搜档网
当前位置:搜档网 › 三极管的简单检测方法(经验判断).

三极管的简单检测方法(经验判断).

三极管的简单检测方法(经验判断).
三极管的简单检测方法(经验判断).

一、三极管的简单检测方法(经验判断)

1.冒状的三极管:

对于这种冒状三极管,一般都有个凸出的部分,则突出部分对应为E极,然后B 极应该为中间的引脚,另外一脚则为C极;

2.普通的三极管:

对于这种三极管,首先用数字万用表检测出B极(万用表打到导通挡,若测得某一引脚与其他两引脚的压降为无穷大,调换表笔,测得此引脚与其他两引脚都存在一定的压降,则可判定此引脚为B极),检测出B极后,将万用表打到导通挡(即二极管挡),分别测量另外两支引脚对B极的正向偏压,其中偏压较大的为E极,偏压较小的为C极;

(注:一般三极管若检测出B极在一端,则另一端为E极,中间为C极)

二、电容的串、并联:

1.电容串联电路的基本特征:

a):电容串联后总电容的倒数等于各电容容量的倒数之和,即1/C=1/C1+1/C2+…,

这一点与电阻并联电路相同。(记住一个特例:当两个容量相等电容串联后,其总的电容容量为原来单个电容容量的一半。)

b):在电容串联电路中,容量大的电容两端电压小,容量小的电容两端电压大(由

Q=C*U,存储在串联电路中各个电容的电荷量Q相等,所以容量越大,电容两端电压越小。),当某个电容的容量远大于其他电容时,该电容相当于通路,此时电路中起决定性作用的是容量小的电容。

c):两只有极性电解电容顺串联的结果仍然为一只有极性的电容,总电容的容量

减小,总电容的耐压提高;逆串联后电容没有极性,两根引脚可以任意接入电路中。

2.电容并联电路的基本特征:

a):电容并联电路中的总电容等于各电容的容量之和,即总容量C= C1+C2+…,

这一点与电阻串联特性相似。

b):电容并联电路中各电容上电压相等,各电容支路中,大容量电容支路中的电

流大,小容量电容支路中的电流小。(因为并联电路两端电压相等,容量大容抗小,电流大)

说明:(平板电容公式为c=εs/4πkd.平行板电容器的电容c跟介电常数ε成正比,跟正对面积成s正比,跟极板间的距离d成反比,其中式中的k是静电力常量。π约等于3.1415926)两个或两个以上电容器串联时,相当于绝缘距离加长,因为只有最靠两边的两块极板起作用,又因电容和距离成反比,距离增加,电容下降;两个或两个以上电容器并联时,相当于极板的面积增大了,又因电容和面积成正比,面积增加,电容增大。

三、热敏电阻“SCK-473”的含义:

其中SCK为兴勤公司功率型负温度系数热敏电阻的品牌,数字473表示SCK的元件参数:在常温(25℃)下,热敏电阻的阻值为47Ω,最大稳态电流为3A。目前SCK功率型NTC热敏电阻的直径最小为5mm,最大为32mm。

一些常用的SCK功率型NTC热敏电阻产品列于下表以供参考,其中“SCK152X”

常温(25℃)下电阻为15Ω,2X表示最大稳态电流为2.5A,字母X表示小数点,X 后面若无数字则默认为X5,即0.5。

四、常用集成电路的检测(数字IC多用+5V的工作电压,模拟IC工作电压各异)

1.微处理器集成电路的检测:微处理器集成电路的关键测试引脚是VDD电源端、RESET 复位端、XIN晶振信号输入端、XOUT晶振信号输出端及其他各线输入、输出端。

在路测量这些关键脚对地的电阻值和电压值,看是否与正常值(可从产品电路图或有关维修资料中查出)相同。

不同型号微处理器的RESET复位电压也不相同,有的是低电平复位,即在开机瞬间为低电平,复位后维持高电平;有的是高电平复位,即在开关瞬间为高电平,复位后维持低电平。

2.开关电源集成电路的检测:开关电源集成电路的关键脚电压是电源端(VCC)、激励脉冲输出端、电压检测输入端、电流检测输入端。测量各引脚对地的电压值和电阻值,若与正常值相差较大,在其外围元器件正常的情况下,可以确定是该集成电路已损坏。内置大功率开关管的厚膜集成电路,还可通过测量开关管C、B、E极之间的正、反向电阻值,来判断开关管是否正常。

3.音频功放集成电路的检测:检查音频功放集成电路时,应先检测其电源端(正电源端和负电源端)、音频输入端、音频输出端及反馈端对地的电压值和电阻值。若测得各引脚的数据值与正常值相差较大,其外围元件与正常,则是该集成电路内部损坏。

对引起无声故障的音频功放集成电路,测量其电源电压正常时,可用信号干扰法来检查。测量时,万用表应置于R×1档,将红表笔接地,用黑表笔点触音频输入端,正常时扬声器中应有较强的“喀喀”声。

4.运算放大器集成电路的检测:用万用表直流电压档,测量运算放大器输出端与负电源端之间的电压值(在静态时电压值较高)。用手持金属镊子依次点触运算放大器的两个输入端(加入干扰信号),若万用表表针有较大幅度的摆动,则说明该运算放大器完好;若万用表表针不动,则说明运算放大器已损坏。

5.时基集成电路的检测:时基集成电路内含数字电路和模拟电路,用万用表很难直接测出其好坏。可以用如图9-13所示的测试电路来检测时基集成电路的好坏。测试电路由阻容元件、发光二极管LED、6V直流电源、电源开关S和8脚IC插座组成。将时基集成电路(例如NE555)插信IC插座后,按下电源开关S,若被测时基集成电路正常,则发光二极管LED 将闪烁发光;若LED不亮或一直亮,则说明被测时基集成电路性能不良。

五、热地、冷地的概念

"冷地"一般是指可以直接触摸的"地线", 其电位和大地的相同. 由于不带电, 因而成为"冷地". 这是安全的"地"

"热地"是指带电的"地线", 决不可直接触摸, 否则会被电击.

在输入的交流电中, 我们一般称一根为"火"线, 一根为"零"线, 经过桥堆(或二极管)整流后得到直流电. 一般以滤波电容的负端为参考电位, 即"热地". 此时滤波电容的正端为+300V. 此时, 若以大地为参考"地"电位, 来测量"热地", "热地"上实际是 220V的交流电波形.

因此:1), 如果你站在地上, 去接触"热地", 由于在"热地"和大地之间有220V交流电的电压差, 你会被电击. 2), 如果你站在木制的椅子上(和大地完全隔开), 去接触"热地", 没关系, 你不好被电击. 你本身跟"热地"的电位相同. 这跟小鸟站在电线上不会被电击的道理完全相同.

切记, 在修理"带电"的机芯时, 一定要使用隔离变压器.

六、发光二极管简介

注意发光二极管是一种电流型器件,虽然在它的两端直接接上3V 的电压后能够发光,但容易损坏,在实际使用中一定要串接限流电阻,工作电流根据型号不同一般为1mA 到3OmA。另外,由于发光二极管的导通电压一般为1.7V 以上,所以一节1.5V 的电池不能点亮发光二极管。同样,一般万用表的R×1 档到R×1K档均不能测试发光二极管,而R×10K 档由于使用15V 的电池,能把有的发光管点亮。

用眼睛来观察发光二极管,可以发现内部的两个电极一大一小。一般来说,电极较小、个头较矮的一个是发光二极管的正极,电极较大的一个是它的负极。若是新买来的发光管,管脚较长的一个是正极。

七、可控硅原理及结构简介

可控硅也称作晶闸管,它是由PNPN 四层半导体构成的元件,有三个电极,阳极A,

阴极K 和控制极G。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好。在调速、调光、调压、调温以及其他各种控制电路中都有它的身影。

可控硅分为单向的和双向的,符号也不同。

单向可控硅有三个PN 结,由最外层的P 极和N 极引出两个电极,分别称为阳极和阴极,由中间的P 极引出一个控制极。单向可控硅有其独特的特性:当阳极接反向电压,或者阳极接正向电压但控制极不加电压时,它都不导通,而阳极和控制极同时接正向电压时,它就会变成导通状态。一旦导通,控制电压便失去了对它的控制作用,不论有没有控制电压,也不论控制电压的极性如何,将一直处于导通状态。要想关断,只有把阳极电压降低到某一临界值或者反向。

双向可控硅的引脚多数是按T1、T2、G 的顺序从左至右排列(电极引脚向下,面对有字符的一面时)。加在控制极G 上的触发脉冲的大小或时间改变时,就能改变其导通电流的大小。

与单向可控硅的区别是,双向可控硅G 极上触发脉冲的极性改变时,其导通方向就随着极性的变化而改变,从而能够控制交流电负载。而单向可控硅经触发后只能从阳极向阴极单方向导通,所以可控硅有单双向之分。

八、三端稳压IC简介

电子产品中常见到的三端稳压集成电路有正电压输出的78××系列和负电压输出的79××系列。故名思义,三端IC 是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO-220 的标准封装,也有9013 样子的TO-92 封装。

用78/79 系列三端稳压IC 来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC 型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806 表示输出电压为正6V,7909 表示输出电压为负9V。

有时在数字78 或79 后面还有一个M或L,如78M12 或79L24,用来区别输出电流和封装形式等,其中78L系列的最大输出电流为100mA, 78M系列最大输出电流为1A,78系列最大输出电流为1.5A。它的封装也有多种。塑料封装的稳压电路具有安装容易、价格低廉等优点,因此用得比较多。79系列除了输出电压为负。引出脚排列不同以外,命名方法、外形等均与78系列的相同。

注意三端集成稳压电路的输入、输出和接地端绝不能接错,不然容易烧坏。一般三端集成稳压电路的最小输入、输出电压差约为2~3V,否则不能输出稳定的电压,一般应

使电压差保持在4-5V,即经变压器变压,二极管整流,电容器滤波后的电压应比稳压值高一些,最高输入电压为35V。

三端稳压的好坏判断在路测量较为容易,即先测量输入电压是否比输出电压高2~3V,在测量输出电压是否正常,如果输出电压高,一定是损坏了。如果输出电压低,则要断电侧输出端对地阻值是否很小或短路,如果阻值正常,则是稳压块损坏了。

九、可以用直流电源直接给电容充电吗?如果要在电源和电容之间加限流电阻,需要考虑什么因素和指标来定限流电阻的大小?

