搜档网
当前位置:搜档网 › 基于神经网络的机器学习方法

基于神经网络的机器学习方法

基于神经网络的机器学习方法
基于神经网络的机器学习方法

2019年2月

通过实验我们能够发现,蓝牙基站对蓝牙标签的定位效果非常理想,但实验毕竟是在相对理想的环境下进行的。在实际应用中,目标种类繁多、信号情况复杂,如果想要将该中模式投入到实际应用中还需要进一步改进。比如在某个固定的场所内需要搭建一个平台,不但提供位置信息,还提供更多产品相关信息。平台首先对产品类目进行划分,获得不同的产品位置后发送位置信息,用户通过位置信息找到相应产品后展示商品参数等,以供用户参考。

5结语

在漫长的人类历史长河中,为了不让自己在茫茫的大自然中迷失方向,先后发明了各类辅助指引方向的工具,比如指南针、罗盘等。现代生活中,只是指引大概的方向并不足以满足现代生活的需求。高度城市化的今天,为了畅享丰富的室内活动,在越来越大的室内空间行动自如,室内定位技术给了我们强大的技术支持。在众多无线通信技术中,蓝牙技术拔得头筹,在室内定位领域拥有绝对的优势。相信随着技术的快速发展,室内定位技术必将为我们提供越来越精准的出行体验。

参考文献

[1]吴勇毅.室内定位导航:诺基亚的“救命稻草”[J].上海信息化,2012 (11):76~78.

[2]刘燚.室内定位成为蓝海,我国提出的TC-OFDM是否仍有机会? [J].2017-05-24.

[3]陈高锋.常用无线通信技术简介[J].电脑知识与技术,2012,08(5): 1062~1064.

[4]彼岸阳光.几种主流无线通信技术的比较[J].2017-10-16.

[5]孙凤连.机器人双目视觉系统的三维测量方法[D].广东工业大学,2015.

[6]朱敏.室内定位技术分析[J].现代计算机(专业版),2008(2):79~81.

[7]刘涛.信息融合算法及其应用研究[D].南京邮电大学,2013.

[8]王哲.基于低功耗蓝牙室内测距系统的设计与实现[D].北京邮电大学,2016.

收稿日期:2019-1-17

基于神经网络的机器学习方法

翁天信(安徽省合肥市第六中学,安徽省合肥市230000)

【摘要】随着科学技术的不断发展,以及智能化新的需要,人工智能技术逐渐走进人们的视野。而随着神经网络技术的不断发展,机器学习也有新的理论出现。本文通过分析神经网络技术,研究生物神经网络在机器学习方法中的发展现状及趋势,讨论神经网络机器学习的技术与应用。【关键词】神经网络;机器学习;人工智能

【中图分类号】TP393【文献标识码】A【文章编号】1006-4222(2019)02-0061-02

1引言

神经网络主要分为生物神经网络与人工神经网络。生物神经网络,顾名思义,就是生物体身上神经系统所组成的网络,随着科学技术的不断发展,仿生技术不断深入,人工智能的目光逐渐转向这一领域。而人工神经网络就是将生物神经网络的信息传递方式类比在人工系统中,模拟生物的大脑和神经系统,由大量的、简单的神经元来互相连接,进而组成类似生物神经网络的复杂计算网络系统。人工神经网络具有诸多优点,如可并行处理,可自主学习,非线性能力强以及容错率高,目前广泛应用在图像识别,机器学习,模式识别等领域。

机器学习广义上讲就是使得机器通过自主学习来获得相关知识,目的是为了使机器掌握相关类似人类获取知识的能力。本质上,人工神经网络是机器学习的一种技术手段或者实现方法。

2神经网络与机器学习的特点

2.1神经网络

人工神经网络是机器学习方法的一种,在机器学习领域,类似于生物体的神经网络系统,用以实现机器与自然环境及各信息环境的交互。神经网络按其应用,可以分为BP神经网络、前馈神经网络和RBF神经网络等,神经网络除了可以实现机器学习的功能之外,常用的领域还有贝叶斯分类器、深度学习、线性回归等。综上所述,神经网络只是机器学习方法的一种,初期我们只是采用很低级的神经网络,但是随着时代的发展和科技的进步,网络内的数据量和深度大大提升,算法和计算能力也有很大进步,因而系统的学习能力也在逐步进步,深度学习的本质便是更深层次的神经网络。

2.2机器学习

学习一直被认为是人类和机器之间最重要的差别,但如果给机器赋予人类的学习能力,使得其更智能化的为人类服务,一直以来是科学家的诉求。随着人工智能技术的不断发展,机器学习技术已经成为其重要的一个分支,其本质上讲涵盖了多领域,包括控制论、统计学、哲学和信息学等。随着近代生物学、信息学和电子学等相关学科的衍生与发展,为机器学习的进步奠定了一定的基础。当前,机器学习是计算机科学领域最充满活力的研究方向之一,已在机器人、自动驾驶、人脸识别、医学影像处理、智能监控系统等领域得到了广泛的应用,未来将在军事、医疗和工业等计算机领域中发挥更大的作用。2.3国内外发展现状

