 称为∑∞ =1 n n u 的绝对值级数。 定理2若级数 ∑∞ =1 ||n n u 收敛,则∑∞ =1 n n u 亦收敛。 由定理2知收敛级数 ∑∞ =1n n u 分为两种: (1)条件收敛:要求 ∑∞ =1n n u 收敛, ∑∞ =1 ||n n u 发散。 (2)绝对收敛:要求 ∑∞ =1 ||n n u 。 总结:判定级数 ∑∞ =1 n n u 的敛散性,可按如下步骤进行: (1)首先讨论n n u ∞ →lim 。若n n u ∞ →lim 不存在或0lim ≠∞ →n n u ,级数 ∑∞ =1 n n u 发散;若0lim =∞ →n n u , 转入第二步。

(2)其次讨论 ∑∞ =1 ||n n u 的敛散性,可运用正项级数的一系列敛散性判别法。若∑∞ =1 ||n n u 收敛, 则 ∑∞ =1 n n u 绝对收敛;若 ∑∞ =1 ||n n u 发散,转入第三步。 (3)最后讨论 ∑∞ =1n n u 的敛散性,可能用到交错级数的莱布尼兹定理。若 ∑∞ =1 n n u 收敛,则 ∑∞ =1 n n u 条件收敛;若∑∞ =1 n n u 发散,当然 ∑∞ =1 n n u 发散。 例题 1. 设α为常数,判定级数 ∑∞ =-1 2 ]1 sin [ n n n na 的敛散性。 解:∑∑∑∞=∞ =∞ =-=-1 1212 1 sin ]1sin [n n n n n na n n na 由于2 21 |sin |n n na ≤,∑∞ =121n n 收敛,由比较判别法知级数∑∞=12sin n n na 收敛(绝对收敛),而∑ ∑ ∞ =∞ ==12 1 1 11n n n n 为一发散的p 级数,故 ∑∞ =-1 2 ]1 sin [ n n n na 发散。 2. 若级数∑∞ =-+-1 166)2(n n n n n a n 收敛,求a 。 解:∑∑∑∞=∞ =-∞ =-+-=+-11111666)2(66)2(n n n n n n n n n n n a n n n a n ∑∑∞ =∞=-+-=1111 )31(61n n n n a ∑∞ =--1 1)31(n n 收敛(1|31 |<-),故∑∑∑∞=∞=-∞=-=--+-111111)31(6166)2(n n n n n n n n a n a n 收敛,而∑∞ =11n n 发散,从而0=a 。(倘若0≠a ,则∑∑∞ =∞ =?=111 11n n n a a n 收敛,矛盾)

函数项级数一致收敛性的判别法

函数项级数一致收敛性的判别法 摘 要 函数项级数是数学分析中的重点和难点,因此讨论和分析它的性质和判别方法显得尤为重要,本文给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用之来解决函数项级数一致收敛性的一些问题比较容易. 关键词 函数项级数;一致收敛性;判别法. 中图分类号 O173.1 Function Seies Convergence Criterion Abstrac t :Function is a mathematical analysis of series of focus and difficult, so the discussion and analysis of its nature and it is particularly important to identify methods.In this paper, the definition of Function series and uniform convergence of Function series of discriminant theorem,and used to solve the series of uniform convergence of Function of some of the problems is easier. Key words :Function series; Uniform convergence of; Discriminance 1 引言及预备知识 如果函数项级数具有一致收敛性,函数项级数的和函数或余和易于求得,判别它的一致收敛性可应用一致收敛定义,如果很难求得它的和函数或余和,就根据函数自身的结构,找到判别一致收敛性的判别法. 定义1.1[1] 设()12(),,u x u x …()n u x ,…是一列定义在D 上的函数,把这些函数的各项用加号连接起来的表达式 ()()12u x u x ++…+()n u x +…或()1n n u x ∞ =∑, (1) 称为函数项级数.a D ?∈ 函数级数在a 对应一个数值级数 1 ()U n a ∞ =∑ =12()()u a u a ++...+()n u a +. (2) 它的敛散性可用数值级数敛散性的判别法判别,若级数(2)收敛,则称a 是函数级数(1)的收敛点;若级数(2)发散,则称a 是函数级数(1)的发散点. 定义 1.2[1] 函数项级数(1)的收敛点的集合,称为函数项级数(1)的收敛域,若收敛域是一个区间,则称此区间是函数项级数的收敛区间. 定义 1.3[1] 设数集E 为函数项级数()1 n n u x ∞ =∑的收敛域,则对每个x E ∈记S(x)= ()1 n n u x ∞=∑称S(x)为函数项级数()1 n n u x ∞ =∑的和函数.