答:当电压足够高,且电容量足够大,有时需要加电阻.它往往是对电源和充电回路限制性保护,而不是针对电容器的(如电源电路中所加的负温度系数的限流电阻)。所加的限流电阻要考虑这么几个方面:

1)正常工作允许最大充电时间,

2)电源允许短时间最大输出电流,

3)开关及电路允许最大接通电流,

4)电容器允许最大峰值电流.

5)其它要求.

十、电路中VCC、VDD、VSS有什么不同?

VCC:C=circuit 表示电路的意思, 即接入电路的电压;

VDD:D=device 表示器件的意思, 即器件内部的工作电压;

VSS:S=series 表示公共连接的意思,通常指电路公共接地端电压。

十一、一般的烧友们相信一定遇着过组装好功放电路后,即使不接音源,通电后喇叭中会发出嗡嗡的噪音。其实这个问题很好解决,如果确认电源供电良好的话,你只需在功放集成块输入脚对地接只22k的电阻就OK啦。

解释:放大器输入阻抗一般较高,当其开路时,空间交流电场会感应出相当的交流噪声干扰.很多电路输入端并以22k电阻,这种干扰会小一点,并不是所有的交流噪声都是这么造成的,别过分依赖个别经验.

十二、三极管放大电路的问答:

1)放大器的输入输出电阻对放大器有什么影响?

答:放大器的输入电阻应该越高越好,这样可以提高输入信号源的有效输出,将信号源的内阻上所消耗的有效信号降低到最小的范围。而输出电阻则应该越低越好,这样可以提高负载上的有效输出信号比例。

2)如何评价放大电路的性能?有哪些主要指标?

答:放大电路的性能好坏一般由如下几项指标确定:增益、输入输出电阻、通频带、失真度、信噪比。

3)放大器的图解法中的直流负载线和交流负载线各有什么意义?

答:直流负载线确定静态时的直流通路参数。交流负载线的意义在于有交流信号时分析放大器输出的最大有效幅值及波形失真等问题。

4)多级放大电路的级间耦合一般有几种方式?

答:一般有阻容耦合、变压器耦合、直接耦合几种方式。

直接耦合特点:低频响应可延伸到直流。适宜于集成电路中。零点漂移是直接耦合放大电路最大的问题。最根本的解决方法是用差分放大器。

阻容耦合特点:各级直流互不影响(分析设计简单,零点稳定),但是低频响应差。

变压器耦合特点:各级直流互不影响。实现阻抗变换,使较少的级数获得较大的增益。但是频带窄,体积重量大。

5)什么是三极管的甲类工作状态、乙类工作状态、甲乙类工作状态?

在放大电路中,当输入信号为正弦波时,若三极管在信号的整个周期内均导通(即导通角θ=360°),则称之工作在甲类状态。

在放大电路中,当输入信号为正弦波时,若三极管仅在信号的正半周或负半周导通(即导通角θ=180°),则称之工作在乙类状态。

在放大电路中,当输入信号为正弦波时,若三极管的导通时间大于半个周期且小于周期(即导通角θ=180°~360°之间),则称之工作在甲乙类状态。

6)在功率放大电路中,怎样选择晶体管?

答:选择晶体管时,应使极限参数UCEO>2Vcc;ICM>Vcc/RL;PCM>0.2Pom。

十三、贴片电阻上的数字标注和阻值识别

片状电阻,目前使用最多的是3.2mm×1.6mm或2mm×1.5mm两种规格。因其体积小,通常用3位阿拉伯数字来标注片状电阻的阻值,其中第1位数代表阻值的第1位有效数;

第1位数表示阻值的第2位有效数字;第3位数字表示阻值的倍率(即在前两位数字后边加0的个数)。例如202代表20后边加2个0,即2000Ω=2kΩ。681表示在68后面加1个0,即680Ω。105表示1MΩ。100表示10Ω(不要误认为100Ω),470表示47Ω。对于带小数的欧姆级片状电阻,用R代表Ω。例如2R2代表2.2Ω,8R2代表8.Ω,R47表示0.47Ω等。

另外少数片状电阻也有4位数字标注的,例如,美国的某些电器中用的片状电阻,就有标注为6801的,代表6.8kΩ。其实4位数标注法与3位数标注法的差别只是多了一位有效数,其余与3位数标注法相同。

十四、阻抗匹配的基本原理:

图中R为负载电阻,r为电源E的内阻,E为电压源。由于r的存在,当R很大时,电路接近开路状态;而当R很少时接近短路状态。显然负载在开路及短路状态都不能获得最大功率。

根据式:

从上式可看出,当R=r时式中的式中分母中的(R-r)的值最小为0,此时负载所获取的功率最大。所以,当负载电阻等于电源内阻时,负载将获得最大功率。这就是电子电路阻抗匹配的基本原理。

十五、高频管与低频管的判别方法:

高频管和低频管因其特性和用途不同而一般不能互相代用。因此,如果管子的型号看不清,或一时找不到该管子的有关资料,可以利用万用表来快速判别它是高频管还是低频管。

判别方法为:首先用万用表测量三极管发射极的反向电阻。如果是测PNP型管,万用表的负端接基极,正端接发射极;如果是测NPN型管,万用表的正端接基极,负端接发

射极。然后用万用表的R×1kΩ挡测量,此时万用表的表针指示的阻值应当很大,一般不超过满刻度值的1/10。再将万用表转换到R×10kΩ挡,如果表针指示的阻值变化很大,超过满刻度值的1/3,则此管为高频管;反之,如果万用表转换到R×10kΩ挡后,表针指示的阻值变化不大,不超过满刻度值的1/3,则所测

的管子为低频管。

十六、无线电基础知识:

【音频】又称声频,是人耳所能听见的频率。通常指15~20000赫(Hz)间的频率。【话频】是指音频范围内的语言频率。在一般电话通路中,通常指300~3400赫(Hz)间的频率。

【射频】无线电发射机通过天线能有效地发射至空间的电磁波的频率,统称为射频。若频率太低,发射的有效性很低,故习惯上所称的射频系指100千赫(KHz)以上的频率。【视频】电视信号所包含的频率范围自几十赫至几兆赫,视频是这一频率的统称。

【载波】起运载信息作用的正弦波或周期性脉冲,叫做载波(或载频),随着信号波的变化,使载波的幅度、频率或相位作相应的变化。

【模拟信号】在时间上是连续的或对某一参量可以取无限个值的信号。

【数字信号】所谓数字信号,是指信号是离散的、不连续的。这是信号只能按有限多个阶梯或增量变化和取值。换言之,对于数字信号,只需计算阶梯的数目而无需考虑阶梯内信号的大小(最常用的是二进制编码)。

【波段】在无线电技术中,波段这个名词具有两种含义。其一是指电磁波频谱的划分,例如长波、短波、超短波等波段。其二是指发射机、接收机等设备的工作频率范围的划分。若把工作频率范围分成几个部分,这些部分也称为波段,例如三波段收音机等。【通频带】一个电路所允许顺利通过的电流的频率范围,称为该电路的通频带。一般规定在电流等于最大电流值的0.707倍范围内上下两个频率之间的宽度为通频带。

【失真】是指信号在传输过程中与原有信号或标准相比所发生的偏差。在理想的放大器中,输出波形除放大外,应与输入波形完全相同,但实际上,不能做到输出与输入的波形完全一样,这种现象叫失真,又称畸变。

按波形失真的不同情况,可分为幅度失真、频率失真、相位失真三种。对幅度不同的信号放大量不同称为幅度失真。对频率不同的信号放大量不同称为频率失真。对频率不同的信号,经放大后产生的时间延迟不同称为相位失真(或时延失真)。

幅度失真又称为非线性失真,频率失真和相位失真称为线性失真。

【电平】是一种表示电量(电压、电流或功率)相对大小的量,常用单位为分贝(或奈贝)。通常指定某一电量的数值为标准值,以其它数值和标准值相比的数值来表示电平值。例如取标准功率1毫瓦为零电平,当所给功率为10毫瓦时,其电平值可按下式求得:电平值=10

因此,10毫瓦就具有10分贝电平。如果电平值是负的,就表示低于零电平,由此电平可用来表示任意两个电量间的相对大小。

【音频响应】输入信号电平不变时,在规定的音频范围内,接收机输出电平随音频频率而变化的特性,称为音频响应。以最高电平和最低电平之比的分贝数表示。

十七、零线、地线相关

在三相五线制供电系统中:

1、供电变压器低压侧三相Y形连接,中性点接地,即工作接地;

2、供电线路有三条相线,由中性点引出两条零线,即一条工作零线N、一条保护零线PE;

3、保护零线PE上有重复接地,工作零线N没有重复接地;

4、单项设备用一个火线和一个工作零线N,正常情况下工作零线有电流,工作零线N要进漏电保护器;

5、所有电器设备的金属外壳要求保护接零,即所有电器设备的金属外壳要求接保护零线PE,正常情况下保护零线PE没有电流,保护零线PE不能进漏电保护器;

6、在系统中,工作零线N与保护零线PE虽然都是从工作接地引出,但在电路中承担的工作性质不同,不能混用!,不能短接!