人类的神经网络系统是数十亿年来漫长进化的结果,从智能化的角度对人类的神经系统模拟,并制造出类似的能够具有智能思维和自我学习能力的计算机信息系统一直是科学家们的追求。1943年,生物心理学家W.S McCulloch和数理学家W.H Pitts第一次提出简单的神经元的数学模型,可以进行简单的数学计算和逻辑运算,从此开创了人类对神经网络的理论研究[1]。随着时代的发展,一些新兴的学习机制和网络构建帮助神经网络进入快速发展时期,目前,自然语言处理、语音和图像是神经网络机器学习应用的最广泛的三个领域。就国内而言,百度公司的无人驾驶技术运用了深度学习的技术,

通信设计与应用61

机器学习常见算法分类汇总

机器学习常见算法分类汇总 ?作者:王萌 ?星期三, 六月25, 2014 ?Big Data, 大数据, 应用, 热点, 计算 ?10条评论 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习:

在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习:

有关BP神经网络参数的一些学习经验

有关BP神经网络参数的一些学习经验 1、BP网络的激活函数必须是处处可微的。 2、S型激活函数所划分的区域是一个非线性的超平面组成的区域,它是比较柔和、光滑的任意界面,因而它的分类比线性划分精确、合理,这种网络的容错性较好。另一个重要特点是由于激活函数是连续可微的,它可以严格利用梯度法进行推算。 3、一般情况下BP网络结构均是在隐含层采用S型激活函数,而输出层采用线性激活函数。 4、动手编写网络的程序设计之前,需要确定神经网络的结构,其中包括以下内容:网络的层数、每层的神经元数、每层的激活函数。 5、trainbp.m提供了两层和三层的BP训练程序,用户可以根据程序来选取不同的参数。 6、神经网络具有泛化性能,但是该性能只能对被训练的输入/输出对在最大值范围内的数据有效,即网络具有内插植特性,不具有外插植特性,超出最大训练的输入必将产生大的输出误差。 7、理论上已经证明:具有偏差和至少一个S型隐含层加上一个线性输出层网络,能够逼近任何有理函数。 8、隐含层层数的经验选择:对于线性问题一般可以采用感知器或自适应网络来解决,而不采用非线性网络,因为单层不能发挥出非线性激活函数的特长;非线性问题,一般采用两层或两层以上的隐含层,但是误差精度的提高实际上也可以通过增加隐含层中的神经元数目获得,其训练效果也比增加层数更容易观察和调整,所以一般情况下,应优先考虑增加隐含层中的神经元数。 9、隐含层的神经元数的经验确定:通过对不同神经元数进行训练对比,然后适当的增加一点余量。 10、初始权值的经验选取:威得罗等人分析了两层网络是如何对一个函数进行训练后。提出一种选定初值的策略:选择权值的量级为S1的r次方,其中S1为第一层神经元数目。利用他们的方法可以在较少的训练次数下得到满意的训练结果。在Matlab工具箱中可以采用nwlog.m和nwtan.m来初始化隐含层权值W1和B1。其方法仅需要使用在第一层隐含层初始值的选取上,后面层的初始值仍然采用(-1,1)之间的随机数。 11、学习速率的经验选择:一般情况下倾向于选取较小的学习速率以保证系统的稳定性,学习速率的选取范围在0.01~0.8之间。 12、期望误差的选取:一般情况下,作为对比,可以同时对两个不同的期望误差值的网络进行训练,最后通过综合因素的考虑来确定其中一个网络。 13、采用附加动量法使反向传播减少了网络在误差表面陷入低谷的可能性有助于减少训练时间。Matlab工具箱中提供的trainbpm.m可以训练一层直至三层的带有附加动量因子的反向传播网络。 14、太大的学习速率导致学习的不稳定,太小值又导致极长的训练时间。自适应学习速率通过保证稳定训练的前提下,达到了合理的高速率,可以减少训练时间。Matlab工具箱中带有自适应学习速率进行反向传播训练的函数为trainbpa.m,它可以训练至三层网络。 15、可以将动量法和自适应学习速率结合起来利用两方面的优点,这个技术已经编入函数trainbpx.m中。

循环神经网络(RNN, Recurrent Neural Networks)介绍

循环神经网络(RNN, Recurrent Neural Networks)介绍 标签:递归神经网络RNN神经网络LSTMCW-RNN 2015-09-23 13:24 25873人阅读评论(13) 收藏举报分类: 数据挖掘与机器学习(23) 版权声明:未经许可, 不能转载 目录(?)[+]循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考: https://www.sodocs.net/doc/bb1026137.html,/2015/09/recurrent-neural-networks-tutorial-part-1-introd uction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解。 循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用。但是,目前网上与RNNs有关的学习资料很少,因此该系列便是介绍RNNs的原理以及如何实现。主要分成以下几个部分对RNNs进行介绍: 1. RNNs的基本介绍以及一些常见的RNNs(本文内容); 2. 详细介绍RNNs中一些经常使用的训练算法,如Back Propagation Through Time(BPTT)、Real-time Recurrent Learning(RTRL)、Extended Kalman Filter(EKF)等学习算法,以及梯度消失问题(vanishing gradient problem) 3. 详细介绍Long Short-Term Memory(LSTM,长短时记忆网络);

