搜档网
当前位置:搜档网 › 水产养殖水质监测系统是改善养殖水质的重要工具

水产养殖水质监测系统是改善养殖水质的重要工具

水产养殖水质监测系统是改善养殖水质的重要工具
水产养殖水质监测系统是改善养殖水质的重要工具

水产养殖水质监测系统是改善养殖水质的重要工具

在水产养殖生产中,要求对池塘、水库、工厂化养鱼池等多种水体的水质进行实时监控,如养殖场、育苗场水源必须检测确定无化学污染源;养殖过程中,为了预测水质变化趋势,及时调整水质,每天要多次测定温度、pH值,溶解氧、氨氮、亚消酸盐,硫化物等水质指标。国内用于水产养殖的水质检测仪器一般都是离线式的实验室检测方式,需要取样,检测结果反馈周期长,更不能根据结果自动进行水质调节,一方面,结果反馈周期长,难以保证水产养殖的安全,另一方面,养殖人员要掌握充足的养殖知识,熟悉大量的对照数据,才能制定出合适的调节控制水质的方案,这就需要养殖人员具有较高的素质,而且要进行经常性的干预。由此可见,传统的水质监测方式由于测试周期长、数据反馈速度慢等原因,已经不能适应飞速发展的水产养殖业需求。

水产养殖水质监测系统能够实时、系统、智能、分布式水质监测及调节系统是一种保产、保质、稳定的系统,融生物、物理、化学净化、电子信息技术为一体,充分发挥各水质净化单元作用,能满足不同养殖对象对水质的要求,极具应用价值及市场前景。

托普云农水产养殖水质监测系统由无线传感器网络技术设计,拥有多项专利技术。传统的监测系统采用铺设线缆的方式进行数据采集,工程量大、成本高,同时由于传感器大多通过微电压进行数据采集,过长的线缆铺设会导致数据的误差较大。水产养殖水质监测系统采用包含的3G网关和2公里ZIGBEE节点组成多

点多跳的星状网络,特有的电源管理系统结合超低功耗的芯片设计,使整套系统仅需要太阳能供电,并能够在连阴雨天气保证数月长期稳定的运行,系统还特别具有的自动清洗装置和先进光学溶解氧传感器。

水产养殖水质监测系统主要优点:

1、实用性:水产养殖地理位置分散,因此采用覆盖广泛的网络高信号捕捉,必要是采用高增益天线,可确保网络的正常运行。

2、实时性:水产养殖水质监测系统采用最新的通信和软硬件技术,建立了清晰和合理的系统架构,可以实现多线程的远程并发通信,在几秒时间内,可以让成百上千台的数据采集终端实时传送到监控中心进行集中监视和远程调度,实现故障信息的及时报警。

3、水产养殖水质监测系统可以进行系统或模块的无限扩展,便于长期的升级和维护,延长系统的寿命,通过更新部件,能让系统一直存在下去,而不至于整个系统瘫痪,造成大量的投资损失。

4、易维护性:水产养殖水质监测系统可对远程数据采集终端执行相应的远程操作命令,包括远程参数设置,远程控制、远程数据抄收、远程终端复位、远程终端软件升级等。

5、操作简易性:水产养殖水质监测系统软件功能完善,模块化、图形化设计,全过程全中文帮助,操作简单方便。

6、性价比高:水产养殖水质监测系统专为水产养殖环境监控量身定制,充分考虑到水产养殖环境各个环节的业务需求。

鱼池水质管理,直接影响养鱼效益。衡量鱼池水质好坏的指标主要有:池水温度、酸碱度(PH值)、溶氧值和透明度。现将其测试技术简介如下:

1.温度测试

不同鱼类对水温的要求不同。鲢、鳙、草、鲤、团头鲂等属温水鱼类,适宜生活的水温为20℃~30℃。罗非鱼属热带鱼类,适宜水温为25℃~34℃。为了给鱼创造最适宜的温度环境,就要随时掌握池水的温度变化。监测水温最常用的是水银温度计,但只能测得表层水温。水质分析仪和溶氧测定仪,均有水温测试功能,且可测定不同水层的水温。

2.酸碱度测试

池水的酸碱度(PH值)既影响鱼类的生长生活,又影响到池水中的营养素,因此人们常用石灰来调节鱼池水的酸碱度。对于鲢、鳙、草、鲤、团头鲂等温水鱼类,喜偏碱性水,其适宜PH值为7.5~8.5。

测定池水酸碱度最简单可靠的方法,是使用石蕊试纸。测定时,将一张试纸浸入水中2~3分钟后取出,再与酸碱度色谱对照,找到其中与试纸颜色相同的一段,就能知道池水的酸碱度了。

3.溶氧值测试

一般鱼类适宜的溶氧值为3毫克/升以上,当水中溶氧值小于3毫克/升时,鱼停止摄食和生长;溶氧值小于2毫克/升时,鱼就会浮头;在0.6~0.8毫克/升时开始死亡。过去测试溶氧值大多采用化学方法,即磺量法,这种方法虽然准确性较高,但既麻烦难度又大,一般养鱼户难以掌握。近年来已有不少测量溶氧值的电子仪器投放市场,如水质分析仪、溶氧测定仪等。这些仪器都有一个专用探头,只要把探头放到水中,将转换开关拨到测氧档,经过大约1~2分钟,仪表头上的指针就会指出水中的溶氧值。

4.透明度测试

所谓透明度,就是阳光透入水中的程度。透明度与水色直接相关,而水色又标志着水的肥瘦程度和水中浮游生物的多少。

测定透明度可以自己制作一只黑白盘:用薄铁皮剪成直径为20厘米的圆盘,用铁钉在圆盘中心打一个小孔,再用黑色和白色油漆把圆盘漆成黑白相间的颜色,在圆盘中心穿一根细绳,并在绳上划上升度记号。将黑白盘浸入鱼池水中,至刚好看不见圆盘平面时为止,这时绳子在水面处的长度标记值就是池水的透明度。如果透明度大于35厘米,说明池水太瘦了,要追肥,可多投饲料;如果透明度小于25厘米,说明池水太肥,要少投饲料,并加注新水。