7、若把工作零线N,当保护零线用接入设备外壳,当设备漏电时,漏电开关就会不跳闸保护,漏电保护器失去保护作用;

8、若果把保护零线当工作零线用,漏电开关就会跳闸保护,漏电保护器保护范围内无法供电;

9、如果将工作零线N与保护零线PE短接,这时正常情况下没有电流的保护零线PE,对正常情况下有电流的工作零线N,有分流作用,就有了电流,漏电保护器就可检测到这个电流,并保护动作,如果电流大,会炸掉漏电保护器的,但只要零线不开路,零点不漂移,单项电压是稳定的,不会烧设备;

10.三相五线制标准导线颜色为:A线黄色,B线蓝色,C线红色,N线(工作零线)褐色,PE线(保护零线)黄绿色或黑色。

十八、漏电保护器

1.漏电保护器简介:漏电电流动作保护器简称漏电保护器,又叫漏电保护开关,主要是用来在设备发生漏电故障时以及对有致命危险的人身触电进行保护。

漏电保护在安全领域尚属比较新的技术。近年来,随着电子技术的发展,高灵敏度、快速动作型漏电保护装置获得了极大的发展我国漏电保护装置生产厂家众多,产品品种繁多,国家制订了国家标准《漏电电流动作保护器》(GB6829-86),该标准对漏电保护器的特性、分类、工作条件和安装条件、结构与性能要求、试验方法、检验规则等方面作出了明确的规定。

2.漏电保护器的原理和构成:漏电保护器在反应触电和漏电保护方面具有高灵敏性和动作快速性,这一点上远超过其它保护电器。相比较而言自动开关和熔断器正常时要通过负荷电流,主要作用是用来切断系统的相间短路故障。而漏电保护器是利用系统的剩余电流反应和动作,正常运行时系统的剩余电流几乎为零,故它的动作整定值可以整定得很小(一般为mA级),当系统发生人身触电或设备外壳带电时,出现较大的剩余电流,漏电保护器则通过检测和处理这个剩余电流后可靠地动作,切断电源。

那么漏电保护器如何实现保护作用?我们知道,电气设备漏电时,将呈现异常的电流或电压信号,漏电保护器通过检测、处理此异常电流或电压信号,促使执行机构动作。我们把故障电流动作的漏电保护器叫电流漏电保护器,根据故障电压动作的漏电保护器叫电压型漏电保护器。由于电压型漏电保护器结构复杂,受外界干扰动作特性稳定性差,制造成本高,现已基本淘汰。目前国内外漏电保护器的研究和应用均以电流型漏电保护器为主导地位。

电流型漏电保护器是以电路中零序电流的一部分作为动作信号,且多以电子元件作为中间机构,灵敏度高,功能齐全,因此这种保护装置得到越来越广泛的应用。电流型漏电保护器的构成分四部分。

(1)检测元件:检测元件是一个零序电流互感器。被保护的相线、中性线穿过环形铁心,构成了互感器的一次线圈N1,缠绕在环形铁芯上的绕组构成了互感器的二次线圈N2,如果没有漏电发生,这时流过相线、中性线的电流向量和等于零,因此在N2上也不能产生相

应的感应电动势。如果发生了漏电,相线、中性线的电流向量和不等于零,就使N2上产生感应电动势,这个信号就会被送到中间环节进行进一步的处理。

(2)中间环节:中间环节通常包括放大器、比较器、脱扣器。当中间环节为电子式时,中间环节还要辅助电源来提供电子电路工作所需的电源。中间环节的作用就是对来自零序互感器的漏电信号进行放大和处理,并输出到执行机构。

(3)执行机构:该结构用于接收中间环节的指令信号,实施动作,自动切断故障处的电源。

(4)试验装置:由于漏电保护器是一个保护装置,因此应定期检查其是否完好、可靠。试验装置就是通过试验按钮和限流电阻的串联,模拟漏电路径,以检查装置能否正常动作。3.漏电保护器的分类:漏电保护器按其保护功能、结构特征、安装方式、运行方式、极数和线数、动作灵敏度等分类,一般可分为漏电保护继电器、漏电保护开关和漏电保护插座三种。

(1)漏电保护继电器是指具有对漏电流检测和判断的功能,而不具有切断和接通主回路功能的漏电保护装置。漏电保护继电器由零序互感器、脱扣器和输出信号的辅助接点组成。它可与大电流的自动开关配合,作为低压电网的总保护或主干路的漏电、接地或绝缘监视保护。当主回路有漏电流时,由于辅助接点和主回路开关的分离脱扣器串联成一回路。因此辅助接点接通分离脱扣器而断开空气开关、交流接触器等,使其掉闸,切断主回路。辅助接点也可以接通声、光信号装置,发出漏电报警信号,反映线路的绝缘状况。

(2)漏电保护开关是不仅可将主电路接通或断开,而且具有对漏电流检测和判断的功能,当主回路中发生漏电或绝缘破坏时,漏电保护开关可根据判断结果将主电路接通或断开的开关元件。它与熔断器、热继电器配合可构成功能完善的低压开关元件。目前这种形式的漏电保护装置应用最为广泛,常用的有以下几种类别:1)只具有漏电保护断电功能,使用时必须与熔断器、热继电器、过流继电器等保护元件配合;2)同时具有过载保护功能;3)同时具有过载、短路保护功能;4)同时具有短路保护功能;5)同时具有短路、过负荷、漏电、过压、欠压功能。

4.漏电保护器的选择原则:为了规范漏电保护器的正确使用,国家相继颁布了《漏电保护器安全监察规定》(劳安字(1999)16号)和《漏电保护器安装与运行(GB13955-92)等一系列标准和规定。依据这些标准和规定,我们在选择漏电保护器时应遵循以下主要原则。

(1)购买漏电保护器时应购买具有生产资质的厂家产品,且产品质量检测合格。

(2)应根据保护范围、人身设备安全和环境要求确定漏电保护器的电源电压、工作电流、漏电电流及动作时间等参数。

(3)电源采用漏电保护器做分级保护时,应满足上、下级开关动作的选择性。一般上一级漏电保护器的额定漏电电流不小于下一级漏电保护器的额定漏电电流,这样既可以灵

敏地保护人身和设备安全,又能避免越级跳闸、缩小事故检查范围。

(4)手持式电动工具(除III类外)、移动式生活用家电设备(除III类外)、其它移动式机电设备,以及触电危险性较大的用电设备,必须安装漏电保护器。

(5)建筑施工场所、临时线路的用电设备,应安装漏电保护器。这是《施工现场临时用电安全技术规范》(JGJ46-88)中明确要求的。

(6)安装在水中的供电线路和设备以及潮湿、高温、金属占有系数较大及其它导电良好的场所,如机械加工、冶金、纺织、电子、食品加工等行业的作业场所,以及锅炉房、水泵房、食堂、浴室、医院等场所,必须使用漏电保护器进行保护。

(7)固定线路的用电设备和正常生产作业场所,应选择带漏电保护器的动力配电箱。临时使用的小型电器设备,应选择漏电保护插头(座)或带漏电保护器的插座箱。

(8)漏电保护器作为直接接触防护的补充保护时(不能作为唯一的直接接触保护),应

选择高灵敏度、快速动作型漏电保护器。

一般环境选择动作电流不超过30mA,动作时间不超过0.1s,这两个参数保证了人体如果触电时,不会产生病理性生理危险效应。在触电后可能导致二次事故的场合,应选择额定动作电流为6mA的漏电保护器。

(9)对于不允许断电的电气设备,如公共场所的通道照明、应急照明、消防设备的电源、用于防盗报警的电源等,应选择报警式漏电保护器接通声、光报警信号,通知管理人员及时处理故障。

5.漏电保护器的安装:除应遵守常规的电气设备安装规程外,还应注意以下几点:

(1)漏电保护器的安装应符合生产厂家产品说明书的要求。

(2)标有电源侧和负荷侧的漏电保护器不得接反。如果接反,会导致电子式漏电保护器的脱扣线圈无法随电源切断而断电,以致长时间通电而烧毁。

(3)安装漏电保护器不得拆除或放弃原有的安全防护措施,漏电保护器只能作为电气安全防护系统中的附加保护措施。

(4)安装漏电保护器时,必须严格区分中性线和保护线。使用三极四线式和四极四线式漏电保护器时,中性线应接入漏电保护器。经过漏电保护器的中性线不得作为保护线。

(5)工作零线不得在漏电保护器负荷侧重复接地,否则漏电保护器不能正常工作。

(6)采用漏电保护器的支路,其工作零线只能作为本回路的零线,禁止与其他回路工作零线相连,其他线路或设备也不能借用已采用漏电保护器后的线路或设备的工作零线。

(7)安装完成后,要按照《建筑电气工程施工质量验收规范》(GB50303—2002)3.1.6条款,即“动力和照明工程的漏电保护器应做模动作试验”的要求,对完工的漏电保护器进行试验,以保证其灵敏度和可靠性。试验时可操作试验按钮3次,带负荷分合3次,确认动作正确无误,

