搜档网
当前位置:搜档网 › 飞碟式美发智能加热器的设计学位论文

飞碟式美发智能加热器的设计学位论文

飞碟式美发智能加热器的设计学位论文
飞碟式美发智能加热器的设计学位论文

1前言

1.1国内外研究现状

温度传感器方面,通常分为接触型和非接触型,但接触型传感器往往容易受到环境的影响,从而导致数据的失真。测量师根据关于物体在一定温度下反射出的能量物体定律。对于理想辐射或者黑体辐射来说,全波长辐射能是与绝对温度的四次方成正比的。测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高[1]。

远红外加热技术在70 年代仅限于0~450℃的中温加热领域;到了80 年代已达到600—750℃的中温加热领域;到90 年代中期研制成功的远红外定向强辐射器,在电能辐射转换效率方面有新的突破。

远红外线加热成为当今世界上比较流行的加热技术。远红外线的传热方式是以放射方式直接向被加热体投射,因此被称为“直热”,具有直进性、穿透性和选择性,同时还具有内外同步加热的特征可确保产品层次,各部位均匀受热。

远红外加热技术从我国 70 年代的碳化硅、金属管、电阻带、陶瓷、半导体、搪瓷等元件;到 80 年代的石英管、镀金石英管、微晶玻璃灯等元件;一直到目前的远红外定向强辐射器,经过三个阶段,迈出三大步。远红外元件的电能辐射转换效率由40~50% 提高到78% 以上。总之,我国的远红外加热技术经过 20 多年的发展取得了可喜的成绩[2]。

在工作臂任意角度自锁控制这一论题中,生活中有许多的应用实例的变形,诸如笔记本电脑、文曲星等电子设备显示屏的任意角度定位、拉伸型台灯关节定位等,都是巧妙地通过转动关节处的巧妙地摩擦来实现自锁功能,使其能在任意空间角度定位。但这只能针对力矩很小的结构,而对于存在较大力矩的装置,则会产生由于摩擦力无法抵消重力矩而失衡的现象[3]。

非接触温度传感器、远红外加热、自锁机构等技术得到了很好的应用和普及,与此同时,我们发现在远红外加热技术的现实应用中,存在这样一个问题,美容美发店在发艺造型、烫染过程中,通常需要在定型或者施加染发剂之后对头发进行加热处理,催化化学药品快速反应,以期达到理想的处理效果。虽然经过了产品的多次更新换代,但在使用加热器的过程中,加热温度无法达到精确地控制,工作过程无法具体量化,没有解决温度的智能可控性,而暴露出加热温度过高产生不适,或者局部温度冷热不均而影响美容效果的问题。

1.2选题意义

人们对科学技术的追逐是永不止步的,对美的追求也是永不停歇。据说,埃及是世界上发明烫发最早的地方。那时,妇女把头发卷在木棒上,涂上含有大量硼砂的碱性泥,在日光下晒干,然后把泥洗掉,头发便出现美丽的涡卷。随着社会的进步,国家的发展,越来越多的人士更加注重自身外在形象,美容美发店也开拓出越来越多的美容产品。头发的烫、染、保养越来越多的受到大众的欢迎,成为普及性极强的一项美容产品。

美容美发店在发艺造型、烫染过程中通常需要在定型或者施加染发剂之后对头发进行加热处理,催化化学药品快速反应。在这个程序中,加热装置在过去的十几年中得到了一次次更新换代,从最初的“电帽子”到现在的远红外加热器、PTC加热装置,技术得到了极大地提高。

虽然经过了产品的多次更新换代,但在使用加热器的过程中,加热温度无法达到精确地控制,控制过程无法具体量化。于此基础上,该课题围绕智能温度监控进行探究,在加热器中添加温度传感器、角度传感器等装置,对发质表面的温度进行实时监控、反馈,经过单片机的数据再处理,做出输出温度修正,实现加热温度在设定范围内窄幅波动,从而有效避免温度控制的难题。

1.3设计内容

发廊智能飞碟加热器采用远红外线加热方式,利用远红外线具有激发水的活性的特长,把它利用在加热器上,为进一步设计和改造加热器的方案选择上提供了理论依据。

飞碟式美发智能加热器是美容美发店在发艺造型、烫染过程中常用的加热装置。但由于在使用时,设备缺少温度监控系统,导致常常在使用的过程中,顾客会由于加热温度过高产生不适,或者局部温度冷热不均而影响美容效果。

在此现状下,在智能飞碟加热器的工作过程中,使用温度监控系统对顾客头发表面温度实施实时检测与调控,实现加热温度在设定范围内窄幅波动,从而达到良好的加热效果。

该课题围绕智能温度监控进行探究,采用温度传感器对各点温度进行测量,并及时反馈给数据处理系统,实现温度的智能可控性、设备使用的人性化。

该系统的使用指标如下:

1) 用途:飞碟加热器的温度智能化控制;

2) 使用场所:美容美发店;

3) 性能:可靠、灵敏、调节方便;

4) 硬件配置:价格经济,能满足使用即可;

5) 检测范围:0-80°

2总体方案设计

2.1机械部分

2.1.1 机械总体设计

采用壁挂式,在墙壁上钻眼,用螺丝加固机身。机械工作臂1靠近壁挂端采用一个横向轴承使工作臂1能够在水平范围内180度转动,在工作臂1和工作臂2的末端安装纵向轴,使加热器头部能够在竖直平面上灵活调节。通过三节工作臂的设计,加热器头部实现了在水平和竖直范围内较好的移动,使其更容易针对不同的顾客身高条件予以调节。

图2.1总体结构示意图

2.1.2 工作臂自锁总体方案设计

在工作臂2的设计中,技术上要求工作臂能够在任意位置保持平衡,设计方案中参考了多种自锁形式。

按原理来分大体上可以分为摩擦自锁式、弹簧—四杆机构变形自锁、弹簧—摩擦结合自锁等共三种方式,每种方式都具有一定程度的可行性,现逐一分析四种实现方式的优缺点。

摩擦自锁方式——如图(2-2)所示,在旋转轴处提供摩擦力,通过摩擦力产生的反向力矩来抵消重力产生的重力矩,从而实现力矩平衡,达到自锁的目的。

但是摩擦自锁机构在工作的过程中,需要被提供足够大的摩擦力,由此造成

工作臂操作中灵活性的缺失,同时,对设计要求的比较苛刻,此种只存在理论上的可能性,对力矩较大的机构并不具有现实使用价值[4]。

图2.2 摩擦自锁

弹簧—四杆变形机构自锁方式——如图(2-3)所示,在中空管中安装可移动滑块,两段连接弹簧,工作过程中,凭借外力促使滑块在中空管中移动,在此过程中弹簧始终处于被拉伸状态,当工作臂需要在某一空间位置停止时,弹簧拉力、旋转轴处支持力、重力三力平衡,进而达到工作臂自锁的目的。

图2.3弹簧—四杆变形机构自锁

此方案虽然能够解决在某一位置的受力平衡问题,但是在工作臂2的空间位置移动的过程中,不能够保持良好的平衡性,并且四杆机构的变形使用,需要可移动滑块在定位过程中,与管壁保持足够的摩擦力,这就造成了一个两难问题,如果保持足够的摩擦,虽然解决了定位问题,但却使工作臂的旋转变得笨重;相反,若减小这种摩擦力去解决工作臂的旋转问题,又会使固定平衡问题凸显出来。