巨控GRM200G模块在水产养殖远程监控系统中的应用

巨控GRM200G模块在水产养殖远程监控系统中的应用 设计的水产养殖监控系统采用抗干扰能力强的PLC为处理器,现场系统操作控制选择可视及操作集于一体的组态触摸屏,GRM200G通过GPRS网络与远程终端实现信息交换,实现对养殖池塘远程监控。结果表明,该系统运行可靠,传输速率高,实时性强,操作简单方便。 标签:水产养殖;GRM200G;远程监控 水产养殖中养殖环境尤为重要。养殖环境的关键因素包括水温、光照、溶氧、氨氮、硫化物、亚硝酸盐、PH值等[1、2]。现有的水产养殖管理多以经验养殖为主,无法精准地进行监测和控制,而且耗费大量人力、物力,产量难以得到保障。该系统利用GRM200G建立一种非透传模式的GPRS远程监控方案,将养殖池塘关键环境参数实时传输到远程PC终端,同时用手机短信作为系统的辅助管理手段,實现短信报警、短信查询等功能,实现对养殖池塘的远程监控,减轻了养殖工作者的工作量。 1 系统总体设计 图1 系统总体结构图 系统总体结构如图1所示,传感器完成养殖池塘溶氧、PH值、水温等参数的采集;触摸屏主要负责对传感器采集数据进行现场实时显示储存及对历史信息统计;PLC通过对采集参数的分析判断完成对增氧泵、水泵等设备的控制;GRM200G远程通讯模块将养殖池塘信息传送到远程终端;远程主机、手机显示当前池塘环境参数及设备状态并能远程控制。 基于GRM200G无线通信模块的远程监控系统,采用一种非透传模式的GPRS远程监控方案,该方案消除了传统透传模式的各种缺点,用户无需搭建中心服务器,即可实现GPRS远程监控,并且响应速度快、扩展性好[3]。 2 巨控GRM200G模块的配置 2.1 设置关联变量 运行GRM200G开发系统GRM Developer,新建工程,选择设备型号GRM200G;设置GRM200G与下位机PLC通讯协议为标准MODBUS RTU主机协议;新建设备PLC,设置从机地址3。 建立水温、PH、溶氧量等参数,建立增氧泵、水泵、投饵机等外部控制设备。根据下位机PLC中软元件的类型及地址与GRM Developer建立的变量关联好。需要注意在用MODBUS协议传输数据与PLC进行变量关联时,寄存器地址从1开始,因此定义寄存器的地址时比要读的寄存器的实际地址加一。图2

养殖用水体PH值调控技术

养殖水体PH值调控技术 PH的产生和调控 产生 PH值通俗讲就是用来表示水体中酸碱度的指标,是水体中H+的含量,是H+摩尔浓度的负对数,如水体中H+浓度为10-7mol/L时,即—lg-7的值就是7,也就是我们所说的中性水,以H+的含量多少取1—14。 适合水产养殖的PH值的范围 一般认为水产养殖用水的PH值得最适范围在7.5—8.5。低于7时水呈酸性,对养殖生物的鳃产生刺激,造成鱼虾等生物血液载氧能力下降,影响其呼吸机能,进而影响摄食,降低养殖生物的对外界不良刺激的抵抗力,同时还利于水体中H2S的产生,造成对养殖生物的毒害。PH值大于7时,水体呈碱性,随着水体中PH值的升高,水体中的NH3在总的铵态氮中的比例急速升高,也可能造成养殖生物的慢性或急性氨中毒(用氨水清塘即运用这个原理),即使水体中不含氨氮,过高的PH值也会使养殖生物的鳃丝棒状化,影响其与水体中的氧气交换和二氧化碳的排除。 水体中影响PH值得两大平衡系统 影响水体PH值的因素除了酸性或碱性底质和水体中的离子交换,理论上主要有两大系统: CO2—HCO3-=CO3-2 Ca2+—CaCO3 从上可以看出,水体中的二氧化碳含量的多少和水体的PH的关系相当密切,在实践生产中,白天晴天时,水体中的藻类进行光合作用,吸收大量的二氧化碳释放出氧气,致使水体中二氧化碳的含量急剧下降,从而PH值上升,所以在中午过后一段时间(一般2-4小时)水体中的PH值达到一天中的最高值。到夜晚时正相反藻类的光合作用减弱,呼吸作用增强,藻类呼吸作用放出大量的二氧化碳,造成水体中的PH值下降。一般来讲在早晨日出之前,水体中的PH值达到一昼夜的最低值。严格科学的来讲,水体中的PH值的最高值为白天浮游植物或挺水(沉水)植物的光合作用吸收的二氧化碳和水体中一切有呼吸作用的生物所产生的二氧化碳达到一个暂时的平衡时,这个临界点即为一昼夜中PH值得最高点,相反最低值出现在为浮游植物或挺水植物的光合作用吸收的二氧化碳和水体中一切有呼吸作用的生物所产生的二氧化碳达到另一个暂时的平衡点时。可以用PH每天最高值与最低值的差简单判断水体中浮游植物(或挺水植物)和水体中浮游动物的多寡、浮游植物的活力。 第二个系统中钙离子的浓度影响水体的碱度,当钙离子的含量较高时,水体的缓冲能力较强(排除水体中的浮游生物的影响),水体的PH值日变化幅度小,另外水体中的养殖生物也需要大量吸收钙离子作为自己的骨骼(内骨骼或外骨骼)生长。 PH过高过低的调控措施 PH过高: 土壤为退海之地,土壤的碱性较高: 水体中的离子与土壤中的离子因压力差存在着离子交换,使水体中的PH值升高,可以采用泼洒盐酸或醋酸的方法,具体用量是盐酸(30%)0.5斤/亩.米水深。也可以采用不清塘的方法,原因有二,第一是利用渗透压使土壤中的离子不能或少量析出,二是利用池底的大量有机物产生的腐殖酸来平衡碱性底质(此种方法应加强塘底的改底工作)。另外也可以大量的使用乳酸菌,具体用量可以参考厂家产品的用量。 水体中的浮游植物强烈的光合作用造成的: 可以使用益生菌如加“酶利生素、芽孢杆菌、鱼虾舒乐”等,原因是益生菌有多种有益

水质监测系统在国内外发展状况

水质监测系统在国内外发展状况当前工业技术与自动化技术已得到了巨大的发展,世界上许多工业化程度高的国家都应用电、机、化工、自动化、仪表、生物工程、电脑、通信等现代化技术来改造水产养殖业。对水质、水温、溶氧、分选、光照、消毒、污水处理起捕、水流、杀菌、投饲、吸污及应急发电等进行自动化管理。 养殖水体水质监测方法经历了三个阶段:传统经验法、化学法和仪器法。 目前实现水产养殖的国家里瑞典、丹麦、德国、挪威、美国等国家在水质监测系统方面发展比较快,设施很先进,纷纷进入了仪器法阶段。 自动监测技术应用于水产养殖已经有一、二十年的历史,他们己经拥有丰富的经验、成功的案例比如欧美于上世纪80年代开始出现了多参数水质测定仪,主要以监测水温、PH、溶氧量、化学需氧量、总有机碳等水质指标为基础;丹麦水产品研究所所研发的水产品养殖水质监测设备在世界范围内都享有盛誉;德国的史德科马迪可的养鱼工厂采用的封闭式水质环境监测方式并结合多项高科技手段的做法,也是各国争相效仿的对象。 我国在工厂化水产养殖的发展上晚于国外先进国家约十年左右,且在全国范围内,发展程度分布非常不均匀。我国的工厂化水产养殖的发展具有如下特点,海水养殖超过淡水养殖,北方的技术发展超过南方,新增的养鱼区域超过传统老养鱼区。且主要集中分布于中国的五个区域:东北地区;中原地区;河西走廊山东半岛和辽宁半岛。而我国广大的县市工业化养鱼仍属空白,就是上述四个地区,工业化养鱼也是良荞不齐。且我国水产养殖存在一个严重的问题就是生产过程缺乏病害预警机制与预防策略、水质实时监测与报警比较落后,这都与我国在水质监测系统方面存在的差距有重大关系。 我国较知名的研发此类设备的公司有上海雷磁、宁波奥博等若干家做水产养殖水质分析仪的厂商,但其产品基本是分立式的小型仪器,设备简陋,不能够用于搭建成完善的水质监测系统。 在技术研究方面,水质在线监测系统一般采用GSM、GPRS或者RS-485传输采集到的数据到PC机,实现了两层架构,并且上位机一般采用C/S模式。这些技术也在一定程