人工神经网络算法

https://www.sodocs.net/doc/bb1026137.html,/s/blog_5bbd6ec00100b5nk.html 人工神经网络算法(2008-11-20 17:24:22) 标签:杂谈 人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计 算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个 体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那 么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就

基于神经网络的信息融合技术

基于多传感器信息融合的 数控机床故障诊断研究 1.引言 数控机床具有加工柔性好、加工精度高、加工质量稳定、生产率高等诸多特点,但其结构和运行工况也很复杂,一旦机床发生故障,引起故障的因素众多,有机械方面的,有电气方面的,同时同一种故障往往有不同的表现,同一种症状又常常是几种故障共同作用的结果,故障的多样性、复杂性和各故障之间的复杂联系构成了数控机床故障诊断中的重点和难点。每个传感器都有一定的功能和测量范围,单个传感器的数据从某个侧面反应被测对象或系统的情况,难免带有一定的局限性。仅仅通过单一传感器的特征提取和诊断分析将无法成功完成对数控机床的故障诊断任务。因此多传感器数据融合技术显得尤为重要,它能克服传感器使用的局限性和传感器信息的不准确性,充分地、综合地、更有效地利用多传感器信息,减少信息的模糊性,增加决策可信度,提高对数控机床的故障诊断的准确率。 多传感器数据融合是一种重要的传感器信息处理方法,它起源于20世纪70年代,最早被应用于军事领域,用于解决目标识别与跟踪、状态与身份估计、态势和威胁估计等技术问题。它能充分利用不同时间与空间的多传感器数据资源,在一定准则下进行分析、综合、支配和使用,得到对被测对象的一致性解释和描述,并做出相应的判断、估计和决策。 多传感器数据融合有多种算法,其中,D-S证据理论方法的应用最为广泛。本文主要建立了基于多传感器信息融合的数控机床二级故障诊断系统:基于自适应加权算法的一级融合,基于D-S证据理论的二级融合。然后利用某一论文中的数控机床的测量数据,通过MATLAB软件对其进行分析计算,最后得出结论。 2.基于多传感器信息融合的二级故障诊断系统 本文介绍了一种基于多传感器信息融合的二级故障诊断系统:基于自适应加权算法的一级融合,基于D-S证据理论的二级融合,如图1所示。

神经网络期末报告

学习报告—— 基于信息论的神经网络模型 专业:计算数学 班级:数学二班 学号:152111033 姓名:刘楠楠

本报告主要分为两个部分,第一部分主要是对神经网络做一个整体的论述,阐述神经元的模型基理和特点,第二部分则是利用信息论的知识来研究神经元信号传递过程中,在有外界噪声的干扰下,如何保证信息最终能够达到最大输出。第三部分列举了一个拟合图像的算例,用于对比不同算法对噪声的敏感程度。 1 神经网络概述 1.1人工神经网络的概念 人工神经网络(Artificial Neural Networks,ANNs),是人脑或自然神经网络对信息感知与处理等智能行为的抽象和模拟,是一种分布式并行处理系统,它具有自组织、自学习、自适应和非线性动态处理的特性。可以实现人脑的概括、类比和推广能力,因而可以从大量数据中提取所需要的信息,通过联想记忆和推理等能力来获取所需要的数据。目前,已经开发和应用的神经网络有30多种,比较典型的有以下几种:感知器(Perceptron),多层感知器(MLP),BP前向网络,Hopfield网络和竞争型(Kohonen)神经网络。可以说人工神经网络就是模拟人思维的第二种方式。 1.2 人工神经网络的工作原理及特点 人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。人工神经网络首先要以一定的学习准则进行学习,然后才能工作,它反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别和过程控制。人工神经网络吸取了生物神经网络的许多优点,因而有其固有的特点: (1)高度的并行性 人工神经网络由许多相同的简单处理单元并列组合而成,虽然每个单元的结构和功能比较简单,但大量简单处理单元的并行行动,使其对信息的处理能力与效果惊人。