方可正式投入使用。

6.漏电保护器的运行:漏电保护器的安全运行要靠一套行之有效的管理制度和措施来保证。除了做好定期的维护外,还应定期对漏电保护器的动作特性(包括漏电动作值及动作时间、漏电不动作电流值等)进行试验,做好检测记录,并与安装初始时的数值相比较,判断其质量是否有变化。

在使用中要按照使用说明书的要求使用漏电保护器,并按规定每月检查一次,即操作漏电保护器的试验按钮,检查其是否能正常断开电源。在检查时应注意操作试验按钮的时间不能太长,一般以点动为宜,次数也不能太多,以免烧毁内部元件。

漏电保护器在使用中发生跳闸,经检查未发现开关动作原因时,允许试送电一次,如果再次跳闸,应查明原因,找出故障,不得连续强行送电。

漏电保护器一旦损坏不能使用时,应立即请专业电工进行检查或更换。如果漏电保护器发生误动作和拒动作,其原因一方面是由漏电保护器本身引起,另一方面是来自线路的缘由,应认真地具体分析,不要私自拆卸和调整漏电保护器的内部器件。

最后还需特别指出两点:

(1)当发生人体单相触电事故时,即在漏电保护器负载侧接触一根相线(火线)时它能起到很好的保护作用。如果人体对地绝缘,此时触及一根相线一根零线时,漏电保护器就不能起到保护作用。

(2)由于漏电保护器的作用是防患于未然,电路工作正常时,往往不易引起大家的重视。有的人在漏电保护器动作时不是认真地找原因,而是将漏电保护器短接或拆除,这是极其危险的,也是绝对不允许的。

十九、进口电容的标识

1.单位:基本单位为P,辅助单位有G,M,N。换算关系为:1G=1000UF,1M=1UF=1000PF

2.标注法:通常不是小数点,而是用单位整数,将小数部分隔开。例如:6G8=6.8G=6800UF;2P2=2.2PF;M33=0.33UF;68n=0.068UF。有的电容器用数码表示,数码前2位为电容两有效数字,第3位有效数字后面“零”的个数。数码后缀J(5%)、K(10%)、M(20%)代表误差等级。如222K=2200PF+10%,应特别注意不要将J、K、M与我国电阻器标志相混,更不要把电容器误为电阻器。

105=1uf

104=0.1uf

103=0.01uf

102=0.001uf

二十、EIA/TIA232标准及RS485

RS232

EIA/TIA 232有时又被称作RS-232 C.RS(Recommended Standard)代表推荐标准(EIA制定的标准一般都被冠以"RS" ),232是标识号,C代表RS-232的最新一次修改。它是由是美国电子工业协会/电信工业协会(Electronic Industries Association / Telecommunications Industries Association,EIA/TIA)在1969年公布的通信协议标准。它最初主要用于近距离的DTE和DCE设备之间的通信。

后来被广泛用于计算机的串行接口(COM1、COM2等)与终端或外设之间的近地连接标准。该标准在数据传输速率20Kbps时,最长的通信距离为15米。该标准对应的国际标准是CCITT推荐的标准V.24.

这个标准对串行接口通信的有关问题,如电缆、接口的机械、电气特性、信号功能及传送过程特性进行了描述。

机械特性

RS-323 C可以有多种类型的连接器(接口),如25针连接器(DB-25)、15针连接器(DB-15)和9针连接器(DB-9)。其中以DB-25、DB-9最为常见,如下图所示。不论哪种类型的接口,都定义了孔端连接器用来连接DTE设备、针端连接器用来连接DCE设备。

1.2 电气指标

RS-232 C规定,数据线上的逻辑1的电压范围是:-3V~-15V、逻辑0的电压范围是:+3~+15V;通信控制线上的信号有效或称接通的电压范围是:+3~+15V、信号无效或称断开的电压范围是:-3V~-15V.其他值视为违例。

9芯信号方向来自缩写描述

1 调制解调器CD 载波检测

2 调制解调器RXD 接收数据

3 PC TXD 发送数据

4 PC DTR 数据终端准备好

5 GND 信号地

6 调制解调器DSR 通讯设备准备好

7 PC RTS 请求发送

8 调制解调器CTS 允许发送

9 调制解调器RI 响铃指示器

注:调制解调器(在这里是一个例子,它可以是其它的RS232终端设备)

Pin 1 CD Received Line Signal Detector (Data Carrier Detect)

Pin 2 RXD Received Data

Pin 3 TXD Transmit Data

Pin 4 DTR Data Terminal Ready

Pin 5 GND Signal Ground

Pin 6 DSR Data Set Ready

Pin 7 RTS Request To Send

Pin 8 CTS Clear To Send

Pin 9 RI Ring Indicator

RS485

RS485接口定义图

1 连接主机端的RS485接口。

信号定义如下:

RS485接口信号含义

3 B RXD- 接收数据

4 A RXD+ 接收数据

5 Y TXD+ 发送数据

7 Z TXD- 发送数据

2连接从机端的RS485接口。

信号定义如下:

RS485接口信号含义

3 Z TXD- 发送数据

4 Y TXD+ 发送数据

5 A RXD+ 接收数据

7 B RXD- 接收数据

二十一、单工、半双工和全双工的定义

串行通讯简单认识

串行通讯的基本概念:与外界的信息交换称为通讯。基本的通讯方式有并行通讯和串行通讯两种。

一条信息的各位数据被同时传送的通讯方式称为并行通讯。并行通讯的特点是:各数据位同时传送,传送速度快、效率高,但有多少数据位就需多少根数据线,因此传送成本高,且只适用于近距离(相距数米)的通讯。

一条信息的各位数据被逐位按顺序传送的通讯方式称为串行通讯。串行通讯的特点是:数据位传送,传按位顺序进行,最少只需一根传输线即可完成,成本低但送速度慢。

串行通讯的距离可以从几米到几千米。

根据信息的传送方向,串行通讯可以进一步分为单工、半双工和全双工三种。信息只能单向传送为单工;信息能双向传送但不能同时双向传送称为半双工;信息能够同时双向传送则称为全双工。

串行通讯又分为异步通讯和同步通讯两种方式。在单片机中,主要使用异步通讯方式。

MCS_51单片机有一个全双工串行口。全双工的串行通讯只需要一根输出线和一根

输入线。数据的输出又称发送数据(TXD),数据的输入又称接收数据(RXD)。串行通讯中主要有两个技术问题,一个是数据传送、另一个是数据转换。数据传送主要解决传送中的标准、格式及工作方式等问题。数据转换是指数据的串并行转换。具体说,在发送端,要把并行数据转换为串行数据;而在接收端,却要把接收到的串行数据转换为并行数据。

单工、半双工和全双工的定义

如果在通信过程的任意时刻,信息只能由一方A传到另一方B,则称为单工。

如果在任意时刻,信息既可由A传到B,又能由B传A,但只能由一个方向上的传输存在,称为半双工传输。

如果在任意时刻,线路上存在A到B和B到A的双向信号传输,则称为全双工。电话线就是二线全双工信道。由于采用了回波抵消技术,双向的传输信号不致混淆不清。双工信道有时也将收、发信道分开,采用分离的线路或频带传输相反方向的信号,如回线传输。

二十二、缓冲器的作用

缓冲寄存器又称缓冲器,它分输入缓冲器和输出缓冲器两种。前者的作用是将外设送来的数据暂时存放,以便处理器将它取走;后者的作用是用来暂时存放处理器送往外设的数据。有了数控缓冲器,就可以使高速工作的CPU与慢速工作的外设起协调和缓冲作用,实现数据传送的同步。由于缓冲器接在数据总线上,故必须具有三态输出功能。

另外输出缓冲器还可以放大信号起到驱动的作用,也有隔离的作用,例如,拿mos 电路来说,每个集成电路都有一定的驱动能力,如果一个集成电路驱动过多的芯片时,肯定会出现逻辑的错误(高电平被拉低,低电平被灌高),所以加一个缓冲器就会解决。缓冲器我的理解就好像是中转站,对信号接力传输。比如在一个小系统中,如果在他的输出信号和外部之间接一个缓冲器,那么在外部接多小的电阻(举个例子)都不会影响系统里面的逻辑。

二十三、特殊贴片电阻标识读数:

二十四、PC ATX主机板电源接口

ATX 电源引脚为20 脚,其中第一脚为方型,其余为圆型,外形为:

二十五、串、并行口针脚的定义:

并行口与串行口的区别是交换信息的方式不同,并行口能同时通过8条数据线传输信息,一次传输一个字节;而串行口只能用1条线传输一位数据,每次传输一个字节的一位。并行口由于同时传输更多的信息,速度明显高于串行口,但串行口可以用于比并行口更远距离的数据传输。

1、25针并行口插口的针脚功能:

针脚功能 1 选通(STROBE低电平) 10 确认(ACKNLG低电平) 2 数据位0 (DATAO) 11 忙(BUSY) 3 数据位 1 (DATA1) 12 却纸(PE) 4 数据位 2 (DATA2) 13 选择(SLCT) 5 数据位3 (DATA3) 14 自动换行(AUTOFEED低电平) 6 数据位4 (DATA4) 15 错误观点(ERROR低电平) 7 数据位5 (DATA5) 16 初始化成(INIT低电平) 8 数据位6 (DATA6) 17 选择输入(SLCTIN低电平) 9 数据位7 (DATA7) 18-25 地线路(GND)