水质指标在水产养殖中检测意义

水质指标在水产养殖中 检测意义 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

水质检测指标 每个养殖户都知道,pH、融氧、氨氮、亚硝酸盐等指标,养虾的还需要关注总碱度。可是说归说,往往水质有问题不会是只有一个指标有问题,养殖户也没办法真的判断出是因为具体哪些因素导致,因此用药也只能单纯的根据表象来用,用药失误导致的严重后果也只能由自己来承担。因此,整理了水质的十一大指标,只有了解这些指标及会造成的后果,才能准确的根据功效来调水,避免半知不解造成的严重后果。 pH 淡水,海水pH值的日正常变化范围为1~2,若超出此范围,表明此水体有异常情况。通常pH值低于,鱼类死亡率可达7%~20%,低于4%以下,全部死亡;pH值高于,死亡率可达20%~89%,pH高于时,可引起全部死亡。 症状: 1.鱼类碱中毒:体色明显发白,狂游乱窜;体表大量粘液甚至可拉成丝;鳃盖腐蚀损伤、鳃部大量分泌凝结物;水体存在许多死藻和濒死的藻细胞。对虾易发生黑腮病,继而演变为烂腮病、黄腮病和红腮病,致使呼吸机能发生障碍,窒息死亡。 值低于时:降低载氧能力,引起鱼组织内缺氧、造成缺氧症状,尽管水体中溶氧量正常,鱼也有浮头现象,pH值过低新陈代谢强度降低,减少摄食量,生长缓慢,也会引起鱼鳃组织凝血性坏死,粘液增多,腹部充血发炎等。 溶解氧 连续24小时中,16小时以上必须大于5mg/L,其余任何时候不得低于3mg/L,对于鲑科鱼类栖息水域冰封期其余任何时候不得低于4mg/L。溶氧高于12mg/L,表明水中氧已过量,此时鱼虾易得气泡病。 症状: 水体中的溶解氧的高低对鱼类的生存和发育都有直接的影响,当溶氧低于1mg/L时,鱼就会浮头,如果不采取增氧措施就会使鱼窒息死亡,同时也给致病菌创造了有利条件而降低鱼的抗病能力引起鱼病;足够的溶氧可抑制生成有毒物质的化学反应,转化或降低有毒物质(如氨氮、亚硝酸盐、硫化氢)的含量,同时还可以提高饵料转化率对养殖具有重要的意义。 水体溶氧不足的成因: 1.养殖密度过大; 2.养殖水体过肥; 3.水体细菌大量分解有机物,导致氧耗; 4.水体文档升高,溶氧降低; 5.水中的还原性物质如硫化氢、氨、亚硝酸盐等较多时,其氧化作用也会造成溶氧降低。 氨氮 我国渔业水质标准规定氨氮浓度应小于L,氨氮含量超过毫克/升(mg/l)时,鱼类会出现氨氮中毒症状。目前专家普遍认为,养殖中氨氮的含量应严格控制在毫克/升以下。当氨氮浓度一定时,能否引起鱼类中毒死亡,还受池水pH值、水温高低的影响。 氨氮在水中以游离氨和离子氨形式存在,分子氨对鱼类是极毒的,可使鱼类产生毒血症。 分子氨和离子铵在水中可以相互转化,它们的数量取决于养殖水体的pH和水温。 pH越小,水温越低,水体总铵中分子氨的比例也越小,其毒性越低。 pH越大,水温越高,分子氨的比例越大,其毒性也就大大增加。 另外一个影响氨氮含量的因素,就是底泥。若底泥过厚,清塘不彻底,高温季节夜晚,水温较高时,底泥当中的有毒气体就会被释放出来,在这个过程中,氧气的消耗量会加倍,于是造成池水缺氧,氨氮含量也超标,鱼类大量浮头甚至泛塘。 因此,养鱼先养水,调节好水质是保证鱼类健康成长的前提。 氨氮中毒的特点:

水产养殖自动化设计方案

水产养殖环境远程监控系统 设计方案 追求至善 凭技术开拓市场/凭服务树立形象 圣启科技?河北

第一部分:概述 (2) 1、养殖业发展现状 (2) 2、水产养殖环境远程监控系统概述 (4) 第二部分:系统组成 (5) 1、养殖水质监测站: (6) 1、1、监测站概述. (6) 1、2、监测站配置. (6) 1、3、传感器选择. (6) 2、数据传输层(数据通信网络):6 3、远程监控中心 (7) 第三部分:系统功能 (7) 第四部分:系统特点 (12) 结束语 (12)

第一部分:概述 1、养殖业发展现状 渔业作为一种传统产业,在近代得到了快速的发展,并在社会、经济和人们 生活中显现出其重要的地位。特别是水产养殖业,最近30 年里,在全球动物性食

品生产中增长最快,而中国对水产养殖产品的生产贡献率最大, 中国水产品养殖产量约占世界 水产品养殖产量的2/3,养殖产品的质量和安全卫生水平有了较大的提高,但和先进国家相比还 有很大差距。水产养殖业尤其是工厂化养殖过程所用的设施条件还不够完善,机械化、自动化 程度不够高,水处理设备落后,基本为流水式开放系统。近年来,鱼类赖以生存的江河湖泊和浅 海等水体环境受到越来越严重的污染,致使渔业资源日趋衰退,从自然界中捕获到的名、特、优水产品的数量日益减少,另一方面,水产养殖生产经营者多以追求产量和近期经济效益为目标,养殖密度过高,加上保护养殖环境意识淡薄,养殖病害呈逐年加重之势,随之而来的是药物滥用 现象较为普遍,以至于水域环境遭到不同程度的破坏,水产品质量安全得不到有效保障,同时传 统养殖业中大量养殖污水的排放,又加剧了环境污染,使得发展传统养殖业与保护环境的矛盾日 益突出。因此,用具 有占地面积小、用水量少、无污染、不收地域、环境、气候等影响的密集化工厂化集约模式代替传统的粗放型模式势在必行,实现工厂化水产养殖的关键是水产养殖远程监控。 影响水产养殖环境的关键参数就是水温、光照、溶氧,ph值等,水质的好 坏关系到养殖效益、养殖效果、养殖风险等各方面的因素。目前国内的水产养殖业其水质监测基本上仍处于人工取样、化学分析的人工监测阶段,其耗时费力、精确度不高,并且需要有专业人 员进行操作。同时鉴于养殖池群规模大,范围广、来回不方便等特点,传统的靠取水样测水样的 控制方式已经明显不能满足实时性的需要。我们平时如能做到不间断的监控水质的变化情况, 发现问题、及时采用 相应措施进行处理,就能防止养殖对象水体环境的恶化,从而让养殖对象少生病或不生病。