多层循环神经网络在动作识别中的应用

Computer Science and Application 计算机科学与应用, 2020, 10(6), 1277-1285 Published Online June 2020 in Hans. https://www.sodocs.net/doc/bb1026137.html,/journal/csa https://https://www.sodocs.net/doc/bb1026137.html,/10.12677/csa.2020.106132 Multilayer Recurrent Neural Network for Action Recognition Wei Du North China University of Technology, Beijing Received: Jun. 8th, 2020; accepted: Jun. 21st, 2020; published: Jun. 28th, 2020 Abstract Human action recognition is a research hotspot of computer vision. In this paper, we introduce an object detection model to typical two-stream network and propose an action recognition model based on multilayer recurrent neural network. Our model uses three-dimensional pyramid di-lated convolution network to process serial video images, and combines with Long Short-Term Memory Network to provide a pyramid convolutional Long Short-Term Memory Network that can analyze human actions in real-time. This paper uses five kinds of human actions from NTU RGB + D action recognition datasets, such as brush hair, sit down, stand up, hand waving, falling down. The experimental results show that our model has good accuracy and real-time in the aspect of monitoring video processing due to using dilated convolution and obviously reduces parameters. Keywords Action Recognition, Dilated Convolution, Long Short-Term Memory Network, Deep Learning 多层循环神经网络在动作识别中的应用 杜溦 北方工业大学,北京 收稿日期:2020年6月8日;录用日期:2020年6月21日;发布日期:2020年6月28日 摘要 人体动作识别是目前计算机视觉的一个研究热点。本文在传统双流法的基础上,引入目标识别网络,提出了一种基于多层循环神经网络的人体动作识别算法。该算法利用三维扩张卷积金字塔处理连续视频图

机器学习的定义

机器学习的定义 从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。 机器学习的范围 其实,机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。 从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅模式识别 模式识别=机器学习。两者的主要区别在于前者是从工业界发展起来的概念,后者则主要源自计算机学科。在著名的《Pattern Recognition And Machine Learning》这本书中,Christopher M. Bishop在开头是这样说的“模式识别源自工业界,而机器学习来自于计算机学科。不过,它们中的活动可以被视为同一个领域的两个方面,同时在过去的10年间,它们都有了长足的发展”。 数据挖掘 数据挖掘=机器学习+数据库。这几年数据挖掘的概念实在是太耳熟能详。几乎等同于炒作。但凡说数据挖掘都会吹嘘数据挖掘如何如何,例如从数据中挖出金子,以及将废弃的数据转化为价值等等。但是,我尽管可能会挖出金子,但我也可能挖的是“石头”啊。这个说法的意思是,数据挖掘仅仅是一种思考方式,告诉我们应该尝试从数据中挖掘出知识,但不是每个数据都能挖掘出金子的,所以不要神话它。一个系统绝对不会因为上了一个数据挖掘模块就变得无所不能(这是IBM最喜欢吹嘘的),恰恰相反,一个拥有数据挖掘思维的人员才是关键,而且他还必须对数据有深刻的认识,这样才可能从数据中导出模式指引业务的改善。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。 统计学习 统计学习近似等于机器学习。统计学习是个与机器学习高度重叠的学科。因为机器学习中的大多数方法来自统计学,甚至可以认为,统计学的发展促进机器学习的繁荣昌盛。例如著名的支持向量机算法,就是源自统计学科。但是在某种程度上两者是有分别的,这个分别在于:统计学习者重点关注的是统计模型的发展与优化,偏数学,而机器学习者更关注的是能够解决问题,偏实践,因此机器学习研究者会重点研究学习算法在计算机上执行的效率与准确性的提升。 计算机视觉 计算机视觉=图像处理+机器学习。图像处理技术用于将图像处理为适合进入机器学习模型中的输入,机器学习则负责从图像中识别出相关的模式。计算机视觉相关的应用非常的多,例如百度识图、手写字符识别、车牌识别等等应用。这个领域是应用前景非常火热的,同时也是研究的热门方向。随着机器学习的新领域深