摩擦—弹簧自锁机构——如图(2-4),结合以上方法,将摩擦自锁和弹簧结合起来,在水平位置,首先使弹簧处于被拉伸状态,在重力的作用下,实现力矩平衡;由于在设计过程中,弹簧与工作臂2所成的角度很小,这也就造成在旋转过

程中弹簧的形变量很小,添加旋转轴摩擦的目的就在于通过摩擦来抵消弹簧的额外形变所产生力矩变化。

图2.4 摩擦—弹簧自锁

通过三节工作臂的设计,并添加了工作臂自锁功能,加热器头部实现了在水平和竖直范围内较好的移动,使其更容易针对不同的顾客身高条件予以调节。在不使用加热器的时候,可以将其折叠到墙壁上,充分节省工作空间;工作时,将其伸展拉出,进行良好的工作。因为壁挂梁采用三节连臂设计,三段移动臂拥有最大的自由移动空间:高度、水平位置、工作角度都可以得到有效地调节,突破传统,拥有新潮的外形,并且充分的体现了设计人性化的特点。

图2.5工作臂4

在细节上,加热器头部设计成一定角度的倾斜,这个角度根据顾客头部发髻的轮廓和水平的倾斜程度,定为45°(如图2-5)。这样工作转动过程中,能够实现更大范围的加热覆盖,改善了加热效果。

2.1.3 防缠绕设计

工作头部的远红外加热管在工作的过程中需要电力供应,但是由于工作头部是不断旋转的,这就造成若是采用普通的电源线将造成由于不断旋转而产生电源线缠绕的问题。解决此问题的思路是引入了直流电动机中采用的电磁—滑环装置。

图2.7 直流电动机原理图

直流电机作为发电机运行时,电枢有原动机驱动而在磁场中旋转,在电枢线圈的两根有效边中便感应出电动势,显然,每一有效边中的电动势是交变的,即在N极下是一个方向,当它转到S极下时,是另一个方向。但是由于电刷A总是同与N极下的有效边相连的转向片接触,而电刷B总是同与S极下的有效边相连的转向片接触,因此在电刷间就出现一个极性不变的电动势或者电压,所以,换向器的作用在于将发电机电枢绕阻内的交流电动势变换成电刷间的极性不变的电动势。当电刷之间接有负载时,在电动势的作用下就在电路中产生一定方向的电流。

在电源输入到头部的线路设计中,在直流电动机的电刷技术的基础上,旋转滑环体这一发明专利,能够很好的解决在工作过程中所产生的线路缠绕问题,在根本思路上取得了突破和创新[5]。

2.2控制系统的设计

控制系统是发廊智能飞碟加热器的神经中枢,它负责加热器温度的控制及现场角度传感器信号的处理。控制系统的功能就是对飞碟加热器的各分系统进行协调和控制,因而应该具有灵敏的数据检测和反馈处理能力。

选择80C51单片机作为控制系统的神经中枢,辅以74LS374、ICL7135、74LS273、MOC3041等芯片,TS118-2红外线温度传感器、FL86BYG92步进电

动机、光电耦合器、功率驱动器、报警二极管、开关等外部设备。

通过红外线温度传感器,在工作表面温度过高时,及时反馈温度过高检测信号回控制系统,再由控制系统进行数据处理,发出降低加热温度的信号到远红外线加热管,完成温度的反馈校正。在工作表面温度过低时,及时反馈温度过低检测信号回控制系统,再由控制系统进行数据处理,发出提高加热温度的信号到远红外加热管,完成温度的再次校正。设计成具有温度设定、温度监测与反馈、温度控制、报警提示等多功能的工作控制系统[6]。

图2.8控制系统示意图

3机械系统设计

3.1 工作臂的设计

3.1.1 工作臂自锁原理

工作臂受重力产生一个以旋转轴为中心的力矩,现设计一个结构来抵消产生的这种力矩。但由于工作臂所受重力比较大,传统的采用摩擦来抵消力矩的设计方案无法达到良好的效果,经过反复推敲,决定首先以一根弹簧的拉力来抵消重力所产生的力矩;由于弹簧与工作臂所成的角度比较小,所以在工作臂上升、下降的过程中所引起的力矩变化不大,而这部分产生的力矩变化,由旋转轴处的预紧摩擦力矩来抵消,从而达到工作臂任意自锁的目的[7]。

3.1.2 工作臂2结构设计计算

(1)工作臂受力分析

根据Solidworks 质量计算器算得,此部分所受重力约为G=60N 。

图3.1 水平状态

在工作臂2水平平衡时,根据相似三角形原理:

1

223205032050h =+ (3-1)

在这种情况下,弹簧拉力产生的力臂为:

mm h 04.491=

假设重力G 与拉力F1产生的力矩平衡:

G h F 68011= (3-2)

这种情况下,需要的拉力为:N F 8321=。

图3.2 上扬45°状态

当工作臂2与水平成30°时,F2所产生的力臂h2为:mm h 47.462=

假设此时拉力F2与重力G 力矩平衡:

G h F 9.58822= (3-3) 这种情况下,需要的拉力为N F 7602=。

图3.3 下伸45°状态

当工作臂2与水平成-45°时,F3所产生的力臂h3为:mm

85.393=h 假设此时重力G 与拉力F3所产生的力矩平衡,则:

G h F 9.58833= (3-4) 所以此时所需的拉力为N F 8863=

(2) 圆柱螺旋拉伸弹簧设计

根据机械设计,由表格16-2取切变模量G=82000MPa ,预先取弹簧的圈数为n=20;弹簧钢丝直径:d=6mm ;旋绕比:C=7;

中径D

)(4267mm Cd D =?== (3-5) 内径1D

)(366421mm d D D =-=-= (3-6) 外径2D

)(486422mm d D D =+=+= (3-7)

圆截面弹簧丝的曲度系数K :

213.1615.04414=+--=C

C C K (3-8)

根据GB/T 4357-1989标准,弹簧钢丝的拉伸强度极限B δ暂时选用B 级1470N ,

则许用切应力[]τ:

[])(58814704.04.0N B =?==δτ (3-9) []τN d πCF K

τ<=???==5323614.388678213.182 (3-10) 符合设计要求。

弹簧钢丝直径应满足:

[]mm)(66.5588

7213.18866.1F 1.6max =??=≥τKC

d (3-11)

所以预选小径mm d 6=能够满足要求。

由以上数据可计算弹簧的刚度:

)/(97.820

78682000833mm N d C Gd K F =???== (3-12)

拉簧的初切应力为:

)(821000

820001000N G ===

?τ (3-13)

初拉力为:

)(5.16582428614.383

3

N D d F =???==??τπ (3-14)

所以在工作臂处于水平位置时,弹簧的拉伸量为:

mm)(9.881=-=

?F

K F F X (3-15) 此时弹簧的总长度为:

mm)(9.2489.88620=+?=+=X nd L (3-16)

参考此数据来设定弹簧的两个连接点间的距离,使工作臂2处于水平位置时,弹簧的拉力矩与重力产生的重力矩达到平衡。

而当工作臂向上或向下旋转时,弹簧拉力与重力各自产生的力矩的差值发生变化:

).(54669.588680mm N G G T =-

在旋转过程中,重力矩与弹簧拉力矩的差值不稳定变化,采取旋转轴摩擦静力矩来进行实时的抵消,从而达到自锁的目的。

对旋转轴处进行压花处理,增加摩擦系数到5.0=μ,并且安装碟簧这一装置,用以控制锁紧压力的大小。摩擦力所产生的力臂为mm L 351=,此时需要的最大摩擦力为:

)(2.156355466/1N L T f =÷=?= (3-18)

在这种状况下,所需的最小预紧力为:

)(4.312/min N f F ==μ (3-19)

依照安全性原则,给旋转轴施加预紧力:N F 380=[4]。

3.1.3 工作臂3结构设计计算

设计中若要保持工作臂3竖直向下,由于设计机构所受重力方向未在工作臂3垂直方向,所以同样需要一个自锁机构来提供反向的动力矩,借以实现工作臂3保持垂直状态。

假设采用同样的自锁机构,分析原理及步骤同上。顺序计算出水平状态、上扬45°、向下旋转45°的极限位置弹簧所产生的拉力。

由Solidworks 三维设计软件中的质量计算器计算出头部重力约为:G '=40N 拉力'1F 所产生的力臂mm h 49'1=,根据力矩平衡:

)(82.4049405050'1

'1N h G F =?== (3-20)

拉力'2F 所产生的力臂mm h 47.46'2=,根据力矩平衡:

)(04.4347.46504050'2

'2N h G F =?== (3-21)

拉力'3F 所产生的力臂mm h 85.39'3=,根据力矩平衡:

)(2.5085.39405050'3

'3N h G F =?== (3-22)

经过受力分析,此处由于重力所产生的力矩比较小,若同样采用前一种方案,不符合设计经济性的原则,单一采用轴部摩擦锁紧的方式同样可以达到设计要求,并且降低了了产品的生产成本。

直接采用摩擦自锁的方式,旋转轴处摩擦力所产生的力臂为mm L 302=

工作臂3垂直方向保持平衡,则需要的最小摩擦力为:

)(7.66304050/502'N L G f =÷?== (3-23)

对旋转轴处进行压花处理,增加摩擦系数到5.0=μ,则需要对旋转轴施加最小的压力为:

)(4.1335.07.66/''min N f F =÷==μ (3-24)

' [4]。

依照安全性原则,给旋转轴施加预紧力N

F180

3.1.4 工作臂行程设计

运行机构的设计中,本着设计的机构具有灵活、精巧特性的出发点,方案设定其为连杆拉伸--折叠的机构工作方式。具有两个横向转动轴与两个纵向转动轴,使美发加热器在工作的过程中能够实现最大范围的工作行程。

图3-4 为美发加热器俯视图,工作臂2可以围绕A点,在图示300°的范围内做水平旋转运动。工作臂3可以围绕B点(B点为机身固定在墙壁上的安装固定点),在180°的范围内做水平旋转运动。

建立空间坐标,算得美发加速器在水平方向,能够在以2m为半径的半圆内的任意位置实现定位。

这就从最大程度上拓展了工作空间,特别适用于工作空间不是十分宽敞的发廊,去根据实际情况合理定位工作点,并且十分具有现代气息,从外形到实用性都达到了一个很高的标准。

图3.4工作臂行程—俯视图

图3-5 为美发加热器的主视基准面视图,旋转轴C与旋转轴D能够在竖直平面内运动,实现工作平面的垂直方向定位。机构设计过程中,设定上扬45°到下伸30°工作极限范围。

这个设计能够根据不同顾客的身高特征,来调节垂直方向的高度,使工作头部的热源在工作的过程中能够很好的覆盖加热表面,均匀受热,进而实现更好的

加热工作效果。

并且,在美发加热器不工作的时候,将工作臂上扬45°,再进行A 、B 旋转轴的旋转调节,将美发加热器贴靠到到固定其机身的墙壁上。这种设计的好处就是能够在不需要此工作装置时,不需要继续占用工作位,最大限度的提高空间利用价值。

图3.5 工作臂行程—水平视图

3.2 电动机的选择

(1)等效转动惯量计算

预选混合式步进电机FL86BYG92为备选型号。

估算工作头部的旋转半径为R=250mm ,小圆半径r=80mm ,工作头部的质量为1kg [8]。

可以近似看做圆环,转动惯量为:

)(0673.008.04325.01)43(222221m kg r R m J ?=??

? ??+?=+=+ (3-25)

转子的转动惯量:213.0m kg J m ?=。

传动系统折算到电机轴上的总的传动惯量为:

)(197.013.00673.021m kg J J J m ?=+=+=∑ (3-26)

考虑步进电动机与传动系统惯量相匹配的问题:

674.0197.0/13.0/==∑J J m (3-27)

基本满足惯量匹配的要求。

表3.1 86圆形步进电动机系列

(2)电机力矩计算

工作转速定为:min /30r n =,起动时间为:s t 3.0=,起动转矩为:

)(06.23.026030197.0102602m N t n J J M ?=??=?==-∑∑π

πε (3-28)

由表查出,当步进电动机为三相六拍时,866.0=λ。

最大静转矩:

)(34.2866.006.2max m N M M j ?==

=λ (3-29)

计算过程中,因为工作过程摩擦力的作用很小,忽略了摩擦力矩和附加摩擦力矩,按此最大静转矩从表中查出,FL86BYG92的最大静力矩为3.9Nm ,远大于所需的最大静力矩,选型成功。

高效节能型大功率电磁加热器的研究与设计

高效节能型大功率电磁加热器的研究与设计(省级、校级2010 年) 河海大学大学生创新训练计划项目申请表 张国玉,女,20岁,共青团员,出生于江苏省盐城市建湖县一个普通的农民家庭。现任计信学院学生会秘书处副部长。获08~ 09年度学业优秀奖学金,在数学物理竞赛均获奖项,大一积极参加各项学校活动,并获取奖项。09年通过全国英语四级考试。我为人冷静,善于思考,对软件有着浓厚的兴趣,我有恒心和责任感,并且有着很好的团队精神。我的座右铭是努力过即使不成功也不至于一片空白。 宋佳佳,汉族,女,共青团员,山东烟台人,就读于河海大学(常州)计算机与信息学院09自动化1班。现任09自动化1班的团支书。在过去的半年里,我尽职尽责。在班长和组织委员的协助下,策划和组织过多次团日活动和志愿者活动,每一次活动同学们都积极参与,使我收获很多。我们班级曾获优秀组织奖和优秀团日活动奖等。我喜欢帮助别人,在学习和生活给同学以帮助。我还加入了志愿者服务部,为学校和社会服务,并报名参加省运会志愿者,对于部门的活动我也积极参与,主动提出自己的建议。在忙碌于每月的活动的同时,我也不忘记努力学习,我认真对待自己的学习和工作,希望能在各方面做到最好。 所需实验室条件: 河海大学计算机与信息学院(常州)建立的创新实验室,主要功能就是为学生开展实践创新提供必要的场所,近两年先后已培养了600