基于物联网技术的水产养殖智能化监控技术与系统

基于物联网技术的水产养殖智能化监控技术与系统一、项目可行性报告 (一)立项的背景和意义 我国水产养殖业的快速发展,对繁荣农村经济,优化产业结构,提高农民生活水平、建设和谐的社会主义新农村具有重要意义。《国家中长期科学和技术发展规划纲要(2006-2020)》已明确将“农业精准作业与信息化”和“畜禽水产健康养殖与疫病防控”纳入优先主题,因此,建设现代化的水产养殖业、发展农村经济和提高水产养殖业在国际市场竞争力,成为我国当前和今后相当一段时间内水产业发展的重要任务。结合浙江省的区位优势和《浙江海洋经济发展示范区规划》,发展现代水产养殖业,对浙江省建设海洋大省和海洋强省具有重要意义。本项目应用现代物联网技术,结合水产养殖特色,构建一套水产养殖水质环境信息感知—无线传感网路和可视化监控—智能化终端控制和预警预报系统,实现高效、生态、安全的现代水产养殖,对构建具有鲜明浙江特色的现代水产养殖新格局,促进我省社会主义新农村建设具有重要推动作用。 统计显示,到2010年,我省水产养殖面积稳定在480万亩,产量达到190万吨,净增20万吨;产值(一产)达到350亿元,新增130亿;出口额达到10亿美元,新增6.5亿美元。但随着我省土地资源紧缺,水产养殖池塘逐步老化、病害多发、效益下降等突出问题,如何提高养殖产品的品质、直接增加了渔农民的经济收入,实现高效、生态、安全的现代水产养殖产业成为我省亟待解决的重大问题。传统的粗放水产养殖方式,采用人工观察,单纯靠经验进行水产养殖的方法,很容易在养殖过程中造成调控不及时,反馈较慢,出现“浮头”和大面积死亡等惨象,造成重大的经济损失,上述方法已经不能满足现代水产养殖精准化和智能化的发展要求。基于上述问题,本项目重点研究水产养殖水质和环境关键因子立体分布规律和快速检测技术、水产养殖智能化和可视化无线传感网络监控系统、开发水产养殖环境关键因子(温度、pH值、溶解氧、

水产养殖监测系统的构成要素

水产养殖监测系统的构成要素 水产行业不管是在内地还是在沿海一代都是我国发展的重点对象,本身水产养殖对于水中的各项参数指标就要求很严格,再加上水里所含物质的监测本身比较困难,所以现阶段的淡水鱼养殖对养殖监控系统的要求时越来越高。 水产养殖监测系统主要有水质监测、环境监测、视频监测、远程控制、短信通知等功能,水产养殖监测系统综合利用电子技术、传感器技术、计算机与网络通信技术,实现对水产养殖各阶段的水温、pH值和溶氧量等各项基本参数进行实时监测与预警,一旦发现问题,能及时自动处理或短信通知相关人员。通过一些控制措施来调节水产养殖的溶解氧、温度、pH值和水位等养殖水质的环境因子,同时根据水产品不同生长阶段的需求制定出测控标准,通过对水产养殖环境的实时检测,将测得参数和系统设定的标准参数进行比较后自动调整水产养殖生态环境各控制设备的状态,以使各项环境因子符合既定要求。 方法与过程: 水产养殖监测系统总体硬件架构: 水产养殖监测系统主要有水质监测、环境监测、视频监测、远程控制、短信通知等功能,该系统综合利用电子技术、传感器技术、计算机与网络通信技术,实现对水产养殖各阶段的水温、pH值和溶氧量等各项基本参数进行实时监测与预警,一旦发现问题,能及时自动处理或短信通知相关人员。通过一些控制措施来调节水产养殖的溶解氧、温度、pH值和水位等养殖水质的环境因子,同时根据水产品不同生长阶段的需求制定出测控标准,通过对水产养殖环境的实时检测,将测得参数和系统设定的标准参数进行比较后自动调整水产养殖生态环境各控制设备的状态,以使各项环境因子符合既定要求。如图2所示,本系统采取分

散监控、集中操作、分级管理的方法,硬件架构主要包括3部分:信息采集模块、信息处理模块、输出及控制模块。 水产养殖监测系统信息采集模块: 已有的水产养殖监测系统都只是用无线传感器网络对水产养殖的环境进行监控,而没有结合之后水产品加工、运输、销售环节的一个追溯需求来对养殖环节中水产品的鱼种、用药情况、饲料情况、患病情况进行记录和做出相关的应对措施。针对上述情况,系统采用ZigBee技术构建一个信息集输入模块,使无线传感器网络和RFID系统互不干扰。由于ZigBee技术的诸多优点,它与GPR组成的混搭型环境监测系统是目前比较流行和有发展潜力的架构。在监测现场,采集终端采用ZigBee技术,实现设备的互联互通,数据汇集于网关节点后通过GPRS与服务器相连,将数据上传到后台数据库服务器。 信息采集输入模块的结构如图4所示。

论工厂化水产养殖水质调控技术的研究进展

论工厂化水产养殖水质调控技术的研究进展 时间:2010-07-10 11:39来源:未知作者:admin 点击: 66次 摘要:随着我国工厂化水产养殖规模的不断扩大,养殖水调控系统受到了普遍的重视,本文综述了养殖水质调控技术的发展现状,并对各个组成单元的应用情况和存在的问题作了详细的阐述,并对未来这项技术的发展方向进行了展望。关键词:工厂化水产养殖,水质调 摘要:随着我国工厂化水产养殖规模的不断扩大,养殖水调控系统受到了普遍的重视,本文综述了养殖水质调控技术的发展现状,并对各个组成单元的应用情况和存在的问题作了详细的阐述,并对未来这项技术的发展方向进行了展望。 关键词:工厂化水产养殖,水质调控,研究进展 水产养殖业是我国渔业的重要组成部分,也是渔业发展的主要增长点。我国的渔业发展重心由“捕捞为主”向“养殖为主”的转移,促使水产养殖业发生了巨大变化。2001 年中国水产养殖产量达到 2726 万t,比1978 年增长 16 倍,在世界渔业总产量中,养殖的产量占了20%,而我国水产养殖产量约占世界养殖产量的80%[1]。同时,由于水产养殖的不断发展,原来粗放型的养殖模式已经越来越不适应生产的要求。在养殖过程中,因残留饵料、养殖生物的粪便及残体等的腐败,造成养殖水体恶化。这些有机污染物含量高的水未加处理就随便排放,导致水体富营养化,诱发有害的水华或赤潮,损害养殖生产,甚至使整个生态环境遭到恶化。 1. 工厂化水产养殖系统在国内外的发展现状 工厂化水产养殖系统的研究始于二十世纪七十年代初期,是水产养殖业向现代化、企业化、规模化方向发展过程中产生的一种新的养殖方式,实现高密度、高产量和高效率的渔业生产[2]。因其集约化和水质相对容易控制的特点,在国内外得到了广泛的应用。美国采用工厂化养殖系统来养殖生物现已逐步形成和发展了一套较为完整的技术和设备[3]。丹麦的工业化循环流水式养鱼系统和地下室循环过滤养鱼系统都是高水平的,设备已出口挪威,以色列等国。日本采用循环流水工业化养鱼系统也较早,主要养鲤鱼、鳗鲡等,前苏联,美国,德国,法国、加拿大、瑞典也都先后设计生产了各种类型的工厂化循环水养鱼系统,用于养殖海、淡水名优鱼类,我国工业化养鱼起步于二十世纪70 年代,是受世界工业化养鱼潮流的影响而逐步发展起来的,而自行设计生产的工业化养鱼系统以80 年代末建立的中原油田养鱼工厂较为著名[4]。刘伟[5]等利用流化床生物滤器循环水养鱼系统进行了培育鲤仔鱼至乌仔的育苗实验。结果表明:鱼苗在10—15万尾/m2的放养密度下,鲤仔鱼在15d内达到了乌仔规格,成活率达到87%。 2. 工厂化水产养殖系统中的污染物 工厂化水产养殖系统中的污染物主要是未被摄食的残饵、养殖生物的排泄物和分泌物、病原体及其他杂质。最终以悬浮的颗粒物、溶解有机物、氨氮的形式存在,为了使这些污染物的浓度达到养殖生物正常生长繁殖所要求的安全浓度之下,应具备不同的污染物处理单元,以维持整个养殖系统对水质、溶氧、温度及其他水化学参数的需要。 3. 目前工厂化水产养殖系统中的主要水处理单元与设备 根据养殖系统的特点和养殖生物对水质的要求,一般情况需要设的处理环节有:(1)去除悬浮颗粒物(粒径>100um);(2)去除微颗粒(粒径<30um)[6];(3)增氧;(4)杀菌消毒;(5)生物法除氨氮;(6)水质调控。按照一定的工艺流程将这些环节组合,来净化养殖用水,现将各个处理环节所涉及到的有关设备及工艺分述如下: 3.1 固液分离去除悬浮颗粒物 在循环水养殖过程中,鱼类的粪便、及其所食饵料的20-60%最终以固体废弃物的形式排入水中,其中,悬浮性固体颗粒物占50% 左右[7],是养殖水体污染物的主要来源。按照悬浮颗粒物的特性(密度、颗粒的大小) , 又可分为机械过滤和重力分离两种技术[8]。