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

神经网络学习算法的过拟合问题及解决方法

神经网络学习算法的过拟合问题及解决方法 李俭川 秦国军 温熙森 胡茑庆 (国防科技大学机电工程与自动化学院 长沙,410073) 摘要 针对反向传播学习算法及其改进算法中出现的过拟合问题,探讨了三种解决方法:调整法、提前停止法和隐层节点自生成法,并用实例对三种方法进行了验证和比较。其中,调整法和提前停 止法针对一个较大的网络可以解决过拟合问题,而隐层节点自生成法的提出既能避免过拟合问 题,又能获得最少神经元网络结构。这三种方法有效地解决了在神经网络学习过程中的过拟合问 题,提高了网络的适应性。它们不仅适合于函数逼近,而且可以推广到其他网络结构等应用领域。关键词 神经网络 计算机 BP 算法 过拟合 均方误差 自生成 故障诊断 中图分类号 T H 165.3神经网络已经在模式分类、机器视觉、机器听觉、智能计算、自动控制、故障诊断、信息处理、地震勘探、通信、雷达和声纳等领域有着十分广泛的应用前景,并随着计算机技术和信号处理技术的发展而发展。应用神经网络必须解决两个问题:模型和算法。现有的神经网络模型已达上百种[1] ,应用最多的是Hopfield 神经网络、多层感知器、自组织神经网络、概率神经网络以及它们的改进型。自Rumellhart D E,H inton 和Williams 提出误差反向传播算法(即BP 算法),解决了神经网络在引入隐层节点后的学习(或训练)问题后,已经发展了许多的改进学习算法[1],如快速下降法、共轭梯度法、一维搜索法及Lev enberg -Mar quardt 法等,其收敛速度很快,能满足实时性要求,但也存在着一些问题。1 学习算法及其过拟合问题 BP 算法及其改进算法是目前应用最广泛的学习算法,尽管不能证明这类算法能象单层感知器一样收敛,但是对许多问题的解决是成功的[2]。实际上,BP 算法是把一组样本的输入输出问题,变为一个非线性优化问题,它使用了优化技术中最普通的一种梯度下降法,用迭代运算求解权值并相应于学习记忆问题,加入隐层节点可使优化问题的可调参数增加,这样可得到更精确的解。要应用学习算法对网络进行训练,首先需要确定网络的结构,即输入、输出层神经元数目和隐层数及其神经元数目。 如何适宜地选取隐含层神经元的数目还没有确定的规律可以指导,但是,隐含层神经元数目是否合适对整个网络是否能够正常工作具有重要的甚至是决定性的意义。隐含层神经元数第22卷第4期2002年12月 振动、测试与诊断Jo ur nal of Vibr ation,M easur em ent &Diag no sis V o l.22No.4 D ec.2002 国家自然科学基金资助项目(编号:59775025)。 收稿日期:2001-07-09;修改稿收到日期:2001-12-03。

循环神经网络注意力的模拟实现

循环神经网络注意力的模拟实现 我们观察PPT的时候,面对整个场景,不会一下子处理全部场景信息,而会有选择地分配注意力,每次关注不同的区域,然后将信息整合来得到整个的视觉印象,进而指导后面的眼球运动。将感兴趣的东西放在视野中心,每次只处理视野中的部分,忽略视野外区域,这样做最大的好处是降低了任务的复杂度。 深度学习领域中,处理一张大图的时候,使用卷积神经网络的计算量随着图片像素的增加而线性增加。如果参考人的视觉,有选择地分配注意力,就能选择性地从图片或视频中提取一系列的区域,每次只对提取的区域进行处理,再逐渐地把这些信息结合起来,建立场景或者环境的动态内部表示,这就是本文所要讲述的循环神经网络注意力模型。 怎么实现的呢? 把注意力问题当做一系列agent决策过程,agent可以理解为智能体,这里用的是一个RNN 网络,而这个决策过程是目标导向的。简要来讲,每次agent只通过一个带宽限制的传感器观察环境,每一步处理一次传感器数据,再把每一步的数据随着时间融合,选择下一次如何配置传感器资源;每一步会接受一个标量的奖励,这个agent的目的就是最大化标量奖励值的总和。 下面我们来具体讲解一下这个网络。 如上所示,图A是带宽传感器,传感器在给定位置选取不同分辨率的图像块,大一点的图像块的边长是小一点图像块边长的两倍,然后resize到和小图像块一样的大小,把图像块组输出到B。 图B是glimpse network,这个网络是以theta为参数,两个全连接层构成的网络,将传感器输出的图像块组和对应的位置信息以线性网络的方式结合到一起,输出gt。 图C是循环神经网络即RNN的主体,把glimpse network输出的gt投进去,再和之前内部信息ht-1结合,得到新的状态ht,再根据ht得到新的位置lt和新的行为at,at选择下一步配置传感器的位置和数量,以更好的观察环境。在配置传感器资源的时候,agent也会

机器学习之人工神经网络算法

机器学习中有一个重要的算法,那就是人工神经网络算法,听到这个名称相信大家能够想到 人体中的神经。其实这种算法和人工神经有一点点相似。当然,这种算法能够解决很多的问题,因此在机器学习中有着很高的地位。下面我们就给大家介绍一下关于人工神经网络算法 的知识。 1.神经网络的来源 我们听到神经网络的时候也时候近一段时间,其实神经网络出现有了一段时间了。神经网络 的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学 习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。 在BP算法诞生以后,神经网络的发展进入了一个热潮。 2.神经网络的原理 那么神经网络的学习机理是什么?简单来说,就是分解与整合。一个复杂的图像变成了大量 的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正确的结论。这就是 大脑视觉识别的机理,也是神经网络工作的机理。所以可以看出神经网络有很明显的优点。 3.神经网络的逻辑架构 让我们看一个简单的神经网络的逻辑架构。在这个网络中,分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层