多名学生,近几百项科技制作作品。 项目名称 高效节能型大功率电磁加热器的研究 与设计项目编号① 项目所属 一级专业门类电气 工程 项目所属 二级专业类 检测技术与自动化装置 项目实施 时间② 起始时间: 2010年4月完成时间:2011年6月 申请人或申请团队 ③ 姓 名 年 级 学校所在院系、专业 联系 电话 E-mail 主 持 人 黎 胜 2 8 河海大 学(常 州) 计算机与信息 学院自动化专 业 15151 97385 5 lishenghh uc@https://www.sodocs.net/doc/bb12833419.html, 孙 维 广 2 8 河海大 学(常 州) 计算机与信息 学院自动化专 业 15151 97383 2 978325412 @https://www.sodocs.net/doc/bb12833419.html, 成 员 孙 继 强 2 河海大 学(常 州) 计算机与信息 学院自动化专 业 13915 83213 9 139158321 39@139.co m

电加热器功率计算

一、一般按以下三步进行电加热器的设计计算: 1.计算维持介质温度不变的前提下,实际所需要的维持温度的功率 2.计算从初始温度在规定的时间内加热至设定温度的所需要的功率 3.根据以上两种计算结果,选择加热器的型号和数量。总功率取以上二种功率的最大值并考虑系数。公式: 1.维持介质温度抽需要的功率 KW=C2M3△T/864+P 式中:M3每小时所增加的介质kg/h 2.初始加热所需要的功率 KW = ( C1M1△T + C2M2△T )÷ 864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃) M1M2分别为容器和介质的质量(Kg) △T为所需温度和初始温度之差(℃) H为初始温度加热到设定温度所需要的时间(h) P最终温度下容器的热散量(Kw) 二、电加热性能曲线下面是一些在电加热计算中经常要用到的性能曲线。

三、设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h 的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。 技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:

7、保温层的面积: 初始加热所需要的功率: 容器内水的加热:C1M1△T = 1×(×××1000)×(70-15) = 16500 kcal 容器自身的加热:C2M2△T = ×150×(70-15) = 990 kcal 平均水表面热损失:× 4000W/m2 × 3h × 1/2 × 864/1000 = kcal 平均保温层热损失:× 32W/m2 × 3h × 1/2 × 864/1000 = kcal (考虑20%的富裕量) 初始加热需要的能量为:(16500 + 990 + + )× = kcal/kg℃ 工作时需要的功率: 加热补充的水所需要的热量:20kg/H × (70-15)×1kcal/kg℃ = 1100kcal 水表面热损失:× 4000W/m2 × 1h × 864/1000 = kcal 保温层热损失:× 32W/m2 × 1h × 864/1000 = kcal (考虑20%的富裕量) 工作加热的能量为:(1100 + + )× = kcal/kg℃ 工作加热的功率为:÷864÷1 = kw 初始加热的功率大于工作时需要的功率,加热器选择的功率至少要。 最终选取的加热器功率为35kw。

中频电磁感应加热器设计

摘要 本文以感应加热为研究对象,简要介绍了感应加热的基本原理和特点,阐述了感应加热技术的现状及其发展趋势。本文主要研究了感应加热器的设计方法。感应加热器是利用工件中的涡流的焦耳效应将工件加热,这种加热方式具有效率高、控制精确、污染少等特点,在工业生产中得到了广泛的应用。如何设置感应线圈的参数使之满足被加热工件中性能要求普遍关注的问题。 传统的设计方法是利用线圈在整个电路中的等效电阻地位,利用一系列电磁学公式计算出线圈的性能参数。然而这种基于实验的系统设计方法却耗时费力,并且测量成本高。因此,近似模拟方法对于感应加热器的设计和研究具有重要意义。 本文的主要工作是建立感应加热器的近似设计方法。从感应加热理论的一系列经过实验数据修正过的理论曲线为依据,根据工艺要求得出相关物理参数,并通过计算得到感应器的设计参数。 关键词: 第一章绪论 1.1 国内外感应加热的发展与现状 随着现代科学技术的发展,对机械零件的性能和可靠性要求越来越高,金属零件的性能和质量除材料成分特新外,更与其加热技术密不可分。例如,加热速度的快慢不仅影响生产效率而且影响产品的氧化程度,局部温度过冷或过热可能导致产品变形甚至损坏等。由于感应加热具有热效率高,便于控制等优点,目前在金属材料加工,处理等方面得到广泛应用。 在工业发达国家,感应加热研究起步较早,应用也更为广泛。1890年瑞士技术人员发明了第一台感应熔炼炉——开槽式有芯炉,1916年美国人发明了闭槽式有芯炉,感应加热技术开始进入实用化阶段。1966年,瑞士和西德开始利用可控硅半导体器件研制感应加热装置。从此感应加热技术开始飞速发展,并且被广泛用于生产活动中。 在我国,感应加热技术起步比较晚,与世界发达国家相比存在较大的差距。直到80年代

加热器功率计算

三、电加热器设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。 技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:0.12kcal/kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:0.6m2 7、保温层的面积:2.52m2 初始加热所需要的功率: 容器内水的加热:C1M1△T = 1×(0.5×1.2×0.5×1000)×(70-15) = 16500 kcal 容器自身的加热:C2M2△T = 0.12×150×(70-15) = 990 kcal 平均水表面热损失:0.6m2 ×4000W/m2 ×3h ×1/2 ×864/1000 = 3110.4 kcal 平均保温层热损失:2.52m2 ×32W/m2 ×3h ×1/2 ×864/1000 = 104.5 kcal (考虑20%的富裕量)

初始加热需要的能量为:(16500 + 990 + 3110.4 + 104.5)×1.2 = 70258.8 kcal/kg℃ 工作时需要的功率: 加热补充的水所需要的热量:20kg/H ×(70-15)×1kcal/kg℃= 1100kcal 水表面热损失:0.6m2 ×4000W/m2 ×1h ×1/2 x 864/1000 = 1036.8kcal 保温层热损失:2.52m2 ×32W/m2 ×1h ×1/2 x864/1000 = 34.84 kcal (考虑20%的富裕量) 工作加热的能量为:(1100 +1036.8 + 34.84)×1.2 = 2605.99 kcal/kg℃工作加热的功率为:2605.99÷864÷1 = 3.02kw 初始加热的功率大于工作时需要的功率,加热器选择的功率至少要27.1kw。 最终选取的加热器功率为35kw。

课程设计--电加热水温控制系统

湖南文理学院课程设计报告 课程名称:自动化专业控制系统课程设计课题名称:电加热水温控制系统 系部:电气和信息工程学院 专业班级:自动化09103班 学生姓名:何国敏 指导教师:陈日新老师 完成时间:2012年12月18日 报告成绩: 评阅意见: 评阅教师日期

目录 摘要 (2) Abstract (3) 第一章系统设计 (4) 1.1项目概要 (4) 1.2设计任务和要求 (4) 第二章硬件设计 (5) 2.1 硬件设计概要 (5) 2.2信息处理模块 (5) 2.3温度采集模块 (6) 2.3.1传感器DS18B20简介 (6) 2.3.2实验模拟电路图 (6) 2.3.3程序流程图 (7) 2.4控制调节模块 (9) 2.4.1升温调节系统 (10) 2.4.2温度上下限调节系统 (10) 2.5显示模块 (12) 第三章仿真显示成果 (13) 实习总结 (15) 致谢 (16) 参考文献 (17) 附录 (18) 1、原理图 (18) 2、源程序 (19)

摘要:在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18b20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热和步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。关键字:单片机;传感器;温控;DS18b20 Abstract: In modern industrial production, the temperature is