基于生态农业园的水产养殖排水水质改善技术

Vol.28No.4 Apr.2012 赤峰学院学报(自然科学版)Journal of Chifeng University (Natural Science Edition )第28卷第4期(上) 2012年4月在实际操作中,为体现生态农业园的生态模式,可使用水生经济作物浮床、放养水生动物和水生植物,建造生态护 岸对排水水质进行改善.可以在河道中种植水葫芦等去污能力较强的水生作物,或种植空心菜等经济作物,在净化水质的同时,最大化的提高园区经济效益.为软化园区中的硬质护岸,可以采用生物材料构成的生物混凝土技术,恢复河岸两侧的生态植被,在为生物提供良好的栖息场所的同时产生一定的经济效益. 1我国水产养殖业的现状 水产养殖业在我国有着悠久的历史,近年来,随着经济的飞速发展和人民生活水平的提高,传统养殖业生产的水产品无论在价格、种类还是品质上都已渐渐无法满足市场和消费者的需求,只能通过加大养殖密度的方法来增加产量.这就为我国的水产品养殖业带来了诸如水产品种类的减少,质量的退化,养殖过程中化肥、农药等化学药品的大量滥用,对水环境造成了严重污染,造成了水产品中药物残留量超标,质量检测不过关等问题.而这样的水产品被人食用后,对人体健康的危害也极为严重.多年来,我国水产养殖业的发展一直受到这些问题严重的限制.近几十年来,通过对水产养殖业结构的调整,完善水产养殖业的质量检测体系,增强环保意识等方法,在确保了较好的经济效益的同时,也确保了我国水产养殖业的发展. 随着我国水产养殖业的发展,养殖排水的排放已经成为了一个严重的环境问题,与其它的废水相比,水产养殖排放的废水具有浓度高,水力负荷高,处理难度大等特点,如果在排放到天然河道之前没有经过合理的处理,将会对当前水域的环境造成严重的污染破坏.2排水水质改善处理技术 近年来,我国对城市生活污水和工业废水的处理技术已经较为成熟,然而因为水产养殖排水具有污染物种类少,污染物含量变化小,但排水量极大,污染负荷高等特点,加上其间歇性排放的形式,在一定程度上加大了水产养殖排水的处理难度.对水产养殖排水水质的处理既要满足排放标准,有要满足生态农业对物质循环利用的基本要求.目前,水产养殖排水水质改善技术主要包括以下三种:2.1物理处理技术 2.1.1 过滤技术 过滤技术主要包括膜过滤技术和机械技术.机械过滤主要采用过滤设备,通过吸附作用去除养殖排水中的参与饵料,养殖生物的排泄物,甚至重金属等溶解态的污染物.膜过滤技术是指通过采用不同孔径的膜滤除颗粒物,截留不同粒径颗粒物的过程.其中横流式微滤及超滤技术提供了为膜过滤技术提供了一种针对小粒径颗粒物的去除方法.这种方法可应用于养殖经济价值较高的水产品所产生的废水的处理. 2.1.2泡沫分离技术 该技术从20世纪70年代开始广泛应用与工业废水的 处理当中.其原理是通过向污水中大量注入空气, 使水中的表面活性物附着在微小气泡上,并被这些气泡带上水面形成泡沫,然后只需分离水面泡沫就可达到去除污水中溶解态、悬浮态污染物的目的.近年来,在处理养殖排水时也开始使用这一方法.其拥有为养殖水提供溶解氧,避免有毒物质在水中积累等优点,然而由于淡水养殖排水缺乏电解质,形成的泡沫有限,导致这一技术的应用效果较差.2.1.3其他污水处理技术 除上述两种方法以外,在水产养殖中经常使用的物理处理方法还有排换水和机械增氧两种.除此之外还有反渗透技术、活性炭吸附以及高分子重金属吸附等处理方法.2.2化学处理技术 2.2.1紫外辐射消毒技术 通过紫外辐射进行消毒,可以有效破坏水中残留的臭氧并杀死大量病菌,具有低成本、无毒等优点.目前,国外对这种技术的应用较为成熟,在国内也有许多生态农业园开始应用,这一技术主要还是应用于水产养殖排水的循环应用方面. 2.2.2混凝沉淀技术 所谓混凝沉淀即是指利用化学原理,在水中加入混凝剂,去除水中的污染物.目前常用的混凝剂主要有石灰、铁盐及有机絮凝剂等.由于化学药品大多含有有毒物质,所以这一方法不能直接应用与养殖用水,而是用来处理水产养殖排水. 2.2.3臭氧氧化处理技术 基于生态农业园的水产养殖排水水质改善技术 王 芳 (内江师范学院生命科学学院,四川内江641112) 摘要:近年来,随着我国水产养殖业的迅猛发展,由于水产养殖排水的排污量大,污染负荷高,而对环境造成了严重的污染问题.本文结合生态农业园自身特点从生态学原理出发, 对种植水生经济作物浮床、水生植物以及放养水生动物,修筑生态护岸等污水处理办法,进行详细介绍.在改善排水水质的同时提高生态农业园的经济效益.为生态农业园区水产养殖排水水质的改善和生态农业园区经济收益的提高提供一定的技术依据. 关键词:生态农业园;排水水质;经济效益;养殖排水中图分类号:X714 文献标识码:A 文章编号:1673-260X (2012)04-0035-02 35--