中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,也就是”神经网络”。在神经网络中,每个处理单元事实上 就是一个逻辑回归模型,逻辑回归模型接收上层的输入,把模型的预测结果作为输出传输到 下一个层次。通过这样的过程,神经网络可以完成非常复杂的非线性分类。 4.神经网络的应用。 图像识别领域是神经网络中的一个著名应用,这个程序是一个基于多个隐层构建的神经网络。通过这个程序可以识别多种手写数字,并且达到很高的识别精度与拥有较好的鲁棒性。可以 看出,随着层次的不断深入,越深的层次处理的细节越低。但是进入90年代,神经网络的发展进入了一个瓶颈期。其主要原因是尽管有BP算法的加速,神经网络的训练过程仍然很困难。因此90年代后期支持向量机算法取代了神经网络的地位。 在这篇文章中我们大家介绍了关于神经网络的相关知识,具体的内容就是神经网络的起源、 神经网络的原理、神经网络的逻辑架构和神经网络的应用,相信大家看到这里对神经网络知 识有了一定的了解,希望这篇文章能够帮助到大家。

机器学习及其算法发展分析

机器学习及其算法发展分析 发表时间:2019-07-18T10:00:54.027Z 来源:《科技尚品》2019年第1期作者:赵明刘复星 [导读] 随着当今社会的发展和科技的进步,机器智能化在各个领域的应用越来越广泛。由于当下机器学习还处于初始阶段,主要依赖监督学习,且并未完全攻克弱人工智能,相关人员需要不断完善机器学习理论基础和实践。在对应科学范畴和计算机技术发展中,应为机器学习提供良好的环境,机器学习的发展前景十分广阔。要积极吸取发达国家的经验和教训,在人工智能技术上不断创新发展。 中国汽车技术研究中心有限公司 引言 在现代化信息技术的支持下,计算机技术为智能人工技术发展奠定良好基矗以计算机技术为支持的智能计算技术涉及了统计学、逼近论、算法复杂论以及凸分论等学科知识,可通过计算机技术,利用自身的学习经验,在自我系统中不断完善自身性能。以计算机规律性信息数据为支持,在计算机中找到规律性信息,获取知识经验,实现计算机技术的智能化,使得计算机向人工智能方向发展。 1概述 机器学习是AI人工智能的一个分支,在人工智能的时代机器学习作为一门重要的分支越来越受到学术界以及社会的关注,机器学习是一门涉及多领域的交叉学科,涉及统计学、凸分析、概率论、算法复杂度等多学科多门类,通过研究计算机相关模拟性能以及人类学习习惯和行为来获得新的技能或者新知识,并且根据自身框架结构不断优化完善自身体系性能。在此基础上持续优化模型,使得后续工作执行得更好。机器学习是令计算机不呈现程序即可显示获得某些功能的学习领域,也是计算机自身获取知识并逐步反馈逐步改进提示的过程。机器学习的研究需要以神经网络,统计分类等统计学,生物学为基础,让机器模拟人类学习过程。对此需要输入巨量的数据和学习样本以形成人类所知的"经验",不断重复拆分、回归、聚合,最终得到元素间的关系并可依此形成类似经历的判断和预测。因此也应用于数据挖掘,大数据处理等基于海量数据的预测,应用领域十分广泛,涉及大数据分析、数据深度挖掘、自然语言处理、搜索引擎、语音识别、机器人控制应用等。 机器学习的本质在于数据的整合归纳,模型的建立和算法的改进。在整个学习过程中,最基本的条件是持续的外界反馈,以某种方式形成的外界信息源,运用算法将获取的外部信息加工成为"经验",并储备在内在的数据库里。数据库根据建立的原则和规律提供执行的行动,而行动过程中获得的外界信息又成为了新的反馈来源,对下一次的行为提供新的指导信息。 2机器学习分类内容 机器学习中数据处理以人为标注为标准判断机器学习,主要有监督和无监督两种形式。监督学习是将学习目标采取具有标签的数据辅助完成学习,这种学习方式在实践中效果显著。但是,采取监督学习方式成本较大,价格昂贵。采用先进无监督学习则通过计算机自身自动化技术学习,以多种数据完善先验式知识吸收,整体上成本可控,不需要大量资金投入;但是,这种学习方式的实际效率较低。 2.1监督学习 监督学习以人为方式标注目标,初始训练数据是监督学习中需收集的必然数据。监督学习能够将机器自身泛化能力充分发挥出来,可以有效解决分类和回归问题。这种监督学习经典算法为卷积神经网络、多层感知机和逻辑回归等。经典方式由BN、SVN、KNN以及CBR等组成。由标注特征对机器展开数据集训练,使其能够学习对不同事物的合理划分,以学习的方式对规则、规律数据进行预测。 2.2无监督学习 无监督学习中,机器在未标记样本数据时,不进行的训练,开展无监督学习。无监督学习可以在机器学习中及时区分一些原理相似性概念,无监督学习可以和人类一样学习需要的知识。这种无监督的学习经典性算法分为深度置信网络、受限玻尔兹曼机、自动编码器等内容,在解决聚类问题上有广泛的应用。 3机器学习的经典算法 机器学习目标是在一定的网络结构基础上,构建符合要求的数学模型,选择合理的学习方式和数据训练方法,学习输入数据的内在模式和数据结构,不断调整内部参数,通过数学工具求解模型最优化的预测反馈,提高泛化能力、防止过拟合进行半独立甚至独立的繁琐性工作。机器学习算法主要是指通过数学及统计方法求解最优化问题的步骤和过程,下面以机器学习领域经典的BP算法、卷积神经网络和深度学习算法来介绍。 3.1BP算法 BP算法属于有监督学习,该算法的基本原理如为浅层前向型神经网络计算模型,包含输入层、隐藏层和输出层,由大量神经元作为网络节点彼此连接,每个神经元通过激励函数处理作为网络权值的连接强度信号,通过调整这些连接强度,将输入数据中包含的模式信息映射到输出层。 3.2卷积神经网络 本质上,卷积神经网络是一种带有卷积结构的多层前馈神经网络,但区别于传统的全连接前馈神经网络,CNN具有局部连接和参数共享的重要特征,从而减少了连接和权值的数量,降低了网络模型的复杂度,提高了计算效率,特别是网络规模越大、效果越显著。另外,CNN通过层叠的卷积和下采样操作自动提取具有平移不变性的局部特征。 3.3深度学习算法 深度学习是机器学习的一个最新分支。Hinton等人于2006年提出基本概念,是机器学习基于数据辩表征学习的方法,用半监督式或非监督式的特征学习和分层特征提取高效算法来替代手工获取特征。人们一直在研究数字神经网络与人类大脑间的关系,随着对生物神经科学和计算机技术深入研究及它们的发展与应用,人们逐渐认识到神经网络的分层计算模型与人类大脑结构的特定区域相对应。近年来,深度学习模型的研究与应用成果也进一步证明了这个事实。因此,深度学习网络模型是最接近人类大脑的智能学习方法和认知过程,这也是其实践应用的理论依据。 4机器学习未来与发展 4.1非监督学习 非监督学习,目前还未是一门成熟的学科,主要关注统计数据密度问题,在训练中所需的已标识数据是经人工处理而成,且需由相关