初中物理电学计算题电加热器专题

1.(6分)有一种XX 一88型号电水壶的铭牌如下表,图l5是电水壶的电路图,R 为加热器,温控器S 是一个双金属片温控开关,当温度较低时,其处于闭合状态,加热器加热。当水沸腾后,会自动断开进入保 温状态,从而实现了自动温度开 关控制。 若加热器电阻阻值随温度改变 而发生的变化可忽略不计,则: (1)电水壶正常工作时,其加热 电阻的阻值是多大? (2)若电水壶产生的热量全部被水吸收,现将一满壶23℃的水在标准大气压下烧开需要多长时间?[水的比热容C=4.2×103J /(kg ·℃),lL =10-3m 3]。 (3)当电水壶处于保温状态时,通过加热器的电流是0.2A ,此时电阻Rc 的电功率是多少? 2.如图甲为现在家庭、宾馆常用的无线 电水壶(是一种在倒水时导线脱离,用电加热的方便水壶),图乙是该电水壶的铭牌 某同学用这种电水壶烧开水,他将水装至最大盛水量,测得水的温度是20℃,通电7min ,水刚好被烧开(在一个标准大气压下)。试通过计算,回答下面的问题: (1)该电水壶电热丝的电阻是多大? (2)水吸收的热量是多少? (3)若电水壶正常工作,算一算电水壶工作的效率。

3.前些日子,小亮的妈妈买了一个“天际”牌自动热水壶送给爷爷,其铭牌如表,小亮为了给爷爷说明电热水壶的使用方法,他接水800ml刻线,然后把水壶放在加热座上,拨动开关,5min后水烧开,水壶自动断电,已知水的初温为20℃。 (1)这壶水吸收的热量为多少?[c水=4.2×103J/kg·℃] (2)烧水时家中电压为220V,求电热水壶的热效率。 198W,这时电热水壶的实际功率为多大? (3)在用电高峰,电路中的实际电压将为 气压为标准大气压)。 求:(1)电热开水瓶在烧水过程中消耗的电能是多少焦? (2)如果在用电高峰时间使用,电源的实际电压只有 198V,则此时该电热开水瓶的实际功率是多少瓦?(设电热开 水瓶的电阻不变) 试卷第2页,总3页

暖通设计电加热器的设计和计算

暖通设计电加热器的设计和计算 一、电加热器的设计计算,一般按以下三步进行: 1、计算从初始温度在规定的时间内加热至设定温度的所需要的功率 2、计算维持介质温度不变的前提下,实际所需要的维持温度的功率 3、根据以上两种计算结果,选择加热器的型号和数量。总功率取以上二种功率的最大值并考虑1.2系数。 公式: 1、初始加热所需要的功率 △△ KW = ( C1M1T + C2M2T )÷ 864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃) M1M2分别为容器和介质的质量(Kg) △T为所需温度和初始温度之差(℃) H为初始温度加热到设定温度所需要的时间(h) P最终温度下容器的热散量(Kw) 2、维持介质温度抽需要的功率 △ KW=C2M3T/864+P 式中:M3每小时所增加的介质kg/h 二、性能曲线 下面是一些在电加热计算中经常要用到的性能曲线,对我们的设计是很有帮助的。

三、电加热器设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。 技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:0.12kcal/kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:0.6m2 7、保温层的面积:2.52m2 初始加热所需要的功率: C1M1T = 1×(0.5×1.2×0.5×1000)×(70-15) = 16500 kcal 容器内水的加热:△ C2M2T = 0.12×150×(70-15) = 990 kcal 容器自身的加热:△ 平均水表面热损失:0.6m2 × 4000W/m2 × 3h × 1/2 × 864/1000 = 3110.4 kcal 平均保温层热损失:2.52m2 × 32W/m2 × 3h × 1/2 × 864/1000 = 104.5 kcal (考虑20%的富裕量) 初始加热需要的能量为:(16500 + 990 + 3110.4 + 104.5)×1.2 = 70258.8 kcal/kg℃ 工作时需要的功率: ℃ 加热补充的水所需要的热量:20kg/H × (70-15)×1kcal/kg = 1100kcal 水表面热损失:0.6m2 × 4000W/m2 × 1h × 864/1000 = 2073.6 kcal 保温层热损失:2.52m2 × 32W/m2 × 1h × 864/1000 = 69.67 kcal (考虑20%的富裕量) 工作加热的能量为:(1100 + 2073.6 + 69.6)×1.2 = 6486.54 kcal/kg℃ 工作加热的功率为:6486.54 ÷864÷1 = 7.5 kw 初始加热的功率大于工作时需要的功率,加热器选择的功率至少要27.1kw。 最终选取的加热器功率为35kw。

DYK电加热器设计及延寿

DYK电加热的设计、调试及延寿 镇江飞利达电站设备有限公司于德贤 摘要:本文着重介绍流化风系统所需的电加热器的用途、结构、设计计算、调试及如何延长使用寿命等方面简单介绍,提出了一些个人看法,仅供参考、讨论。 关键词:电加热器、石灰石粉、计算、运行、延长寿命 1.概述 1.1本公司主要生产DYK型电加热器,FJB型双轴搅拌机、FSJ型干灰散装机、FSF型压力真空释放阀.先后与中电投远达环保工程有限公司等几家公司配套,得到了满意效果。 1.2 DYK 型电加热器用途 DYK型电加热器主要用于燃煤机组采用石灰石-石膏湿法烟气脱硫装置在石灰石粉仓气化风系统中的一种重要设备 为了便于石灰石粉顺利卸出、防止堵粉,石灰石粉仓底部采用锥底,锥底设有气化槽。气化槽、罗茨风机、电加热器组成石灰石粉仓的流化系统,因为石灰石粉吸湿性较大、易结块,因有电加热作用在空气潮湿的情况下,石灰石粉不易发生结块,以保证石灰石粉具有良好的流动性。 2. DYK型电加热器控制及结构 2.1控制柜控制原理 SWK-A型数显温度控制柜采用数显温度调节仪、集成电路触发器、大功率可控硅和测温元件组成测量、调节、控制回路。在电加热过程中测温元件将空气电加热器出口温度电信号送至数显温度调节仪进行放大,比较后显示测量温度值,同时输出0~10V电压信号到可控硅触发组件的输入端,控制输出脉冲相位,从而控制可控硅导通角度大小,使控制柜有良好的控制精度和调节特性。 利用联锁可远距离启动、关闭空气电加热器。 2.2电加热器结构及工作原理 空气电加热器是由多支管状电热元件、筒体、导流板等部分组成,管状电热元件是在金属管内放入高温电阻丝,在空隙部分紧密地填入具有良好绝缘性和导热性能的结晶氧化镁粉,采用管状电热元件做发热件,具有结构先进、热效率高、机械强度好、耐磨等特点。筒体内安装了导流板能使空气在流通时受热均匀。 3. DYK型电加热器的设计计算 结合淮南田集电厂2×600MW超临界机组烟脱硫工程流化系统中电加热器的选型作为实例,介绍DYK型电加热器的设计计算。 3.1流化风机参数: 型号SSR125H ; 风量10.47m3/min ; 风压68.6kPa