水产养殖水质监控的技术方案

基于物联网技术的水产养殖智能化监控技术与系统 ※背景 我国是世界上从事水产养殖历史最悠久的国家之一,养殖经验丰富,养殖技术普及。改革开放以来,我国渔业调整了发展重点,确立了以养为主的发展方针,水产养殖业获得了迅猛发展,产业布局发生了重大变化,取得了举世瞩目的成就,产量约占世界养殖产量的80%。已从沿海地区和长江、珠江流域等传统养殖区扩展到全国各地。近年来,我国水产品出口量和出口额均出现不同程度的上涨。另外国内市场的消耗量也在加大,沿海、沿江、珠三角、长三角一带是水产品主要市场,总体来看我国是一个水产养殖大国。 并且我国水产养殖业的快速发展,对繁荣农村经济,优化产业结构,提高农民生活水平、建设和谐的社会主义新农村具有重要意义。《国家中长期科学和技术发展规划纲要(2006-2020)》已明确将“农业精准作业与信息化”和“畜禽水产健康养殖与疫病防控”纳入优先主题,因此,建设现代化的水产养殖业、发展农村经济和提高水产养殖业在国际市场竞争力,成为我国当前和今后相当一段时间内水产业发展的重要任务。 ※现状及需求 长期以来,我国水产养殖生产经 营者多以追求产量和近期经济效益 为目标,养殖密度过高,滥用药物, 养殖病害和工业污染呈逐年加重之 势,加上水产养殖池塘逐步老化和保 护养殖环境意识淡薄以至于水域环 境遭到不同程度的破坏,水产品质量 安全得不到有效保障,水产养殖业可 持续发展受到严重影响,如何提高养 殖产品的品质,增加经营者的经济效 益,实现高效、生态、安全的现代水产养殖产业成为我国亟待解决的重大问题。 而传统的粗放水产养殖方式,采用人工观察,单纯靠经验进行水产养殖的方法,很容易在养殖过程中造成调控不及时,反馈较慢,出现“浮头”和大面积死亡等惨象,造成重大的经济损失,上述方法已经不能满足现代水产养殖精准化和智能化的发展要求。 影响水产养殖环境的关键参数有水温、光照、溶氧,PH、ORP、余氯、浊度、电导率、盐度等,但这些关键因素即看不见又摸不着很难准确把握。现有的水产管理是以养殖经验为指导,也就是一种普遍的养殖规律,很难做到准确可靠,产量难以得到保障。随着养殖业的不断发展,市场调节失控,竞争越来越激烈,掌握准确可靠的养殖数据,科学养殖,提高产量与品质,势在必行。 ※系统概述 上海诺博和环保科技有限公司经过多年的养殖现场考查和大量研究实验,针对水产养殖环境对象具有的多样性、多变性、以及偏僻分散等特点,研发出一套基于无线移动通信和测控技术的远程数据采集和信息发布系统方案。本系统可以实时测量水体参数,实现水产养殖数值化、信息化的连续监测和自动报警,让经营者能实时在线了解养殖环境水质的变化。并

物联网水产养殖智能监控系统方案

CICTA 中欧农业信息技术研究所 https://www.sodocs.net/doc/b612028308.html,:8088/lab_cn/system/index.php?detail=1&id=8 水产养殖环境智能监控系统 1、系统简介 水产养殖环境智能监控系统是面向水产养殖集约、高产、高效、生态、安全的发展需求,基于智能传感、无线传感网、通信、智能处理与智能控制等物联网技术开发的,集水质环境参数在线采集、智能组网、无线传输、智能处理、预警信息发布、决策支持、远程与自动控制等功能于一体的水产养殖物联网系统。 养殖户可以通过手机、PDA、计算机等信息终端,实时掌握养殖水质环境信息,及时获取异常报警信息及水质预警信息,并可以根据水质监测结果,实时调整控制设备,实现水产养殖的科学养殖与管理,最终实现节能降耗、绿色环保、增产增收的目标。 2、系统组成 该系统由水质监测站、增氧控制站、现场及远程监控中心等子系统组成。 水质监测站可以选装溶解氧传感器、pH传感器、水位传感器、盐度传感器、浊度传感器等,配合智能数据采集器,主要实现对养殖场水质环境参数的在线采集、处理与传输。 增氧控制站包括无线控制终端、配电箱、空气压缩机与曝气增氧管道(或增氧机),无线控制终端汇聚水质监测站采集的信息,根据不同养殖品种对溶解氧的需求,通过算法模型控制增氧设备动作。 现场监控中心包括WSN无线接入点和现场监控计算机,无线控制终端汇聚的数据通过无线接入点汇总到现场监控计算机,用户可在本地查询水质参数数据,同时监控计算机对数据进行分析处理,做出控制决策,通过无线接入点向配电箱发送控制指令。 远程监控中心通过GPRS远程接入点接收无线控制终端汇聚的数据信息,用户可以通过手机、PDA、计算机等信息终端远程查询水质信息,同时也可通过对数据进行分析处理,做出控制决策,远程控制增氧设备。

养殖池塘水体富营养化调控技术

人们由于缺乏水生态系统保护意识、片面强调养殖产量的增加和养殖规模的扩大,一些养殖水 体出现富营养化,导致蓝藻爆、赤潮(红潮、黑潮、黄潮)爆发,养殖效益下降、生态系统退化。 养殖水体富营养化的成因 1、投饲量加大,随着养殖时间的推进,养殖动物的增长,饲料的投入量就随之加大,残饵 的堆积,营养物质的大量涌现。外源投入品副产物加大了水体的承载量,水体自净能力下降。 2、微生物降解能力减弱,大量的粪便、残饵的堆积,微生物转化的能力处于一个超负荷, 这就出现了有机质的沉积速度远远大于微生物的降解能力,粪便、残饵越积越多,富营养化 形成。 3、有益藻减少,水中原生动物增加,随着养殖时间推进,水体的营养物质失衡,比如氮磷 比例失调,有益藻类营养源的不均衡,导致了藻类繁殖速度减慢,有益藻类的量减少,藻类 获取水里的营养物质的量也就随之减少,被分解营养物质无法全部被藻类利用,累积过多后 就出现了反馈抑制作用,造成物质循环受阻。 4、频繁的消毒,在养殖过程中频繁的杀虫消毒又不及时补充有益菌群,造成水体缺乏有益 微生物。从而有益微生物的降解能力大大削弱甚至归零,使水体富营养化由于人为的干预出 现加速! 水体富营养化对养殖的危害 1、有害藻类爆发。由于水体的粪便残饵的堆积,微生物降解转化能力减弱,很多的物质就 以大分子有机物形态存在,小型的藻类无法吸收利用,但是如裸藻、甲藻、蓝藻等有害藻类 却能吸收利用,这种环境为有害、不良藻类提供了快速繁殖的条件,大量的裸甲藻及蓝藻爆发,导致水体pH值居高不下溶氧昼夜变化大。一旦遇到恶略天气倒藻直接导致水体缺氧养 殖动物浮头甚至翻塘,同时藻毒素大量产生。 2、水体化学耗氧量(COD)过大,由于水体有机物的大量堆积,就会出现有机物氧化分解 大量消耗水体溶氧,COD在整个氧消耗比例高达50%以上,是所有水体耗氧因子中的耗氧 绝对大户。 3、溶氧低下,水中有机质多不但COD耗氧多,还会导致水体发粘致使水体纳氧力降低,导 致了水体溶氧严重不足,不要说变天,就是晴朗天气,都会出现缺氧。 4、有害寄生虫(以有机碎屑为食的微生物)及有害细菌(厌氧菌)大量繁殖,病虫害的爆发。大多数有害微生物都是厌氧菌如果水体长期溶氧不足,厌氧菌会快速大量繁殖。 5、有毒物质大量沉积,出现氨氮、亚盐、硫化氢等等有毒有害物质大量沉积(聚毒层), 由于水体的氮源堆积过多,同时微生物转化能力不够,就出现了有机质堆积厌氧分解产毒。 水体溶氧不足,水体的氨化、硝化、反硝化循环受阻,养殖对象出现了亚硝酸盐中毒,其