数学建模bp神经网络讲解学习

数学建模B P神经网 络论文

BP 神经网络 算法原理: 输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,, ,n x x x x = 隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo = 期望输出向量: ()12,, ,q do d d d = 输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2, k m =

激活函数: ()f ? 误差函数:21 1(()())2q o o o e d k yo k ==-∑ 算法步骤: Step1.网络初始化 。给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。 Step2.随机选取第k 个输入样本()12()(),(), ,()n x k x k x k x k =及对应期望输出 ()12()(),(),,()q d k d k d k d k =o Step3.计算隐含层各神经元的输入()1 ()()1,2, ,n h ih i h i hi k w x k b h p ==-=∑和输出 ()()(())1,2, ,h h ho k f hi k h p ==及输出层各神经元的输入 ()1 ()()1,2, p o ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2, ,o o yo k f yi k o p == Step4.利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k δ。 o ho o ho yi e e w yi w ???=??? (()) () ()p ho h o o h h ho ho w ho k b yi k ho k w w ?-?==??∑ 2 1 1((()()))2(()())()(()())f (()) () q o o o o o o o o o o o o d k yo k e d k yo k yo k yi yi d k yo k yi k k δ=?-?'==--??'=---∑ Step5.利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ。

概率神经网络讲解

概率神经网络讲解 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

Donald Probabilistic Neural Networks Neural Networks,,,1990 概率神经网络 摘要:以指数函数替代神经网络中常用的S形激活函数,进而构造出能够计算非线性判别边界的概率神经网络(PNN),该判定边界接近于贝 叶斯最佳判定面。还讨论了拥有类似性质的其他激活函数。所提出的这种4层神经网络能够把任何输入模式映射到多个类别。如果能取得新数据的话,可以使用新数据实时地修改判定边界,并可以使用完全并行运行的人工“神经元”付诸实现。还为估计类别的出现概率和可靠性,以及做判别作好准备。对于反向传播增加的适应时间占总计算时间的重大部分的问题,这种方法显示出非常快速的优点。PNN范式比反向传播快200,000倍。 关键词:神经网格,概率密度函数,并行处理机,“神经元”,模式识别,Parzen窗口,贝叶斯策略,相联存储器 1. 动机 神经网络常用来依据向实例学习进行模式分类。不同的神经网格范式(paradigm)使用不同的学习规则,但都以某种方式,根据一组训练样本确定模式的统计量,然后根据这些统计量进行新模式分类。