电加热器设计功率计算公式与方法

电加热器设计功率计算公式与方法 一.功率计算公式: 1、初始加热所需要的功率 KW = ( C1M1△T + C2M2△T )÷ 864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃) M1M2分别为容器和介质的质量(Kg) △T为所需温度和初始温度之差(℃) H为初始温度加热到设定温度所需要的时间(h) P最终温度下容器的热散量(Kw) 2、维持介质温度抽需要的功率 KW=C2M3△T/864+P 式中:M3每小时所增加的介质kg/h 二、电加热器功率设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。 技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:0.12kcal/kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:0.6m2 7、保温层的面积:2.52m2 初始加热所需要的功率: 容器内水的加热:C1M1△T = 1×(0.5×1.2×0.5×1000)×(70-15) = 16500 kcal 容器自身的加热:C2M2△T = 0.12×150×(70-15) = 990 kcal 平均水表面热损失:0.6m2 × 4000W/m2 × 3h × 1/2 × 864/1000 = 3110.4 kcal 平均保温层热损失:2.52m2 × 32W/m2 × 3h × 1/2 × 864/1000 = 104.5 kcal (考虑20%的富裕量) 初始加热需要的能量为:(16500 + 990 + 3110.4 + 104.5)×1.2 = 70258.8 kcal/kg℃ 工作时需要的功率: 加热补充的水所需要的热量:20kg/H × (70-15)×1kcal/kg℃ = 1100kcal 水表面热损失:0.6m2 × 4000W/m2 × 1h × 864/1000 = 2073.6 kcal 保温层热损失:2.52m2 × 32W/m2 × 1h × 864/1000 = 69.67 kcal (考虑20%的富裕量) 工作加热的能量为:(1100 + 2073.6 + 69.6)×1.2 = 6486.54 kcal/kg℃ 工作加热的功率为:6486.54 ÷864÷1 = 7.5 kw 初始加热的功率大于工作时需要的功率,加热器选择的功率至少要27.1kw。 最终选取的加热器功率为35kw。

加热器温度控制设计

过程控制大作业 1 确定被控对象 我的课题是以加热器为被控对象,设计一个加热器出口水温控制系统。 2 课题的背景和研究意义 温度是工业对象中的主要被控参数之一,在工业企业中如何提高诸如电炉这样的温度控制对象的运行性能一直是现场技术人员努力解决的问题。温度控制对于大型工业控制、制冷和制热等工程具有广阔的应用前景。温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效率。 3 生产过程和工艺流程 当前国内小型加热器一般分为两种类型,电加热式和燃油加热式。我选用立式盘管燃油式加热器为例,由燃油供给系统、鼓风系统、燃烧器、加热管、控制系统等组成。它的工艺流程如下:首先盘管加热器的受热面是一组盘管。给水从加热器的底部进入内盘管,水沿内盘管螺旋上升至加热器上部,随即进外盘管,水沿外盘管螺旋下降至加热器底部。水在内外盘管中受热,最后从加热器底部排出同时燃油对加热器进行加热,使加热器达到一定温度,这样就可以改变流过加热器盘管的水的温度,来控制出水口水温。 4 分析被控对象特性,建立数学模型 对于被控对象的特性,我选择通过实验方法应用Matlab软件仿真出来并建立其数学模型。通过得出的实验数据确定被控对象的数学模型:W s= 2 e?1.5s。 4.5s+1

5 控制方案 对于加热器出口水温的控制系统,我们可以选用水出口温度为被控参量,燃料流量为控制变量,来进行分析。同时该系统也属于温度控制系统,具有滞后 较大、纯滞后时间较长、扰动幅值大、负荷变化频繁、剧烈等特点。对于动态 特性复杂、存在多种扰动或扰动幅度较大,控制质量要求高的生产过程,用简 单控制系统无法实现良好的性能,也满足不了工艺控制精度要求,而串级控制 系统属于复杂控制系统,主要用于对象容量滞后较大、纯滞后时间较长、扰动 幅值大、负荷变化频繁、剧烈的被控过程,所以这时可以考虑用串级控制系统。 系统的结构示意图如下: 系统的控制方框图如下:

电加热式烤包器设计说明书

电加热式烤包器设计说明书 学校:______ 青岛黄海学院______________________ 参赛队员:刘海朦、薄圣伟、吴加凤、张仲勋、张光绪指导老师:______陈玉杰、刘培学__________________ __ 日期:______ 2013年07月_________________

目录 第一章设计目的及内容 (3) 1.1设计的背景 (3) 1.2设计的意义 (3) 第二章总体设计及总体电路 (5) 2.1 系统组成 (5) 2.2 控制模块 (5) 2.3 加热模块 (6) 第三章单元电路设计及程序设计 (7) 3.1单片机小系统电路 (7) 3.2温度报警电路 (7) 3.3 A/D转换电路 (8) 3.4 信号放大电路 (9) 3.5 程序流程图 (10) 第四章结论及创新点.................................. 错误!未定义书签。 4.1 系统操作描述 (11) 4.2测试显示 (11) 4.3 实物说明 (12) 4.4作品创新点 (13) 参考文献 (14)

第一章设计目的及内容 1.1设计的背景 随着钢铁工业的迅速发展,新型钢包加热器的研制已越来越受到重视。钢包烘烤的时间长短、能耗高低会直接影响生产运行和经济效益,钢包烘烤温度越均匀,越能延长钢包使用寿命。因此,许多企业对具有高效、低耗、加热快和加热均匀性高的烤包器有极大的需求。国内外虽已有传统煤气烤包器,蓄热式烤包器,蓄热式空间燃烧烤包器等烤包器,但存在热转换效率低、污染环境、能源来源不便、加热不均等缺点,已不满足市场需求。针对市场上对钢包加热器的技能需求,我们制作了与传统烤包器相比更具优点的电加热式烤包器,目前国内市场尚属空白。 1.2设计的意义 根据市场调查,很多企业对电加热式烤包器及其自动控制装置有极大的需求,原因如下: 1、电加热式烤包器,能源来源于电,相对于煤气、天然气、液化石油气、柴油等加热方式,电能取之方便,便于使用。而且采用煤气、天然气加热,需要铺设输送管道,增加了生产成本。 2、电加热式烤包器,能量转化效率高,无污染,真正实现高效、低耗。而气体、柴油燃烧的方式加热,热能利用率低,并且尾气直接排放,环境污染严重。此项目的研究,对于建设低碳、降耗、节约型

加热器自动温度控制设计分析报告

加热器自动温度控制设计分析报告

摘要 温度是重要的物理量,温度的测量和控制,在工业生产和科研工作中都非常重要。本文介绍了一种以STC89C52单片机为检测控制中心的数字式水温自动控制系统。温度测量部分采用单总线集成温度传感器DS18B20,使系统简单可靠,且易于操作。温度设置部分采用四个独立按键组成,显示部分采用四位共阴数码管显示,使系统变得简便而高效。温度控制采用PID数字控制算法,通过计算偏差值来控制光耦合和可控硅的通断,从而控制加热器的加热程度。实际调试表明,采用PID算法能使温度稳定在设定值附近。 前言 温度控制已成为工业生产、科研领域中很重要的一个环节, 能否成功地将温度控制在需要的范围内关系到整个工作的成败。由于控制对象的多样性和复杂性, 导致采用的温控手段也具有多样性。采用PID 控制原理研制