什么是养鱼水质环境自动监控系统

什么是养鱼水质环境自 动监控系统 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

什么是养鱼水质环境自动监控系统 1.系统简介 长期以来,我国水产养殖生产经营者多以追求产量和近期经济效益为目标,养殖密度过高,加上保护养殖环境意识淡薄,养殖病害呈逐年加重之势,随之而来的是药物滥用现象较为普遍,以至于水域环境遭到不同程度的破坏,水产品质量安全得不到有效保障,水产养殖业可持续发展受到严重影响,研究解决水产养殖环境状况已经成为水产养殖业持续健康发展的重要课题。 影响水产养殖环境的关键参数就是水温、光照、溶氧,ph值等,但这些关键因素即看不见又摸不着很难准确把握。现有的水产管理是以养殖经验为指导,也就是一种普遍的养殖规律,很难做到准确可靠,产量难以得到保障。随着养殖业的不断发展,市场调节失控,竞争越来越激烈,掌握准确可靠的养殖数据,科学养殖,提高产量与品质,势在必行。 针对目前水产养殖环境的现状,湖南中本智能科技发展有限公司联合中国农科院及湖南农业大学,在多方养殖专家的技术指导下,并经上百次的实地走访全省各地水产养殖专业户听取建议,成功研制出基于物联网的集约化水产智能养殖系统,本系统可以为用户节省大量人工操作和电力消耗,限制鱼类疾病所造成的损失,减少死亡率。 通过长期连续的监测、调节和控制水质,可以显着增加养殖产量。 该系统利用智能传感技术、无线传感网络技术、移动通信技术、智能处理与智能控制等物联网技术开发的,集水质环境参数在线采集、无线传输、智能处理、预警信息发布、决策支持、远程与自动控制等功能于一体的水产养殖物联网系统,荣获国家专利,并通过国家教育部科技查新,产品技术领先,填补国家水产养殖自动化空白。 用户可以通过手机、PDA、计算机等信息终端远程查询水质信息,同时也可通过对数据进行分析处理,做出控制决策,远程控制增氧设备。系统(见下图)由智能感知设备、无线传输网络、增氧控制器、监控平台组成。 基于物联网的水产智能养殖系统组成框图 (1)智能水质传感器

水产养殖水质综合调控技术(精)

水产养殖水质综合调控技术 在南美白对虾、中华鳖等水产养殖中,通过水质综合调控,以保持水环境的生态平衡,这是水产养殖优质、高效的关键技术。渔谚“养好一池鱼,首先要管好一池水”是十分恰当的比喻。水产养殖水质综合调控技术包括测水调控养殖水质技术和池塘底部微孔管道增氧水质调控技术。 一、测水调控养殖水质技术 要做好水质调控,首先要了解池塘的主要水质参数。而目前养殖户不了解养殖水质的基本参数(如溶解氧、盐度、pH、总铵、亚硝态氮等),很难给予针对性的水质调控。因此在养殖户中示范推广简易水质分析仪,就可及时了解水中pH、盐度、溶解氧、总铵和亚硝态氮变化情况,及时采取相应的技术措施。 增产增效情况:通过该技术的实施,能使池塘养殖虾类、鳖类等的发病率降低10%,减少养殖损失。虾类等每亩增产30~100千克,预计池塘养殖综合效益提高10%。同时减轻池塘养殖对水域生态环境的污染。 技术要点: 1、购买简易水质分析仪一套、水温计、比重计。 2、特点:采用比色法测定池水的pH、溶解氧、氨氮和亚硝态氮等(详见水质分析仪使用说明)。尽管设备较简单,测定精度较低,但它可以如实反映养殖水质现状,做到及时调控水质;而且测试技术

容易掌握,养殖户可以随测随用。 3、测定时间: pH、溶解氧必须在早晨日出前测定其低峰值。夏秋季节,如果预测明天早晨鱼虾要浮头,则应在半夜或翌晨2:30~3:00测定。 盐度、氨氮和亚硝态氮在晴天或多云上午9:00进行测定。 4、判别与采用措施。包括以下几个方面: (1)调控pH 海水的稳定在8.2左右。如pH下降到8以下,那就表明水质开始转坏;如pH下降到7.5以下,那必须全池泼洒生石灰水来提高pH 值,使其恢复到8.2的水平。通常每亩用生石灰(块灰化或石灰水)7.5~10千克。 一般淡水养殖水体最适pH为7.5~8.5。清晨如pH下降到7以下,则应采用生石灰水来提高pH,使用数量和方法同前。 盐碱地池塘,清晨如发现pH到9以上,必须及时加注淡水。通常要求pH不能超过9.5。 (2)调控溶解氧、总铵(NH4+和NH3)、亚硝态氮(NO2-) 当溶解氧下降到4毫克/升,对虾等生长即受到影响;通常家鱼 总铵和亚硝态氮是有机物分解而成,水质越肥,水中有机物越多,总铵和亚硝态氮越高。而总铵和亚硝态氮对水生动物是有毒的,轻则影响生长,重则危及生存。当总铵超过0.5毫克/升时,亚硝态氮超

水产养殖水质物联网监测管理系统范文

水产养殖水质物联网监测管理系统

鱼类养殖水质监测管理系统 鱼 类 养 殖 水 质 监 测 管 理 系 统

设计单位:广州莱安智能化系统开发有限公司 地址:广州市天河区中山大道建中路11号103 欢迎来电索取详细方案或来电洽谈机房、机房监控、机房建设、楼宇智能化等各类机房设备业务,免费提供设计方案,价格实惠 目录: 一、鱼类养殖管理监测系统背景 (4) 二、鱼类养殖管理监测系统概述 (4) 三、建设鱼类养殖水质监测系统目的 (4) 四、鱼类养殖水质监测管理系统构成 (5) 五、鱼类养殖水质监测管理系统主要功能 (5)

六、信息化水产养殖系统的优点 (6) 七、水产养殖智能检测系统 (7) 八、鱼类养殖中需要监测的几个方面 (10) 九、鱼类养殖需要的环境 (11)

一、鱼类养殖管理监测系统背景 由于鱼塘的地理位置偏僻,经常出现一些偷钓、偷捕的情况,甚至出现了不少鱼塘遭到投毒的恶意事件,不但给鱼塘养殖户带来的重大损失,而且对当地治安管理来说产生了很大影响。 鱼类养殖已经是十分普遍的养殖项目,但因其肉类鲜美,营养丰富,种类繁多,养鱼业不但没被众多水产养殖业淘汰,反而呈现出发展上升的态势。随着自然环境的改变,很多珍惜鱼类濒临灭绝,如:娃娃鱼、中华鲟鱼……人工养殖渔业不但成为满足市场需求的做法,更是保存物种多样性的最佳方式。 随着科技的发展,物联网养殖的出现,传统的养殖模式开始向这一新型养殖方式靠拢。物联网采用无线传感技术、网络化管理等先进管理方法对养殖环境、水质、鱼类生长状况、药物使用、废水处理等进行全方位管理、监测,具有数据实时采集分析、食品