通用方法如反向传播,使用探试法获得基础的类别统计量。探试法通常包含对系统参数的许多小的改进,逐渐提高系统的性能。除了训练需要长的计算时间外,还表明,反向传播增加的适应近似法对错误的最小值很敏感。为了改进这种方法,找到了基于己确立的统计原理的分类方法。 可以表明,尽管最终得到的网络在结构上类似于反向传播,且其主要区别在于以统计方法推导的激活函数替代S形激活函数,但这个网络具有的特点是:在某些易满足的条件下,以PNN实现的判别边界渐进地逼近贝叶斯最佳判定面。 为了了解PNN范式的基础,通常从贝叶斯判定策略以及概率密度函数的非参数估计的讨论开始。之后可以表明,这种统计方法如何映射到前馈神经网络结构,网络结构是以许多简单处理器(神经元)代表的,所有处理器都是并行运行。 2. 模式分类的贝叶斯判定策略 用于模式分类的判定规则或策略的公认标准是:在某种意义上,使“预期风险”最小。这样的策略称之“贝叶斯策略”,并适用于包含许多类别的问题。

2019神经网络实学习 例子.doc

神经网络实学习例子 1通过神经网络滤波和信号处理,传统的sigmoid函数具有全局逼近能力,而径向基rbf函数则具有更好的局部逼近能力,采用完全正交的rbf径向基函 数作为激励函数,具有更大的优越性,这就是小波神经网络,对细节逼近能力 更强。 BP网络的特点①网络实质上实现了一个从输入到输出的映射功能,而数学 理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解 内部机制复杂的问题。我们无需建立模型,或了解其内部过程,只需输入,获 得输出。只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次 的学习以内收敛到最低误差附近。而且理论上,一个三层的神经网络,能够以 任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答 案的实例集自动提取"合理的"求解规则,即具有自学习能力;③网络具有一定 的推广、概括能力。bp主要应用回归预测(可以进行拟合,数据处理分析,事 物预测,控制等)、分类识别(进行类型划分,模式识别等),在后面的学习中,都将给出实例程序。但无论那种网络,什么方法,解决问题的精确度都无法打 到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫 无意义的,有意义的解析必定会损失精度。BP注意问题1、BP算法的学习速度 很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目 标函数又非常复杂,因此,必然会出现"锯齿形现象",这使得BP算法低效; 结论4:由上表可以看出,后者的初始权值比较合适些,因此训练的时间 变短, 误差收敛速度明显快些。因此初始权值的选取对于一个网络的训练是很重 要的。 1.4,用最基本的BP算法来训练BP神经网络时,学习率、均方 误差、权值、阈值的设置都对网络的训练均有影响。综合选取合理的值, 将有

BP神经网络的学习

BP神经网络的学习 王贵腾 摘要:人工神经网络是近年来的热点研究领域,是人类智能研究的重要组成部分。BP神经网络作为目前应用较多的一种神经网络结构,具有良好的逼近性能,且结构简单,性能优良。但仍存在收敛速度慢,易陷入局部极小值的问题,通过附加动量项法、自适应学习率法、数据归一化法、遗传算法等,可大幅度改善其性能,可广泛应用于多输入多输出的非线性系统。 关键词:BP神经网络;BP算法;动量项;自适应学习率;归一化;遗传算法 1.绪论 1.1人工神经网络概述 人工神经网络(Artificial Neural Network),简称神经网络(NN),是由大量处理单元(神经元)组成的非线性大规模自适应系统。它具有自组织,自适应和自学习能力,以及具有非线性、非局域性,非定常性和非凸性等特点。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理,记忆信息的方式设计一种新的机器使之具有人脑那样的信息处理能力。 神经网络作为计算智能与控制的重要分支,在控制领域具有如下优点: 1)能逼近任意L2范数上的非线性函数; 2)信息分布式存储与处理,鲁棒性和容错性强; 3)便于处理多输入多输出问题; 4)具有实现高速并行计算的潜力;

5)具有学习能力,对环境变化具有自适应性,对模型依赖性不强,主要用于解决非线性系统的控制问题。 同时,神经网络控制在多种控制结构中得到应用,如PID控制、模型参考自适应控制、前馈反馈控制、内模控制、逆系统控制、预测控制等。 目前神经网络的研究主要集中在三个方面:理论研究、实现技术研究、应用研究。 1.2 BP神经网络概述 BP神经网络是1986年由Rumelhart和McClelland一同提出的一种多层前馈神经网络。该网络采用BP算法——一种误差反向传播(Back Propagation)算法,其方法是依据负梯度下降方向迭代调整网络的权值和阀值以实现训练误差目标函数的最小化。 由于BP神经网络在实际应用中存在着收敛速度慢、网络结构难以确定、容易陷入局部极小值、泛化能力不强的缺陷,近年来,许多学者为满足实际应用中需要提出了许多改进方法,在网络自身性能的改善方面做了大量而有实际意义的工作,并且在BP神经网络的理论方面的研究和实际问题上应用也取得了丰硕的成果。对BP神经网络的理论研究,概括起来大致分为三个方面:改进激励函数,权值选取优化和网络拓扑结构。 1.3本文研究内容 本文从神经网络出发,研究其中应用最为广泛的BP神经网络模型,分析其缺点和不足,提出改进措施,并探讨其应用。具体研究内

相关主题