关于数项级数敛散性的判定(可编辑修改word版)

n 3 5 n 2 3 5 3 关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1 数项级数收敛的定义 ∞ ∞ 数项级数 ∑u n 收敛 ? 数项级数∑u n 的部分和数列{S n }收敛于 S . n =1 n =1 这样数项级数的敛散性问题就可以转化为部分和数列{S } 的极限是否存在的问题的讨论,但由于求数列前 n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2 数项级数的性质 ∞ ∞ ∞ ( 1) 若级数 ∑u n 与 ∑v n 都收敛, 则对任意常数 c,d, 级数 ∑(cu n + dv n ) 亦收敛, 且 n =1 n =1 n =1 ∞ ∞ ∞ ∞ ∞ ∑(cu n + dv n ) = c ∑u n + d ∑v n ;相反的,若级数∑(cu n + dv n ) 收敛,则不能够推出级数∑u n 与 n =1 n =1 n =1 n =1 n =1 ∑v n 都收敛. n =1 ∞ ∞ ∞ 注:特殊的,对于级数 ∑u n 与 ∑v n ,当两个级数都收敛时, ∑(u n ± v n ) 必收敛;当其中一个 n =1 n =1 n =1 ∞ ∞ 收敛,另一个发散时, ∑(u n ± v n ) 一定发散;当两个都发散时, ∑(u n ± v n ) 可能收敛也可能发散. n =1 n =1 ∞ 1 1 ∞ 1 1 例 1 判定级数∑( n n =1 + n ) 与级数∑( + n ) 的敛散性. n =1 ∞ 1 ∞ 1 ∞ 1 1 解:因为级数 ∑ n n =1 与级数 ∑ n n =1 收敛,故级数 ∑( n n =1 ∞

14第十四讲 阿贝尔判别法和狄利克雷判别法

数学分析第十二章数项级数 阿贝尔判别法狄利克雷判别法 第十四讲

数学分析第十二章数项级数 引理(分部求和公式,也称阿贝尔变换) 阿贝尔判别法和狄利克雷判别法 下面介绍两个判别一般项级数收敛性的方法. =,(1,2,,),,i i v i n ε 设两组实数若令 =+++=12(1,2,,), k k v v v k n σ 121232111 ()()().(18) n i i n n n n n i v εεεσεεσεεσεσ--==-+-++-+∑则有如下分部求和公式成立: 证-==-=111,(2,3,,)k k k v v k n σσσ 以分别乘以 =(1,2,,),k k n ε 整理后就得到所要证的公式(18).

数学分析第十二章数项级数 推论(阿贝尔引理) =12(i),,,max{};n k k εεεεε 是单调数组,记(ii)(1),k k k n A σ对任一正整数有则有 ≤≤≤=≤∑1 3.(19) n k k k v A ε ε12231,,,n n εεεεεε ----若证由(i)知都是同号的. 121232111 ()()()n k k n n n n n k v ε εεσεεσεεσεσ--==-+-++-+∑12231()()()n n n A A εεεεεεε-≤-+-++-+1n n A A εεε=-+1(2)n A εε≤+3. A ε≤于是由分部求和公式及条件(ii)推得

数学分析第十二章数项级数 定理12.15(阿贝尔判别法) 且级数∑n b 收敛, {}n a 0,. n M a M 使>≤证由于数列单调有界,使当n >N 时,对任一正整数p ,都有 +=<∑. n p k k n b ε若{}n a 为单调有界数列,故存在,收敛又由于∑n b ,ε数依柯西准则,对任意正存在 正数N ,n n a b ∑则级数收敛. +=≤∑3. n p k k k n a b M ε(阿贝尔引理条件(ii)). 应用(19)式得到这就说明级数收敛. n n a b ∑