成适合用于小型电加热器的温度控制器。该控制器能够达到很好的控制效果, 若精心选择PID 的各种参数, 温度控制的精度可以达到±0.05℃。 温度控制的目的就是将电加热器的工作温度以一定的精度稳定在一定的范围内, 这就要求根据电加热器工作时的实际情况(如产热量大小等) 采取一定的措施,来控制电加热器的加热程度。 在温控系统中, 首先将需要控制的被测参数温度由传感器转换成一定的信号后再与预先设定的值进行比较, 把比较得到的差值信号经过一定规律的计算后得到相应的控制值, 将控制量送给控制系统进行相应的控制, 不停地进行上述工作, 从而达到自动调节的目的。当控制对象的精确数学模型难以建立时, 比较成熟且广泛使用的控制方法是采用按差值信号的比例(Proportionality),积分(Integration)和微分(Differentiation)进行计算控制量的方法, 即PID 算法。

电加热计算公式

电加热计算公式 计量单位 1.功率:W、Kw 1Kw=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr 2.重量:kg 1Kg=2.204621b(磅) 3.流速:m/min 4.流量:m3/min、kg/h 5.比热:Kcal/(kg℃)1Kcal/(Kg℃)=1BTU/hr.°F=418 6.8J/(Kg℃) 6.功率密度:W/cm2 1W/cm2=6.4516 W/in2 7.压力:Mpa 8.导热系数:W/(m℃)1 W/(m℃)=0.01J/(cm s℃)=0.578Btu/(ft.h.F) 9.温度:℃1F=9/5℃+32 1R=9/5℃+491.67 1K=1℃+273.15 电加热功率计算 加热功率的计算有以下三个方面: ●运行时的功率●起动 时的 功率 ●系统中的热损失 所有的计算应以最恶劣的情况考虑: ●最低的环境温度●最短的运行周期 ●最高的运行温度●加热介质的最大重量(流动介质则为最大流量) 计算加热器功率的步骤 ●根据工艺过程,画出加热的工艺流程图(不涉及材料形式及规格)。 ●计算工艺过程所需的热量。 ●计算系统起动时所需的热量及时间。 ●重画加热工艺流程图,考虑合适的安全系数,确定加热器的总功率。 ●决定发热元件的护套材料及功率密度。 ●决定加热器的形式尺寸及数量。 ●决定加热器的电源及控制系统。 有关加热功率在理想状态下的计算公式如下: ●系统起动时所需要的功率: ●系统运行时所需要的功率:

加热系统的散热量 ●管道 ●平面 式中符号,含义如下: P功率:kW Q散热量:管道为W/m;平面为W/m2 m 1 介质重量:kg λ保温材料的导热数:W/mk c 1 介质比热:kcal/kg℃δ保温材料厚度:mm m 2 容器重量:kg d管道外径:mm c 2 介质比热:kcal/kg℃L管道长度:m m 3每小时增加的介质重量或流量: kg/h S系统的散热面积:m2 c 3 介质比热:kcal/kg℃△T介质和环境温度之差或温升:℃h加热时间:h

锅镀锌线设计方案(电加热)

热镀锌生产线系统 (电加热) 项 目 建 议 书 徐州中冉镀锌设备有限公司承制 二0一二年五月

热镀锌生产线设计方案 徐州中冉镀锌设备有限公司采用先进的设备和工艺技术,已成功地为国内外诸多厂家设计、承建了热镀锌生产线。我公司提供的智能电控加热系统、各种燃烧系统、溶剂在线再生处理设备、废水处理系统、多元合金、抑雾缓蚀剂等热镀锌专用设备及添加剂备受客户赞赏! 根据客户的要求,该镀锌生产线主镀太阳能支架等工件,采用电加热加热方式,拟采用锌锅尺寸:8.5米×1.8米×2.2米,生产能力约110吨/天,具体描述如下: 一、厂房 热镀锌生产线需厂房长度约60米,宽度约 14米,行车起吊高度大于10米。 二、供电及给水 本生产线建成后,锌锅加热电气装机总容 量约1100Kw。供电馈线由需方公司负责引至车间并负责电源开关柜。用水量每生产1吨产品约0.3m3。进水主管道采用2″管,由需方负责引入车间。车间内分支管道采用1.5″管,压力不小于0.2MPa。 三、环保 本项目在生产过程中,所产生的噪音低于国家规定的85分贝,无需隔间降噪处理。前处理采用拟雾缓蚀措施,使酸液挥发出的有害气体极少,废水、废酸采取中和的方法,完全可以满足国家排放标准的要求。待今后条件成熟再把集气过滤的技术运用到生产系统中,就可使气体排放远低于国家标准。

四、生产工艺:采用干法热镀锌工艺流程见图: 废水处理酸 洗挂 件除铁、酸 过滤 锌液净化热镀锌工艺流程图 次品回镀 浸 锌涂敷助剂 检 验烘 干 水 洗 次品回酸 漂 洗钝 化水 冷空 冷签 字 日期校 对 文件号 设 计处数标记制 图描 图材料: 入 库 修整检验日 期 化 验 化 验 排 放 中冉技术部 重量(公斤) 徐州中冉镀锌设备有限公司 共 张 图样标记 数 量 比 例第 张王磊 王磊 2006.05.18 11 引出振动集中委外处理

电加热器控制系统毕业设计论文

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

电加热器的设计和计算

电加热器的设计和计算 一、电加热器的设计计算,一般按以下三步进行: 1、计算从初始温度在规定的时间内加热至设定温度的所需要的功率 2、计算维持介质温度不变的前提下,实际所需要的维持温度的功率 3、根据以上两种计算结果,选择加热器的型号和数量。总功率取以上二种功率的最大值并考虑1.2系数。 公式: 1、初始加热所需要的功率 KW = ( C1M1△T + C2M2△T )÷864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃) M1M2分别为容器和介质的质量(Kg) △T为所需温度和初始温度之差(℃) H为初始温度加热到设定温度所需要的时间(h) P最终温度下容器的热散量(Kw) 2、维持介质温度抽需要的功率 KW=C2M3△T/864+P 式中:M3每小时所增加的介质kg/h 二、性能曲线 下面是一些在电加热计算中经常要用到的性能曲线,对我们的设计是很有帮助的。

三、电加热器设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm 高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。 技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:0.12kcal/kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:0.6m2 7、保温层的面积:2.52m2

电加热器电流功率计算

1、 口诀 电动机:电热(电加热炉等):单相220,Kw数乘4、5A 电热设备三相380 Kw 数乘1、5A 单相380 Kw数乘2、5 A 三相380 Kw数乘2A 2、 用途 电流得大小直接与功率有关,也与电压、相别、功率因数(又称力率)等有关。一般有公式可计算。由于工厂常用得都就是380/220V三相四线系统,因此可以根据功率得大小直接算出电流。在380三相时(功率因数0、8左右),电动机每K W 得电流约为2A。即将“KW数加一倍”(乘2)就就是电流A。这电流也称电动机得额定电流。(例1)5、5KW电动机按“电力加倍”算得电流为11A。(例2)40KW 水泵电动机按“电力另倍”算得电流为80A。电热就是指用电阻加热得电阻炉等。三相380V 得电热设备,每KW得电流为1、5A。即将“Kw数加一半”(乘1、5)就就是电流A。 (例3)3KW 电加热器按“电热加半”算得电流为4、5A。 (例4)15KW电加热炉按“电热加半”算得电流为22、5A。这口诀应不专指电热,对于白治灯为主得照明也适用。虽然照明得灯泡就是单相而不就是三相,但对照明供电得三相四线仍属三相。只要三相大体平衡也可这样计算。此外,以KVA 为单位得电器(如变压器或整流器)与以KVar为单位得移相电容器(提高功率因数用)也都适用。既就是说,这后半句虽然说得就是电热,但包括所有KVA、KVar为单位得用电设备,以及以KW 为单位得电热与照明设备。(例5)12Kw得三相(平衡时)照明干线按“电热加半”算得电流为18A。(例6)30KVA得整流器按“电热加半”算得电流为45A(指380V三相交流侧)。(例7)100KVar得移相电容器(380v三相)按“电热加半”算得电流为150A。(例8)在380/220V三相四线系统中,单相设备得两条线,一条接相线而另一条接零线得(如照明设备)为单相220V用电设备。这种设备得功率因数大多为1,因此,口诀便直接说明“单相(每)KW4、 5A” 。计 算时,只要 “ 将千瓦数乘 4、5” 就就是电流 A 。 同上面一样,它适用于所有以 KVA 为单位得单相 220V 用电设 备,以及以 KW 为单位得电热及照明设备,而且也适用于 220V