2.串行口的典型代表是RS-232C及其兼容插口,有9针和25针两类。

25针串行口具有20mA电流环接口功能,用9、11、18、25针来实现。其针脚功能如下:针脚功能针脚功能

1 未用2发出数据(TXD)

11 数据发送(一) 3接受数据(RXD)

12-17 未用4请求发送(RTS)

18 数据接收(+) 5 清除发送(CTS)

19 未用 6 数据准备好(DSR)

20 数据终端准备好比(DTR) 7 信号地线路(SG)

21 未用8 载波检测(DCD)

22 振铃指示精神(RI) 9 发送返回(+)

23-24 未用10未用25 接收返回(一)

9针串行口的针脚功能:

针脚功能针脚功能

1 载波检测(DCD) 6 数据准备好(DSR)

2 接受数据(RXD) 7 请求发送(RTS)

3 发出数据(TXD) 8 清除发送(CTS)

4 数据终端准备好(DTR) 9 振铃指示(RI)

5 信号地线(SG)

三极管替换及常用开关三极管

三极管替换及常用开关三极管 三极管替换及常用开关三极管 gaost 发表于2009-5-4 8:44:00 8 推荐 一、三极管的类型及材料 初学者首先必须清楚三极管的类型及材料。常用三极管的类型有NPN型与PNP型两种。由于这两类三极管工作(工作总结)时对电压的极性要求不同,所以它们是不能相互代换的。 三极管的材料有锗材料和硅材料。它们之间最大的差异就是起始电压不一样。锗管PN结的导通电压为0.2V左右,而硅管PN结的导通电压为0.6~0.7V。在放大电路中如果用同类型的锗管代换同类型的硅管,或用同类型的硅管代换同类型的锗管一般是可以的,但都要在基极偏置电压上进行必要的调整,因为它们的起始电压不一样。但在脉冲电路和开关电路中不同材料的三极管是否能互换必须具体分析,不能盲目代换。 二、三极管的主要参数 选用三极管需要了解三极管的主要参数。若手中有一本晶体管特性手册最好。三极管的参数很多,根据实践经验,我认为主要了解三极管的四个极限参数:ICM、BVCEO、PCM及fT即可满足95%以上的使用需要。 1. ICM是集电极最大允许电流。三极管工作(工作总结)时当它的集电极电流超过一定数值时,它的电流放大系数β将下降。为此规定三极管的电流放大系数β变化不超过允许值时的集电极最大电流称为ICM。所以在使用中当集电极电流IC超过ICM时不至于损坏三极管,但会使β值减小,影响电路的工作(工作总结)性能。 2. BVCEO是三极管基极开路时,集电极-发射极反向击穿电压。如果在使用中加在集电极与发射极之间的电压超过这个数值时,将可能使三极管产生很大的集电极电流,这种现象叫击穿。三极管击穿后会造成永久性损坏或性能下降。 3. PCM是集电极最大允许耗散功率。三极管在工作(工作总结)时,集电极电流在集电结上会产生热量而使三极管发热。若耗散功率过大,三极管将烧坏。在使用中如果三极管在大于PCM下长时间工作(工作总结),将会损坏三极管。需要注意的是大功率三极管给出的最大允许耗散功率都是在加有一定规格散热器情况下的参数。使用中一定要注意这一点。 4. 特征频率fT。随着工作(工作总结)频率的升高,三极管的放大能力将会下降,对应于β=1时的频率fT叫作三极管的特征频率。 三、一般小功率三极管的选用 小功率三极管在电子电路中的应用最多。主要用作小信号的放大、控制或振荡器。选用三极管时首先要搞清楚电子电路的工作(工作总结)频率大概是多少。如中波收音机振荡器的最高频率是2MHz左右;而调频收音机的最高振荡频率为120MHz左右;电视机中VHF频段的最高振荡频率为250MHz左右;UHF 频段的最高振荡频率接近1000MHz左右。工程设计中一般要求三极管的fT大于3倍的实际工作(工作总结)频率。所以可按照此要求来选择三极管的特征频率fT。由于硅材料高频三极管的fT一般不低于50MHz,

三极管的判断方法

三极管的判断方法一,三极管类型

1. 先判定基极b(一般中间的就是):先假定一个管脚是b,把 红表笔接这个b,用黑表笔分别接触另两个管脚,测得或者都是高阻值时,说明假定正确。 2.因为红表笔实际是表电源的负极,所以 当测得都是低阻值时,b是N型材料, 两端是P型材料,就是PNP型。 3.所以当测得都是高阻值时,b是P型材料, 两端是N型材料,就是NPN型。 4.我们一般可以容易找到基极b,但另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO 的方法确定集电极c和发射极e。 (1) 对于NPN型三极管,用手指捏住b极与假设的c极,管脚间利用我们的手指充当电阻的作用,用黑表笔接假设的c 极,红表笔接假设的e极,万用表打到*1K档测量两极间的电阻 Rce;之 后将假 设的c ,e 极对调 再测一

次。虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极 管符号中的 箭头方向一 致,所以此时 黑表笔所接 的一定是发 射极e,红表 笔所接的一定是集电极c。 4.直流放大倍数的hFE的测量:先转动开关至晶体管调节 Adj位置上,将红黑测试笔短接,调节欧姆调零电位器,使指针对准300hFE刻度线上,然后转动开关到hFE位置,将要测的晶体管脚分别插入晶体管测试座的ebc管座内,指针偏转所示数值约为晶体管的直流放大倍数?值。N型插入N型插座,P型插入P型插座。 5.

常用开关管对照

常用开关管、场管、IC参数、国内外相似替换型号 分类:液晶屏维修实例 2009.7.9 12:15 作者:龙哥 | 评论:0 | 阅读:0 2SC1885 150V,0.05A 0.75,200MHZ BF297,BF422,BF391,3DG180K NPN 2SC2336 180V,1.5A,25W,95MHZ 2SC2238A,2SC2238B,2SC2660, NPN 2SD478,2SD608A,2SD760,2SD1138, 3DA25F 2SC3306 500V,10A,100W BUV48A,BUV48B,BUV48C,BUW13 NPN 2SC2740,2SC3042,2SC3277,2SC3365 2SC3842,2DK308C 2SC3461 1100V,8A,140W BU902,2SC3643,2SC3847,2SC3982, NPN 2SD1433 2SC3746 80V,5A,20W 2SC3253,2SC3258,2SC3540,2SC3691 NPN 2SC4549,2SD1270,2SC1832 2SC3866 900V,3A,40W 2SC2979,2SC3178,2SC3559,2SC3979 NPN 2SC4303 2SC3953 2SC3886 1400V,8A,50W BU508AF,2SC3847,2SC3896,2SD1850 NPN 2SD1886 2SC3997 1500V,20A,250W - NPN 2SC4111 1500V,10A,150W 2SC3307,2SC3897,2SC3995 N PN 2SC4159 180V,1.5A,15W 2SC3298A,2SC3298B,2SD1763A,2SD177 2 NPN 2SC4288 1400V,12A,200W 2SC3910,2SC3995 NPN 2SC4538 2SC4633 1500V,0.03A,7W 2SC4451,2SC4576 NPN 2SC4686A 1500V,0.05A,10W 2SC4578 NPN 2SC4833 500V,5A,35W BUT11AF,2SC3310,2SC3570,2SC4026 NPN 2SC4054,2SC4160,2SC4073,2SC4371 2SC4834 500V,8A,45W BU306F,BUT12AF,2SC3626,2SC4130, NPN

贴片三极管引脚-三极管的识别分类及测量

贴片三极管引脚三极管的识别分类及测量 符号:“Q、VT” 三极管有三个电极,即b、c、e,其中c为集电极(输入极)、b为基极(控制极)、e为发射极(输 出极) 三极管实物图: 贴片三极管功率三极管普通三极管金属壳三极管 二、三级管的分类: 按极性划分为两种:一种是NPN型三极管,是目前最常用的一种,另一种是PNP型三极管。按材料分为两种:一种是硅三极管,目前是最常用的一种,另一种是锗三极管,以前这种三极管用的多。三极按工作频率划分为两种:一种是低频三极管,主要用于工作频率比较低的地方;另一种是高频三极管,主要用于工作频率比较高的地方。按功率分为三种:一种是小功率三极管,它的输出功率小些;一种是中功率三极管,它的输出功率大些;另一种是大功率三极管,它的输出功率可以很大,主要用于大功率输出场合。 按用途分为:放大管和开关管。 三、三极管的组成: 三极管由三块半导体构成,对于NPN型三极管由两块N型和一块P型半导体构成,如图A所示,P型半导体在中间,两块N型半导体在两侧,各半导体所引出的电极见图中所示。在P型和N型半导体的交界面形成两个PN结,在基极与集电极之间的PN结称为集电结,在基极与发射极之间的PN结称为发射结。图B是PNP型三极管结构示意图,它用两块P型半导体和一块N型半导体构成。 AB 四、三极管在电路中的工作状态:

三极管有三种工作状态:截止状态、放大状态、饱和状态。当三极管用于不同目的时,它的工作状 态是不同的。 1、截止状态:当三极管的工作电流为零或很小时,即IB=0时,IC和IE也为零或很小,三极管处于 截止状态。 2、放大状态:在放大状态下,IC=βIB,其中β(放大倍数)的大小是基本不变的(放大区的特征)。 有一个基极电流就有一个与之相对应的集电极电流。 3、饮和状态:在饮和状态下,当基极电流增大时,集电极电流不再增大许多,当基极电流进一步增 大时,集电极电流几乎不再增大。 工作状态 定义 电流特征 解流 截止状态 集电极与发射极之间电阻很大IB=0或很小,IC或IE为零或很 小因为IC=βIB 利用电流为零或很小特征,可以判断三极管已处于截止状态 放大状态 集电极与发射极之间内阻受基极电流大小控制,基极电流大,其内阻小IC=βIB IE=(1+β)IB 有一个基极电流就有一个对应的集电极电流和发射极电流,基极电流能有效地控制集电极电流和发射极电 流 饱和状态

谈谈三极管的开关功能

谈谈三极管的开关功能 三极管的工作机理本质上就是通过be之间的电流来控制ce之间的电流。所以b极叫基极也叫控制极。本科生们关于三极管的一个粗糙的印象是三极管有放大作用,至于放大什么东西,可能有相当一部分人也含糊不清。我们这里说的放大,当然是指be间的电流来控制gemfield倍于它的流经ce之间的电流,这个gemfield,通常是100左右。形象的说,Ic就是将Ib放大100倍所得的电流。 三极管的工作有三种状态,即截止状态、线性放大状态、饱和状态。其实我本人是非常不喜欢这三个名字的。只是另起炉灶的话,会浪费更多的精力,也就罢了。不过深刻了解了这三种工作状态,以后便可以真正做到胸有成竹,从而看透电路中万变不离其宗的三级管用法。 那就先说截止状态吧。在描述三极管工作条件时,经常会蹦出正偏或者反偏这类词语,比如集电结反偏。这些词语也是令我很讨厌的一类词语,仿佛就是一个个骗子,将初始时我们对于森林的好奇最终引向了弥漫着雾气的杂草丛生的沼泽地带。所以我先费些笔墨来解释一下这个词语。所谓正偏,即两极间加的电压与PN结的导通方向一致,如本例中的2n5550 安森美NPN硅管,对于b、e构成的发射结来说,b极电位高于e极电位,就叫发射结正偏,相反则叫反偏!而对于b、c构成的集电结来说,b极电位高于c极电位,就叫集电结正偏,相反就叫反偏。 那么这个2n5550三极管什么时候处于截止状态呢?我们说当我们打开三极管的钥匙——be间的电压,有一个开启的电压,大约在0.5到0.6v之间。注意是b比e高0.5到0.6v,也就是说当b的电位比e 的电位高不出这个电压时,比如是0.4v或者0.1v或者-0.1v,我们就说三极管陷入了截止状态。这个时候,从c流向e的电流很小——只有1微安以下,因为我们还不具备开启三极管的钥匙。在multisim 10的电路仿真中,当ce间的电压为5v,Vbe钥匙电压为0.4v时,流经ce电流(Ic)为800多纳安。ce之间5v 这个还算可以的电压才仅仅产生了Ic纳安级渺小的电流。只能说ce间的电阻太大了。所以说,这个时候的ce间电阻很大,我们把它近似于开路。 所以对截止状态做个总结时,我们就说当be这把开启钥匙没有达到开启电压时(0.5到0.6)时,ce开路。这时的三极管你可以说它是装饰物,也可以说它是石头,甚至你把它从电路中拿走也没关系。这就是第一个我们要阐述的三极管的官员状态——我在休息,什么也不做。 不过不幸的是,下面还有一大段话要啰嗦。这些谆谆教诲对于三极管的任意一种工作状态都是适用的: 截止状态也不是说因为不用工作,所以就没有什么参数限制了。这是不对的,就像官员上班时间也在休息,甚至都有人在打麻将,ok,这是没关系的,反正也不会丢掉乌纱帽。但你不能放火烧房子,这个就不行了。同样,三极管在be的电位差不足前面提到的那个钥匙电压时不工作,但是be之间的电位差也不能太低了。比如,是一个很大的负值,这就是说e的电位反而比b的电位高很多。我们都知道三极管的be之间像一个pn结,那么毫无疑问也有一个反向耐压值。所以这块儿也有一个这样的值,就是说发射极的电位不能比基极高出那么多的一个值,是多少呢?对于2N5550来说,是6v,也就是说当Vbe<-6v时,三极管的发射结可能会被反向击穿。

三极管管脚地判别

三极管管脚的判别 2009-12-03 11:45:19 阅读240 评论0 字号:大中小订阅 [url=0672f50a 用万用表判断三极管的极性和质量 a.判断基极b 把万用表的欧姆档旋到X 100或X 1K, 将黑表笔接到自认为的基极上,然后用红表笔去接碰其余的管脚,如果两次测量的电阻都很大或都很小,则黑表笔接的是基极,两次测量电阻都很大时此管为PNP型的,电阻都很小为NPN型的。 b.判断集电极 c和发射极e 判断集电极 c和发射极e的原理:把三极管接成单管放大电路(图1-2),以测量管脚在不同接法时的电流放大系数的大小来比较,当管脚接法正确时的电流放大系数较接法错误时的电流放大系数大,由此可判断出c和e。 三颠倒,找基极

大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。 测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。图2绘出了万用电表 欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电 池的正极。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的 第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电 表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和 2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测 量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必 然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参 看图1、图2不难理解它的道理)。 二、 PN结,定管型 找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子 的导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极, 若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被 测管即为PNP型。 三、顺箭头,偏转大 找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透 电流ICEO的方法确定集电极c和发射极e。 (1) 对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的 黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度 都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b 极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时 黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极 →c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一 定是发射极e,红表笔所接的一定是集电极c(参看图1、图3可知)。 1、特点:晶体三极管(简称三极管)是内部含有2个PN结,并且具有放大能力的 特殊器件。它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补, 所谓OTL amplifier(无输出功率放大器)电路中的对管就是由PNP型和NPN型配对使用。 常用的PNP型三极管有:A92、9015等型号;NPN型三极管有:A42、9014、9018、 9013、9012等型号。 2、晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。为了便于比 较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。 名称共发射极电路共集电极电路(射极输出器)共基极电路

三极管的判断方法

三极管的判断万法三极管类型 集电极C f N 基极珈0—〒 I V ■ >i ■ ? I! N 发射极E jT NP N PN P 区 结 结 区 电 电 区 射 射 集 集 基 岌 发

1. 先判定基极b(一般中间的就是):先假定一个 管脚是b,把 红表笔接这个b,用黑表笔分别接触另两个管 脚,测得或 者都是高阻值时,说明假定正确。 2. 因为红表 笔实际是表电源的负极,所以 当测得都是低阻值时,b是N型材料,两端是 P型材料,就是PNP型。 3. 所以当测得都是 高阻值时,b是P型材料, N 两端是N型材料,就是NPN型。 4?我们一般可以容易找到基极b,但另外两个电极哪个是集 电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO 的方法确定集电极c和发射极e。 ⑴对于NPN型三极管,用手指捏住b极与假设的c极,管脚间利用我们的手指充当电阻的作用,用黑表笔接假设的c P] N—— 1

极,红表笔接假设的e极,万用表打到*1K档测量两极间的电阻Rce ;之 后将假 设的c ,e 极对调 再测一 1K档 黑表笔一c极一b极一巳极一红表笔b

次。虽然两次测量中万用表指针偏转角度都很小,但仔细观察, 总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔 TC极-b极-e极T红表笔,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 ⑵对于PNP型的三极管,道理也类似于NPN型,其电流 流向一定是:黑表笔—e极—b极—c极—红表笔,其电流流 向也与三极管符号中的箭头方向一致,所以此时黑表笔所接 的一定是发射 极e,红表笔所 接的一定是集 电极c 黑表笔一e极一b极一c极一红表笔4. 直流放大倍 数的hFE的测量:先转动开关至晶体管调节 Adj位置上,将红黑测试笔短接,调节欧姆调零电位器, 使指针对准300hFE刻度线上,然后转动开关到hFE位置,将要测的晶体管脚分别插入晶体管测试座的ebc管座内,指针偏转所示数值约为晶体管的直流放大倍数?值。N型插入N型插座,P型插入P型插座。 5.