浅谈交错级数敛散性的判定

浅谈交错级数敛散性的判定 摘要:交错级数的敛散性主要用莱布尼兹定理来判别,本文给出了几个有用的结论来 判断某些特殊的交错级数的敛散性,并总结了关于交错级数敛散性判别的一些常用方法。归纳了如何使用该定理证明交错级数的敛散性,并在莱布尼兹审敛法失效时,提供了判定交错级数敛散性的方法。 关键词:交错级数 收敛 莱布尼兹审敛法 单调递减 1引言 在数学分析中,对级数敛散性的判别是一个重要的内容。级数敛散性的柯西判别准则虽然给出了判断级数收敛的充要条件,从逻辑上讲,它适应于一切级数敛散性的判断,但是通常在判别具体级数的敛散性时,使用柯西判别准则是有困难的,甚至是无法进行的,因为要检测一个具体的级数是否满足这个判别准则的条件本身就不比检测这个级数是否收敛容易。特别是判别一个交错级数是否收敛时使用柯西判别准则往往失效。在常用的数学分析教材中判别交错级数是否收敛方法很少,一般地只有莱布尼茨判别法。莱布尼茨判别法只针对莱布尼茨型级数有效,对于更多的非莱布尼茨型级数敛散性的判别存在困难。在用莱布尼兹审敛法证明交错级数敛散性的过程中,验证两个条件成立有一定的难度。在两个条件失效时,那么该如何判断呢?下面就来谈谈如何使用莱布尼兹审敛法验证交错级数的敛散性。 2基本概念及定理 定义1: 若级数的各项符合正负相间,即: 1 112341...(1)....(1)n n n n n u u u u u u ∞ --=-+-+-+=-∑(n>0,n=1,2,3,4……) 则称级数11 (1)n n n u ∞ -=-∑为交错级数。 定义2:若级数 1 n n u ∞ =∑通项的绝对值构成的级数1 n n u ∞=∑收敛,则称级数1 n n u ∞ =∑为绝 对收敛;若级数1 n n u ∞=∑收敛而1 n n u ∞ =∑发散,则称1 n n u ∞ =∑为条件收敛。

一致收敛判别法总结

学年论文 题目:一致收敛判别法总结 学院:数学与统计学院 专业:数学与应用数学 学生姓名:张学玉 学号:201071010374 指导教师:陶菊春

一致收敛判别法总结 学生姓名:张学玉 指导教师:陶菊春 摘要: 函数项级数一致收敛性的证明是数学分析中的难点,为了开阔思路,更好的理解和掌握函数项级数一致收敛的方法,本文对函数项级数一致收敛的几种判别法进行了分析、归纳、总结。首先对用定义判断函数项级数一致收敛的方法进行了研究,介绍了函数项级数一致收敛的充要条件,近而提供了证明函数项级数一致收敛的一般方法。同时介绍了几个较为方便适用的关于函数序列一致收敛的判别法法。并通过例题的讨论说明这些判别法的可行性及特点。 Abstract :Function Series Uniform Convergence prove mathematical analysis of the difficulties, in order to broaden their thinking, to better understand and master the functions Seies Convergence approach, this paper uniformly convergent series of functions of several discriminant method were analyzed, summarized, summary. First, determine the definition of series of functions with uniform convergence methods were studied, introduced uniformly convergent series of functions necessary and sufficient conditions, while providing nearly proved uniformly convergent series of functions of the general method. Also introduced several relatively easy to apply uniform convergence on the discriminant function sequence Law Act. And through discussion of examples illustrate the feasibility of these discriminant method and characteristics. 关键词: 函数项级数;函数序列;一致收敛;判别法 Keywords: series of functions; function sequence; uniform convergence; Criterion 引言: 函数项级数一致收敛性的证明是初学者的一个难点,教材中给出了用定义法、定理及判别法来证明函数项级数的一致收敛性。初学者需用灵活的思维以便在使用时选出正确又快捷的证明方法和技巧。为了更好的培养我们这方面的能力,总结出了函数项级数一致收敛性的若干证明方法。 一、定义 设(){}x S n 是函数项级数()x u n ∑的部分和函数列.若(){}x S n 在数集D 上一致收敛于函数()x S ,则称函数项级数()x u n ∑在D 上一致收敛于函数()x S ,或称函数项级数 ()x u n ∑在D 上一致收敛. 定理:若对?n ,?n a >0使得()()n n a x S x S ≤-()D x ∈?,并且当∞→n 时有 0→n a .则当∞→n 时()x S n 一致收敛于()x S . 例1:若()x f n 在[]b a ,上可积, ,2,1=n ,且()x f 与()x g 在[]b a ,上都可积