水产养殖智能化水质在线检测系统

第一章鱼塘生态系统分析 生态系统是在一定时间、空间范围内,生物与生存环境、生物与生物之间密切 联系、相互作用,通过能量流动、物质循环、信息传递构成的具有一定结构的功能 整体。 1、生态系统的组成 (1)生产者生产者是指能利用无机物创造有机物的自养生物,主要是绿色 植物,也包括一些蓝绿藻、光合细菌及化能自养细菌。 (2)消费者消费者是指直接或间接利用绿色植物有机物作为食物源的异养 生物,主要是指动物和寄生性生物。可分为: ○1草食动物 ○2肉食动物 ○3寄生动物 ○4腐食动物 ○5杂食动物 (3)分解者分解者又称还原者,主要是指细菌、真菌等微生物,也包括营 腐生生活的原生生物。它们以动、植物的残体和排泄物中的有机物质作为维持生命 活动的食物源,并把复杂的有机物分解为简单的无机物归还环境,供生产者再度吸 收利用。分解者也属于异养生物。 (4)非生物环境非生物环境是生态系统中生物赖以生存的物质和能量的源 泉及活动的场所。按其对生物的作用。包括: ○1原料部分 ○2代谢过程的媒介部分 ○3基层部分 2、鱼塘生态系统的组成 鱼塘是一个组织得很好的生态系统。鱼塘中有水生植物、浮游植物、浮游动物、微生物,还有多种食性不同的鱼类等。

水生植物、浮游植物生产者 草鱼、鲢鱼草食动物 鳙鱼、黑鱼肉食动物 虾、蟹、螺蛳腐食动物消费者 鱼体内的寄生生物寄生动物 细菌和其他菌类分解者 光照、温度、水、泥土、二氧化碳、氧气非生物环境 3、生态系统的能量流动 食物链生态系统中的能量流动,是借助于食物链和食物网来实现的。食物链和食物网便是生态系统中能流的渠道。食物链是指在生态系统中,生物之间通过吃与被吃关系联结起来的链索结构。 1)捕食食物链亦称草牧食物链或活食食物链。 2)腐食食物链也叫残渣食物链、碎屑食物链或分解食物链。 3)寄生食物链这是以活的动、植物有机体为营养源,以寄生方式生存的食物 链。 4)混合食物链即构成食物链的各链节中,既有活食性生物成员,又有腐食性生物成员。 生态系统的能量流动始于初级生产者(绿色植物)太阳辐射能的捕获,通过光合作用将日光能转化为储存在植物有机物质中的化学潜能,这些被暂时储存起来的化学潜能由于后来的去向不同而形成了能流的不同路径。 第一条路径:植物有机体被一级消费者(草食动物)取食消化,一级消费者又被二级消费者(肉食动物)所取食消化。 第二条路径:在各个营养级中都有一部分死亡的生物有机体,以及排泄物或残留体进入到腐食食物链,在分解者(微生物)的作用下,这些复杂的有机化合物被还原为简单的二氧化碳、水和其他无机物质。 第三条路径:无论哪一级生物有机体在其生命代谢过程中都要进行呼吸作用,在这个过程中生物有机体中存储的化学潜能做功,维持了生命代谢,并驱动了生态系统中物质流动和信息传递,生物化学潜能也转化为热能,散发于非生物环境中。 第四条路径:以上3条路径是所有生态系统能量流动的共同路径,对于开放的农业生态系统而言,能量流动的路径也更为多样。从能量输入来看,随着人类从生态系统内取走大量的能量与物质流向系统之外,形成了一股强大的输出能流,这是农业生态系统区别于自然生态系统的一条能流路径。

水产养殖指标参数

养殖用水化学因子含量参考范围 养殖水体的主要化学性质 养殖用水的诸多化学性质中,对鱼类关系最密切的是溶解气体与溶解于水中的无机盐和有机物质。 一、溶解气体 水中溶解有多种气体,它们的主要来源有两个方面,一是由空气中直接溶解入水体,二是由水中生物的生命活动以及底质或水中物质发生化学变化而在水体中产生,水中气体的溶解是因水体环境而出现差异,其差异如下。 与水体温度成反比,水温升高,气体的溶解降低。 与大气压成正比,气压增大,气体溶解度相应也增大。 与水中杂质浓度成反比,杂质多的水会降低气体的溶解度。 1、溶解氧;水中的溶解氧含量少而多变,淡水水体中溶解氧的饱和度仅为8—10mg/L ,不到空气中氧含量的1/20,海水溶解氧的含量更少。这表明水中鱼类的呼吸条件较差,不时都有面临缺氧窒息的威胁。由此可见,掌握水中溶解氧的动态规律对水产养殖的重要。 水中溶解氧的来源有两个;一是大气中的氧与水面接触溶解入水中,二是水生植物在项目 含量 备注 氨氮含量 ≤0.2mg/L 安全范围 >0.2mg/L 鱼类不摄食,严重时中 毒、死亡 亚硝酸盐 ≤0.1mg/L 安全范围 >0.1mg/L 鱼类不摄食,严重时中 毒、死亡 溶氧量 ≥5mg/L 安全范围 2~3mg/L 生长慢,饵料系数高 低于1~2mg/L 泛塘,甚至死亡 pH 值 7~8.5 安全范围

光合作时所释放的氧气,大气中溶入水中的氧不到植物光合作用所产氧量的1/10。 https://https://www.sodocs.net/doc/b612028308.html,/item.htm?spm=a1z10.1-c.w4004-4024479963.22.tnDhd6&id=139413709 76(单击若不能跳转,请将连接复制到网址栏打开) 2、硫化氢;硫化氢是在缺氧条件下,由含硫有机物分解而形成的,或者是在富有硫酸盐的水中,由硫酸盐还原变成硫化物,然后再生成硫化氢。 硫化物和硫化氢对鱼类都是有毒的,硫化氢的毒性最强。一般硫化物在酸性条件下,大部分以硫化氢形式存在,当水中溶解氧增加时,硫化氢即被氧化而消失。硫化氢对鱼类的毒害作用就是与血红蛋白中的铁化合,使血红蛋白失去携氧的能力,造成鱼组织缺氧。因此,在养殖中要特别注意硫化氢的存在。 https://https://www.sodocs.net/doc/b612028308.html,/item.htm?spm=a1z10.1-c.w4004-4024479963.16.tnDhd6&id=356489895 99(单击若不能跳转,请将连接复制到网址栏打开) 3、氨氮;氨氮在氧气不足时由有机物分解而产生,或者由于氧化合物被反消化细菌还原而生成。水生动物代谢的最终产物都是以氨的状态排出。氨氮对鱼类及其它水生生物是有毒的,即使浓度很低也会抑制鱼类的生长,必须密切注意。 https://https://www.sodocs.net/doc/b612028308.html,/item.htm?spm=a1z10.1-c.w4004-4024479963.18.tnDhd6&id=145308076 01(单击若不能跳转,请将连接复制到网址栏打开) 4、亚硝酸盐;

相关主题