电加热器电流

1.口诀 电动机:电热(电加热炉等): 单相220,Kw数乘4.5A 电热设备三相380 Kw数乘1.5A 单相380 Kw数乘2.5 A 三相380 Kw数乘2A 2.用途 电流的大小直接与功率有关,也与电压、相别、功率因数(又称力率)等有关。一般有公式可计算。由于工厂常用的都是380/220V三相四线系统,因此可以根据功率的大小直接算出电流。在380三相时(功率因数0.8左右),电动机每KW的电流约为2A。即将“KW数加一倍”(乘2)就是电流A。这电流也称电动机的额定电流。 (例1)5.5KW电动机按“电力加倍”算得电流为11A。 (例2)40KW水泵电动机按“电力另倍”算得电流为80A。电热是指用电阻加热的电阻炉等。三相380V 的电热设备,每KW的电流为1.5A。即将“Kw数加一半”(乘1.5)就是电流A。 (例3)3KW电加热器按“电热加半”算得电流为4.5A。 (例4)15KW电加热炉按“电热加半”算得电流为22.5A。这口诀应不专指电热,对于白治灯为主的照明也适用。虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线仍属三相。只要三相大体平衡也可这样计算。此外,以KVA为单位的电器(如变压器或整流器)和以KVar为单位的移相电容器(提高功率因数用)也都适用。既是说,这后半句虽然说的是电热,但包括所有KVA.KVar为单位的用电设备,以及以KW 为单位的电热和照明设备。 (例5)12Kw的三相(平衡时)照明干线按“电热加半”算得电流为18A。 (例6)30KVA的整流器按“电热加半”算得电流为45A(指380V三相交流侧)。 (例7)100KVar的移相电容器(380v三相)按“电热加半”算得电流为150A。 (例8)在380/220V三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的(如照明设备)为单相220V用电设备。这种设备的功率因数大多为1,因此,口诀便直接说明“单相(每)KW4.5A”。计算时,只要“将千瓦数乘4.5”就是电流A。同上面一样,它适用于所有以KVA为单位的单相220V用电设备,以及以KW为单位的电热及照明设备,而且也适用于220V的直流。 (例9)1000W投光灯按“单相千瓦、4.5安”算得电流为4.5A。对于电压更低的单相,口诀中没有提到。可以取220V为标准,看电压降低多少,电流就反过来增大多少。比如36V电压,比220V为标准来说,它降低到1/6,电流就应增大到6倍,即每KW的电流为6×4.5=27A。比如36V、60W的行灯每只电流为 0.06×27=1.6A,5只便共有8A。目前电气照明也广泛采用荧光灯、高压水银荧光灯、金属卤化物灯等,由于它们的功率因数很低(约为0.5),因此不能同口诀①、②中的白织灯照明一样处理。这时,可把KW换算成KVA后,再按本口诀计算。也可以直接记住:它们每1Kw在三相380V时为3A;在单相220V时为9A。因此例5若为荧光灯照明,电流将为36A;例10中若为高压水银荧光灯照明,电流将为9A。 (例10)在380/220三相四线系统中,单相设备的两条线都接到相线上的,习惯上称为单相380V用电设备(实际是接在两相上)。

加热器功率计算

加热器功率计算

作者: 日期:

加热器功率计算 按公式计算:加热功率(K w)=(体积*比重*比热*温度差)/ (860X升温时间X效率)。 1、首先需要确定升温时间(H )和^ t (°C),多长时间从多少度到多少度,这个参数很重要。如果时间要求很短,那需求的功率可能就会较大,浪费能源;如果时间长了,设备的准备时间就长,具体看客户需求,找好一个平衡点。? 2、主体设备内的空气体积(M3),包括管道,大概估下。3?、空气比重1 .16(K g/m 3),比热0.24 kcal/kg ° 4、还有加热效率,一般0.5-0 .6o 电热管管材的使用标准 电热管使用的环境条件 1.海拔高度不超过1 0 00米。2?.周围环境温度-2 0C 5 0Co 3.周围空气相对湿度不大于9 0 %(环境温度为25C时)。4?.周围无导电尘埃、爆炸性气体及能够严重损坏金属和绝缘材料的腐蚀性气 体。5?.没有明显的冲击与振动。 电热管性能要求

1升温时间?在试验电压下,元件从环境温度升至试验温度时间应不大于1 5m i n 2额定功率偏差?在充分发热的条件下,元件的额定功率的偏差应不超过下列规定的范围; 对额定功率小于等于 100W 的元件为:±0%。?对额定功率大于1 0 0W 的元件为+ 5%?—10%或1 0 W ,取两者中的较大值。 大不超过 5mA ?I = 1/6( t TXO . 0 0 0 0 1) I —热态泄露电流m A t —发热长度m m?T-工作温度C ?多个元件串联到电源中时,应以这一组元件为整体进行泄露电流试验。 4绝缘电阻?出厂检验时冷态绝缘电阻应不小于 5 0底 密封试验后,长期存放或者使用后的绝缘电阻应不消与M Q 工作温度下的热态绝缘电阻应不低于公式中的计算值 ,但最小应不小于1MD? R=「(10-0. 015T )/tj X0.001 R —热态绝缘电阻M Q t —发热长度m m ?T —工作温度C 5?绝缘耐压强度 元件应在规定的试验条件和试验电压下保持 1mi n ,而无闪络和击穿现象6?经受通断电的能力?元件应能在规定的试验条件下经历 0次通断电试验,而不发生损坏 7?过载能力?元件在规定的试验条件和输入功率下应承受3 0次循环过载试验,而不发生损坏 8耐热性?元件在规定的试验条件和试验电压下应承受1 000次循环耐热性试验,而不发生损坏 电热元件(电热丝,加热板等)额定功率计算公式 日期:20 09-12 — 1 1 1 :32:24 编辑信息中心 点击次数: 9 3 3 电热元件(电热丝,加热板等)额定功率计算公式 1,当工作电压(2 2 0 V )的3倍时,则电热元件必须米用星形连接。 2,当电源线电压等于电热原件的工作电压 (3 80V )时,则电热元件必须采用三角形连接, ?各相电热元件在对称负载情况下的常用连接方式 的功率计算公式见表,常用连接方式见图。 3泄露电流?冷态泄露电流以及水压和密封试验后泄露电流应不超过 0. 5mA?工作温度下的热态泄露电流应不超过公式中的计算值 ,但最 20 0

相关主题