10利用狄利克雷判别法证明阿贝尔判别法

3 瑕积分的性质与收敛判别 2、写出定理11.6及其推论1的证明。 定理11 .6(比较原则)设定义在[a,b]上的两个函数f 与g ,确定同为,a x =在任何 必发散)。 发散时,必定收敛(或当收敛时,则当上都可积,且满足????∈≤?b a b a b a b a dx x g dx x f dx x f dx x g b a x x g x f b a b u )()()()(] ,(),()(],[],[推论1 又若,则有且c x g x f x g a x =>- →) ()(lim ,0)(: (1) 当0?>?b a u u u u u u b a dx x f dx x g dx x f dx x g u u a a u u dx x g )()()(,)(),,(,0)(,02 1 2 1 2 1 2121ε εδδε 推论1的证明: ()()()(),故可得结论。 ,即时,,当,则)若()式右半部分即得结论 ,则由()若(同敛散。 与(或发散)。综合即知也收敛(或发散)时, 收敛当类似上面方法,可知:发散。又因为 知由定理发散,则发散若收敛知从而由定理收敛,则收敛于是,若) (或时, ,当及所以因为)()(1) () (),(0302)()()()(,1 ) ()(lim 0)(6.11,)()(.)(6.11,)()()()()(0) ()(0),(00,) ()(lim 0)1(000000x f x g x g x f a a x c c dx x g dx x f dx x g dx x f c x g x f dx x f dx x g c dx x g dx x f dx x g c dx x g x g c x f x g c c x g x f c a a x c x g x f b a b a b a b a a x b a b a b a b a b a b a a x ≤≥+∈>?+∞=*=+∞<= <-+*+<<-<+<< -<+∈>>?+∞<=

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

函数项级数一致收敛性判别法及其应用

函数项级数一致收敛性判别法及其应用 数学科学学院08级蒙班 包艳玲 20082115054 指导老师 苏雅拉图 摘 要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用. 关键词:一致收敛,函数项级数,和函数. 下面我要给出函数项级数的一致收敛性的定义 定义 设给定函数项级数∑∞ =1 )(k k x u ,如果它的部分和序列= )(x S n ∑=π 1 )(k k x u 在 区间I 一致收敛到和函数)(x S ;那么称级数∑∞ =1 )(k k x u 在区间I 一致收敛到和函数 )(x S , 即用N -ε语言来叙述,函数项级数∑∞ =1 )(k k x u 在区间I 一致收敛到)(x S ,是指对 任给的0>ε,存在于x 无关的N ,只要N n >就有 ε<-= -∑=n k k n x S x u x S x S 1 )()()()( 对一切I x ∈一直成立. 例1 证明函数项级数∑∞ =-1 1k k x 在??? ???-21,21一致收敛. 证明 已知∑∞ =-1 1 k k x =x x n --11,?? ? ???-∈21,21x 时 x x x x S n n k k n --= =∑=-11)(1 1 ε<≤-≤-=--12111)()(n n n n x x x x x S x S ;??? ???-∈21,21x 时取121ln ln +????? ? ??????=εN 则只要N n >,就有ε<-)()(x S x S n ;??? ???-∈21,21x , ∑∞ =-1 1 k k x 在??????-21,21一致收敛.

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发 散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性 定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。

正项级数收敛性判别法的比较及其应用

正项级数收敛性判别法的比较及其应用 一、引言 数学分析作为数学专业的重要基础课程。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 1、正项级数收敛的充要条件 部分和数列{}n S 有界,即存在某正数M ,对0>n ?,有n S N 都有n n v u ≤, 那么 (1)若级数∑∞ =1n n v 收敛,则级数∑∞ =1n n u 也收敛; (2)若级数∑∞ =1 n n u 发散,则级数∑∞ =1 n n v 也发散; 即∑∞ =1 n n u 和∑∞ =1 n n v 同时收敛或同时发散。 比较判别法的极限形式 : 设∑∞ =1 n n u 和∑∞ =1 n n v 是两个正项级数。若l v u n n n =+∞ →lim ,则 (1)当 时,∑∞ =1n n u 与∑∞ =1 n n v 同时收敛或同时发散; (2)当0=l 且级数∑∞ =1 n n v 收敛时,∑∞ =1 n n u 也收敛;

(3)当∞→l 且∑∞=1 n n v 发散时,∑∞ =1 n n u 也发散。 2.2 比值判别法 设∑∞ =1n n u 为正项级数,若从某一项起成立着 11 ,成立不等式 q u u n n ≤+1,则级数∑∞ =1i n u 收敛; (2)若对一切0N n >,成立不等式11≥+n n u u ,则级数∑∞ =1 i n u 发散。 比值判别法的极限形式: 若∑∞ =1 n n u 为正项级数,则 (1) 当1lim ,成立不等式1,成立不等式1≥n n u ,则级数∑∞ =1 i n u 收敛 根式判别法的极限形式: 设∑∞ =1 n n u 是正项级数,且l u n n n =+∞ →lim ,则 (1)当1l 时,级数∑∞ =1 n n u 发散; (3)当1=l 时,级数的敛散性进一步判断。

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数 )(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性