如何检测三极管的三个极

如何检测三极管的三个极 可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型), 并辨别出e(发射极)、b(基极)、c(集电极)三个电极。测试方法如下: ①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置"R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧 至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被 测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将指针式万用表欧姆挡置"R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为 c 、 e 问电阻值小说明通过万用表的电流大, 偏置正常。 ③用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为 内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在0.6V 左右), 则假设的基极是正确的, 且被测三极管为NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时, 先确认晶体管类型, 然后将被测管子 e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。 三极管的管型及管脚的判别 为了迅速掌握测判方法,结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面进行解释。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管; 测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位,红表笔正,黑表笔负。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的

三极管和MOS管做开关用时的区别

三极管和MOS管做开关用时的区别 ?我们在做电路设计中三极管和MOS管做开关用时候有什么区别工作性质: 1.三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,MOS管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:MOS管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和MOS晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而MOS三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 ?(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。

三极管三个管脚识别

三极管三个管脚识别1、由三极管外形判断三个管脚

2、用万用表测量判断 可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型),并辨别出e(发射极)、b(基极)、c(集电极)三个电极。测试方法如下: ①用指针式万用表判断基极 b 和三极管的类型: 将万用表欧姆挡置"R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e: 仍将指针式万用表欧姆挡置"R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、 C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为c 、e 问电阻值小说明通过万用表的电流大, 偏置正常。 ③用数字万用表 测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在0.6V 左右), 则假设的基极是正确的, 且被测三极管为NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时, 先确认晶体管类型, 然后将被测管子e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。

三极管的使用方法

1.三极管工作状态的判断方法: 分析电路时,判断三极管的功能,如果能够知道该三极管三个管脚的电压和该三极管起得作用(放大还是开关),。对于NPN而言,如果Uc>Ub>Ue,该管处于放大状态,放大一定的电流,一般是在模拟电路中起了作用(此时Uce之间的电压是不确定的);如果Ub>Ue, Ub>Uc,该管处于饱和状态,c-e之间导通,其管压降为0.3-0.7V,与截止区相对立,此时该 二极管起到了开关的作用, 如图所示: 般应用在数字电路中。 3.72 12 * 饱和 3. 3 放大区截■ 止 3 区 3 区 对于PNP而言,当Ue>Ub>Uc即集电极反偏、发射极正偏,处于放大状态;当Ue>Ub 且 Uc>Ub(这时候,Uc^ Ue),即集电极和发射极都正偏,处于饱和状态。 2.三极管的使用方法: 我们经常在单片机系统中连接三极管起到开关的作用,经典电路如下图所示: 如果在单片机系统中出现三极管时,那么该三极管大多数甚至几乎全部情况下都会处于 开-关状态。因为单片机输出的都是数字量,要么是0,要么是1,不可能出现别的情况。因 此对应的三极管也要么开通,要么关断。 在上面电路中,如果按照开始时说的三极管状态的判别方法,是不行的。因为c点得工 作电压是不确定的(实际上在真正的电路中c点电压是确定的,但是从电路图中我们看不出 来)。真正的判断方法如下:当I/0引脚为高电平时,b点基极的电流是一定的,那么c点电 流也是一定的,而且是处在了三极管的饱和区,因此b点的电压为0.7v,三极管导通,贝U c 点的电压与e点压相同(比e点略大,约为0.5v,即为Uce),即OUT (输出端处于低电平)端为低电平状态。当I/0引脚为低电平时,NPN三极管断开,c-e之间不导通,那么此时 c 点(OUT)电位为高电平即VCC电压。这从而达到了用单片机引脚来控制Vcc的效果。 综上所述:当I/O为高电平,b-e之间有电压,三极管导通,c-e管压降小,OUT为低电平(Q 0.5);当I/O为低电平时,b-e之间没电压,三极管关断,c-e管压降非常大,OUT为高电平=Vcc; 上面就是NPN的使用方法。我们可以这么理解:在使用NPN时,要尽可能将e端接地,当b 端比e端至少高0.7v时,管子导通;否则管子断开。 同理,我们可以得出PNP三极管的使用电路和方法:

模电中三极管饱和及深度饱和状态的界定

模电中三极管饱和及深度饱和状态的界定 三极管饱和问题总结: 1.在实际中,常用Ib*β=V/R作为判断临界饱和的条件。根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深。 2.集电极电阻越大越容易饱和; 3.饱和区的现象就是:二个PN结均正偏,IC不受IB之控制 问题:基极电流达到多少时三极管饱和? 解答:这个值应该是不固定的,它和集电极负载、β值有关,估算是这样的:假定负载电阻是1K,VCC是5V,饱和时电阻通过电流最大也就是5mA,用除以该管子的β值(假定β=100)5/100=0.05mA=50μA,那么基极电流大于50μA就可以饱和。 对于9013、9012而言,饱和时Vce小于0.6V,Vbe小于1.2V。下面是9013的特性表: 问题:如何判断饱和?

判断饱和时应该求出基级最大饱和电流IBS,然后再根据实际的电路求出当前的基级电流,如果当前的基级电流大于基级最大饱和电流,则可判断电路此时处于饱和状态。 饱和的条件: 1.集电极和电源之间有电阻存在且越大就越容易管子饱和;2.基集电流比较大以使集电极的电阻把集电极的电源拉得很低,从而出现b较c 电压高的情况。 影响饱和的因素:1.集电极电阻越大越容易饱和;2.管子的放大倍数放大倍数越大越容易饱和;3.基集电流的大小; 饱和后的现象:1.基极的电压大于集电极的电压;2.集电极的电压为0.3左右,基极为0.7左右(假设e极接地) 谈论饱和不能不提负载电阻。假定晶体管集-射极电路的负载电阻(包括集电极与射极电路中的总电阻)为R,则集-射极电压Vce=VCC-Ib*hFE*R,随着Ib的增大,Vce减小,当Vce<0.6V时,B-C结即进入正偏,Ice已经很难继续增大,就可以认为已经进入饱和状态了。当然Ib如果继续增大,会使Vce再减小一些,例如降至0.3V甚至更低,就是深度饱和了。以上是对NPN型硅管而言。 另外一个应该注意的问题就是:在Ic增大的时候,hFE会减小,所以我们应该让三极管进入深度饱和Ib>>Ic(max)/hFE,Ic(max)是指在假定e、c极短路的情况下的Ic极限,当然这是以牺牲关断速度为代价的。 注意:饱和时Vb>Vc,但Vb>Vc不一定饱和。一般判断饱和的直接依据还是放大倍数,有的管子Vb>Vc时还能保持相当高的放大倍数。例如:有的管子将Ic/Ib<10定义为饱和,Ic/Ib<1应该属于深饱和了。 从晶体管特性曲线看饱和问题:我前面说过:谈论饱和不能不提负载电阻。现在再作详细一点的解释。 以某晶体管的输出特性曲线为例。由于原来的Vce仅画到2.0V为止,为了说明方便,我向右延伸到了4.0V。 如果电源电压为V,负载电阻为R,那么Vce与Ic受以下关系式的约束:Ic = (V-Vce)/R 在晶体管的输出特性曲线图上,上述关系式是一条斜线,斜率是 -1/R,X轴上的截距是电源电压V,Y轴上的截距是V/R(也就是前面NE5532第2帖说的“Ic(max)是指在假定e、c极短路的情况下的Ic极限”)。这条斜线称为“静态负载线”(以下简称负载线)。各个基极电流Ib值的曲线与负载线的交点就是该晶体管在不同基极电流下的工作点。见下图:

三极管管脚判别

三极管管脚判别,电容测量 9014,9013,8050三极管引脚图与管脚识别方法 s9014,s9013,s9015,s9012,s9018系列的晶体小功率三极管,把显示文字平面朝自己,从左向右依次为e发射极b基极c集电极;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c,s8050,8550,C2078 也是和这个一样的。用下面这个引脚图(管脚图)表示: 三极管引脚图 e b c 当前,国内各种晶体三极管有很多种,管脚的排列也不相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置(下面有用万用表测量三极管的三个极的方法),或查找晶体管使用手册https://www.sodocs.net/doc/ba1890302.html,首页可以查询电子资料与单片机资料,明确三极管的特性及相应的技术参数和资料。 非9014,9013系列三极管管脚识别方法: (a) 判定基极。用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP 型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。 (b) 判定三极管集电极c和发射极e。(以PNP型三极管为例)将万用表置于R×100或R×1K 挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。 D 不拆卸三极管判断其好坏的方法。 在实际应用中、小功率三极管多直接焊接在印刷电路板上,由于元件的安装密度大,拆卸比较麻烦,所以在检测时常常通过用万用表直流电压挡,去测量被测管子各引脚的电压值,来推断其工作是否正常,进而判断三极管的好坏。 如是象9013 ,9014一样NPN的用万用表检测他们的引脚,黑表笔接一个极,用红笔分别接其它两极,两个极都有5K阻值时,黑表笔所接就是B极。这时用黑红两表笔分别接其它两极,用舌尖同时添(其实也可以先用舌头添湿一下手指然后用手指去摸,反正都不卫生)黑表笔所接那个极和B极,表指示阻值小的那个黑表所接就是C极。(以上所说为用指针表所测,数字表为红笔数字万用表内部的正负级是和指正表相反的。) 三极管的管脚识别和判别 下面详细介绍用万用表如何识别管脚的方法: 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握

三极管的识别与检测方法(2)

三极管的识别与检测方法(2) 课型:理论+实践 教学目标 1、熟悉三极管外形,图形符号和文字符号; 2、了解三极管的种类与特点; 3、了解三极管的特性与参数; 4、掌握常用三极管的命名方法; 教学重点与难点 1、掌握三极管的外形,图形符号和文字符号; 2、了解三极管的种类与特点; 教学方法 讲授法、演示法 教学安排:2课时 教学过程 一、项目实施 任务一:普通三极管的识别与检测 工作任务: 1.识别不同类别的三极管 2.测量三极管 工作步骤: 1.识别各种三极管(按功率) (1)普通小功率三极管 普通小功率三极管通常采用TO-92封装,如图所示为9013三极管,其引脚顺序为E、B、C(引脚向下,面向元件型号)。 (2)中功率三极管 图所示为NPN型中功率三极管TIP41,其引脚顺序为B、C、E(引脚向下,面向元件型号),中功率三极管通常采用TO-220封装。 (3)金属外壳三极管 如图所示为开关三极管2N2222A,该三极管为NPN型三极管,采用金属外壳封装TO-18或TO-39,其引脚顺序如图所示,引脚向下,从凸起位置依次为E、B、C。