定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。 二 正项级数的收敛判别 各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。从基本定理出发,我们可以由此建立一系列基本的判别法 1 比较判别法 设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有 n n v u ≤,则 (i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。 例 1 . 设∑∞ =1 2 n n a 收敛,证明:∑ ∞ =2 ln n n n n a 收敛(n a >0). 证明:因为 0<∑∞ =1 2 n n a <)ln 1(212 2n n a n +

一个无穷级数敛散性的证明

一个无穷级数的敛散性证明 我们在复变中曾见过这样一个无穷级数 231............23n n n Z Z Z Z Z n n ∞ ==+++∑ 其中Z 为复数。 它的收敛域为 |Z|<1 那在|Z|=1上上述无穷级数的收敛情况又是如何呢? 当Z=1时上述无穷级数为调和级数,因此是不收敛的。 那当Z 取其它值时是否也是不收敛呢。答案是否定的,令Z=-1 则上述无穷级数为交错级数,由数学分析的知识知道它是收敛的。 事实上,除了Z=1外,单位圆周上其它点都可使上述无穷级数收敛。 为了方便计算,令Z=cos θ+isin θ 其中θ为实数为了方便讨论,下面我们限制0≤θ<2π 当θ取0时,则Z=1,上述无穷级数为调和级数,是不收敛的。 当θ取π时,则Z=-1,上述无穷级数为交错级数,是收敛的。 下面我们分两个阶段去证明。 第一阶段,当θ/π取有理数时,即θ=πp /q 其中p 为奇数 、q 为整数且p 、q 互素。 由欧拉公式 (cos sin )cos sin n i n i n θθθθ +=+ 则当n 取kq 时 其中k 为整数 则Z t =-Z t+q =Z t+2q =-Z t+3q =...(-1)k Z t+kq 其中t 小于q 即t=1、2、3...q

则级数 21............2t t q t q t nq n n Z Z Z Z T t t q t q t nq +++∞ ==++++++∑ 可化为 1......(1)......23t t t t t n n n Z Z Z Z Z T t t q t q t q t nq ∞ ==-+-+-++++∑ 即 111111(......(1) (234) n n n T Z t t q t q t q t nq ∞ ==-+-+-++++∑ 上述无穷级数为交错级数,故其是收敛的。 记F t 为上述无穷级数的和 则对任意的ε>0,存在正整数N t ,使得n>N t 时,都有 2|......|2t t q t q t nq t Z Z Z Z F t t q t q t nq ε++++++-<+++ 则讨论(1)的部分和 23......23n n Z Z Z S Z n =+++ 其中n=(k+1)q+h h

函数项级数一致收敛的几个判别法及其应用(终极完整无敌升华版)

函数项级数一致收敛性判别法及其应用 栾娈 20111101894 数学科学学院数学与应用数学11级汉班 指导老师:吴嘎日迪 摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数 1.函数列与一致收敛性 (1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞ =1)(n n x u 的 部分和序列)。若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式 ε<-)()(x S x S n 对X 上一切x 都成立,则称{S n (x )}(∑∞ =1)(n n x u )在X 上一致收敛于S (x ). 一致收敛的定义还可以用下面的方式来表达: 设 =-S S n X x ∈s u p )()(x S x S n -, 如果 0lim =-∞ →S S n n 就称S n (x )在X 上一致收敛于S(x ). 例1 讨论 =+=X x n nx x S n 在2 21)([0,1]的一致收敛性 由于S (x )=0, 故 21 1)(m a x 1 =??? ??==-≤≤n S x S S S n n x o n , 不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n }一致收敛于的f 几何意义:对任 给的正数ε ,存 N ,对一切序号大于N 的曲线y=f n (x )都落在以曲 线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)

(完整版)关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1 )(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发 散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性 定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m

>N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。 二 正项级数的收敛判别 各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。从基本定理出发,我们可以由此建立一系列基本的判别法 1 比较判别法 设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有 n n v u ≤,则 (i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。 例 1 . 设∑∞ =1 2 n n a 收敛,证明:∑ ∞ =2 ln n n n n a 收敛(n a >0). 证明:因为 0<∑∞ =1 2 n n a <)ln 1(212 2n n a n + 易知:∑∞ =22ln 1n n n 收敛(积分判别法),又∑∞=22n n a 收敛,所以)ln 1 212 2 2 n n a n n +∑∞ =(收敛。 由比较判别法知∑ ∞ =2ln n n n n a 收敛(n a >0). 例 2 . 证明:级数)0(sin )1(1 ≠?-∑∞ =x n x n 都是条件收敛的。 证: 不妨设x>0,则?x N >0,当n>x N 时,0< n x <2π,此时0sin >n x ,且{n x sin }

相关主题