(4)大功率金属外壳三极管 图为大功率金属外壳三极管,其封装形式通常为TO-3,其外壳通常为集电极(C),另外两个引脚分别为基极(B)和发射极(E)。 (5)贴片三极管 图为贴片三极管8550,8550为小功率PNP三极管,其贴片型号为2TY,引脚顺序如图所示。 2、识别各种三极管(按引脚的现状) (1)色点标志 (2)凸形标记 (3)三角排列 (4)三脚等距平面性 (5)带散热片的三极管 3.用指针式万用表测量三极管 步骤一:判断三极管的基极(B) 用万用表R×1K档或R×100档依次测量三极管各极之间的正反向阻值,并将测得阻值填入表中。然后分析表中测得数据,观察哪一个引脚与其他两个引脚之间的测得的阻值均较小,如果符合这一条件,则这个引脚就是三极管的基极(B)。 步骤二:判断三极管的管型(PNP还是NPN) 将万用表置于R×1K档或R×100档,将万用表的黑表笔接三极管的基极,红表笔在其他极,如果阻值均较小,则表明这是一个NPN型三极管。如果是高阻值,改用红表笔接三极管的基极,黑表笔在其他引脚,若阻值均较小,则表明这是一个PNP型三极管。 步骤三:辨别三极管的集电极(C)和发射极(E) 方法一:将万用表置于R×1K档或R×100档,用“鳄鱼夹”夹持管脚,或用两手分别捏住表笔和管脚,然后用舌尖舔基极,利用人体电阻作为基极偏流电阻,也可进行测量。指针偏转较大的那一次,黑表笔所接为集电极(NPN管),红表笔所接为发射极。PNP管正好相反。 方法二:将万用表置于HFE档,将三极管管按假定的E、C插入万用表的“三极管测量

三极管开关电路分析

站内搜索: 永生 RSS 电路测试仪正达电路测试 电路测试仪-北京正达专营电路测试仪 https://www.sodocs.net/doc/ba1890302.html, 高校实验教学解决方案 集成电路维修检测仪. STC 51 新39.99 USB ISP 5 in 1(USB 能在线 录器 45.0 搜索

图1 基本的三极管开关 因此,基极电流最少应为: ( 流值。由于基极回路只是一个电阻和基射极接面的串联电路,故 (

为了避免混淆起见,本文所介绍的三极管开关均采用NPN三极管,当然NPN三极管亦可以被当作开关来使用,只是比较不常见罢了。 例题1 试解释出在图2的开关电路中,欲使开关闭合(三极管饱和) 所须的输入电压为何﹖并解释出此时之负载电流与基极电流值﹖ 解﹕由2式可知,在饱和状态下,所有的供电电压完全跨降于负载电阻上,因此 由方程式 (1) 可知 因此输入电压可由下式求得﹕ 图2 用三极管做为灯泡开关 由例题得知,欲利用三极管开关来控制大到1.5A的负载电流之启闭动作,只须要利用甚小的控制电压和电流即可。此外,三极管虽然流过大电流,却不须要装上散热片,因为当负载电流流过时,三极管呈饱和状态,其VCE趋近于零,所以其电流和电压相乘的功率之非常小,根本不须要散热片。 二、三极管开关与机械式开关的比较 截至目前为止,我们都假设当三极管开关导通时,其基极与射极之间是完全短路的。事实并非如此,没有任何三极管可以完全短路而使VCE=0,大多数的小信号硅质三极管在饱和时,VCE(饱和) 值约为0.2伏特,纵使是专为开关应用而设计的交换三极管,其VCE(饱和) 值顶多也只能低到0.1伏特左右,而且负载电流一高,VCE(饱和) 值还会有些许的上升现象,虽然对大多数的分析计算而言,VCE(饱和) 值可以不予考虑,但是在测试交换电路时,必须明白VCE(饱和) 值并非真的是0。 虽然VCE(饱和)的电压很小,本身微不足道,但是若将几个三极管开关串接起来,其总和的压降效应就很可观了, 不幸的是机械式的开关经常是采用串接的方式来工作的,如图3(a)所示,三极管开关无法模拟机械式开关的等效电 路(如图3(b)所示)来工作,这是三极管开关的一大缺点。表 步进电机控制工作原理 直流电机的PWM冲调速控制技术 消除按键抖动电路 伺服电机工作原理LED驱动原理

用万用表定性判断三极管的管脚

用万用表定性判断场效应管、三极管的好坏 一、定性判断MOS型场效应管的好坏 先用万用表R×10kΩ挡(内置有9V或15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。给栅、源极之间充电,此时万用表指针有轻微偏转。再改用万用表R×1Ω挡,将负表笔接漏极(D),正笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。 二、定性判断结型场效应管的电极 将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。若发现表针有轻微摆动,就证明第三脚为栅极。欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。 判断理由:JFET的输入电阻大于100MΩ,并且跨导很高,当栅极开路时空间电磁场很容易在栅极上感应出电压信号,使管子趋于截止,或趋于导通。若将人体感应电压直接加在栅极上,由于输入干扰信号较强,上述现象会更加明显。如表针向左侧大幅度偏转,就意味着管子趋于截止,漏-源极间电阻RDS增大,漏-源极间电流减小IDS。反之,表针向右侧大幅度偏转,说明管子趋向导通,RDS↓,IDS↑。但表针究竟向哪个方向偏转,应视感应电压的极性(正向电压或反向电压)及管子的工作点而定。 注意事项: (1)试验表明,当两手与D、S极绝缘,只摸栅极时,表针一般向左偏转。但是,如果两手分别接触D、S极,并且用手指摸住栅极时,有可能观察到表针向右偏转的情形。其原因是人体几个部位和电阻对场效应管起到偏置作用,使之进入饱和区。(2)也可以用舌尖舔住栅极,现象同上。 三、晶体三极管管脚判别 三极管是由管芯(两个PN结)、三个电极和管壳组成,三个电极分别叫集电极c、发射极e和基极b,目前常见的三极管是硅平面管,又分PNP和NPN型两类。现在锗合金管已经少见了。 这里向大家介绍如何用万用表测量三极管的三个管脚的简单方法。 1.找出基极,并判定管型(NPN或PNP) 对于PNP型三极管,C、E极分别为其内部两个PN结的正极,B极为它们共同的负极,而对于NPN型三极管而言,则正好相反:C、E极分别为两个PN结的负极,而B极则为它们共用的正极,根据PN结正向电阻小反向电阻大的特性就可以很方便的判断基极和管子的类型。具体方法如下: 将万用表拨在R×100或R×1K档上。红笔接触某一管脚,用黑表笔分别接另外两个管脚,这样就可得到三组(每组两次)的读数,当其中一组二次测量都是几

三极管开关电路分析及Rb计算

1.输入电压Vin,输入电阻Rin,三极管导通电压取0.6V,三极管电流放大倍数是B,输出电阻(在C极的电阻)是Rout。这样很好计算了: 5V / Rout = A, A / B = C,所以C是你最小的基极电流。 如果你的输入电压Vin也用5V,那么(5 - 0.6)/C = Rin,你就可以选Rin了,为使三极管可靠饱和,选(5 - 0.6)/Rin > C就可以了。 2.先求I先求Ic=Vc/Rc Ib=Ic/B 基极电阻Rb=(Vb-Vbe)/Ib c=Vc/Rc Ib=Ic/B 基极电阻Rb=(Vb-Vbe)/Ib 举例: 已知条件:输入Vi=5V,电源电压Vcc=5V,三极管直流放大系数beta=10. 查规格书得,集-射饱和电压Vcesat=0.2V,此时集电极电流Ic=10mA(或其它值),则集电极电阻Rc=(Vcc-Vcesat)/Ic = (5-0.2)/10 = 480 欧。 则Ib=Ic/beta=10/10=1 mA,基极限流电阻Rb=(Vi-Vbe)/Ib=(5-0.6)/1=4.4K,取为4.2K。 这时要注意,输入高电平为5V是理想情况,有可能在2.5V(输入的一半)以上就为高了,这时我们以5V输入而得到的基极电流很可能不够,因此要重新计算。以2.5V为逻辑电平的阈值来计算,则Rb==(Vi-Vbe)/Ib=(2.5-0.6)/1=1.9K,取为1.8K,或2K。 如何使三极管工作于开关状态?? 如何使三极管工作于开关状态 晶体三极管的实际开关特性决定于管子的工作状态。晶体三极管输出特性三个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。 如果要使晶体三极管工作于开关的接通状态,就应该使之工作于饱和区; 要使晶体三极管工作于开关的断开状态,就应该使之工作于截止区,发射极电流 iE=0,这时晶体三极管处于截止状态,相当于开关断开。集电结加有反向电压,集电极电流iC=ICBO,而基极电流iB=-ICBO。说明三极管截止时,iB并不是为0,而等于-ICBO。基极开路时,外加电源电压VCC使集电结反向偏置,发射结正向偏置晶体三极管基极电流iB=0时,晶体管并未进入截止状态,这时iE=iC =ICEO还是较大的。晶体管进入截止状态,晶体管基极与发射极之间加反向电压,这时只存在集电极反向饱和电流ICBO,iB =-ICBO,iE=0,为临界截止状态。进一步加大基极电压的绝对值,当大于VBO时,发射结处于反向偏置而截止,流过发射结的电流为反向饱和电流IEBO,这时晶体管进入截止状态iB = -(ICBO+ IEBO),iC= ICBO。发射结外加正向电压不断升高,集电极电流不断增加。同时基极电流也增加,随着基极电流iB 的增加基极电位vB升高,而随着集电极电流iC的增加,集电极电位vC却下

相关主题