搜档网
当前位置:搜档网 › 独塔斜拉桥主梁设计

独塔斜拉桥主梁设计

独塔斜拉桥主梁设计
独塔斜拉桥主梁设计

曲塔混合梁斜拉桥施工控制仿真分析

公路2009年第9期圈2曲塔混合梁斜拉桥有限元模型 施工控制前期准备阶段,结构计算中的参数通常取自相关设计资料,但也可根据工程经验对某些参数进行适当修改以便更符合实际情况。在施工控制阶段,还应根据结构设计参数与实际情况之间的差异、施工误差、测量误差、结构计算分析模型与工程实际之间的差异等确定是否对控制计算参数进行调整。仿真分析中钢材及混凝土的材料特性如表1所示,弹性模量及线膨胀系数均按规范取值。有限元分析过程中,钢箱梁的截面特性考虑了纵向加劲肋的影响。根据施工方案,将整个仿真计算分为26个工况,如表2所示。 表1主梁材料性能汇总 钢材 项目项目C50 (Q345qD) 弹性模量/MPa210000弹性模量/MPa32500剪切模量/MPa81000剪切模量/MPa13000泊松比O.3泊松比O.2 轴向容许应力/MPa200轴心抗压强度标准值/MPa32.4 弯曲容许应力/MPa210轴心抗拉强度标准值/MPa2.65 剪切容许应力/MPa120轴心抗压强度设计值/MPa22.4屈服强度/MPa345轴心抗拉强度设计值/h伊a1.83线膨胀系数0.000012线膨胀系数0.OOO01 3施工过程仿真分析主要结果 通过对表2中各工况的计算分析,得到了各施工阶段主梁、索塔的应力和位移以及斜拉索的索力。表3给出了斜拉索的施工索力和成桥索力。各典型工况主塔截面最大应力的分布如图3所示,各施工阶段索塔塔顶的水平位移变化如图4所示。最大悬 表2斜拉桥施工过程仿真分析计算工况 工况号工况内容工况号工况内容01索塔施工14张拉A9,安装M9,张拉J902边跨现浇段施工15安装M10,Mll,合龙主跨03张拉边跨预应力柬16对A1、J1进行二次张拉04张拉A1斜拉索17对A2、J2进行二次张拉05安装M1,张拉J118对A3、J3进行二次张拉06张拉A2,安装M2,张拉J219对A4、J4进行二次张拉07张拉A3,安装M3,张拉J320对A5、J5进行二次张拉08张拉A4,安装M4,张拉J421对A6、J6进行二次张拉09张拉A5,安装M5,张拉J522对A7、J7进行二次张拉10张拉A6,安装M6,张拉J623对A8、J8进行二次张拉11张拉A7,安装M7,张拉J724对A9、J9进行二次张拉12张拉A8,安装M8,张拉J825拆除边跨现浇支架13施加边跨配重26铺装二期恒载 臂状态和成桥状态钢箱梁、混凝土箱梁截面的最大应力分别见图5和图6。 曲塔斜拉桥仿真分析结果表明,索塔混凝土在施工过程中处于全截面受压状态。从图3可看出,4种典型工况中主塔各截面最大应力值不超过7MPa。注意到各工况之间的应力差别较小且变化均匀,这说明主塔自身的刚度足够大,足以保证钢箱梁的悬拼施工顺利进行。相对于传统的直塔而言,曲塔的水平偏位在施工过程中的变化更为明显,将塔顶处的水平偏位控制在一定范围内也是施工控制的一项重要工作。从图4来看,施工过程中曲塔塔顶最大水平位移为5.2cm,施工过程结束后,塔顶水平偏位则不超过1cm,以上两项指标均满足设计的控制要求。 从图5可看出,最大悬臂状态和成桥状态钢箱

独塔宽幅矮塔斜拉桥的设计与分析

文章编号:0451-0712(2006)05-0057-04 中图分类号:U 448.27 文献标识码:B 独塔宽幅矮塔斜拉桥的设计与分析 陈从春1,夏巨华2,肖汝诚1,何 鹏1 (11同济大学桥梁工程系 上海市 200092;21中国市政工程中南设计研究院 武汉市 430010) 摘 要:介绍了江苏昆山吴淞江大桥的设计与分析过程,并对平面应力和空间应力进行了讨论。该桥是一座跨径为10011m +10011m ,宽度为33m 的单索面矮塔斜拉桥,是目前同类结构中跨度较大、桥幅最宽的结构,主梁、桥塔、拉索等构造均比较新颖,可作其他桥梁设计借鉴参考之用。 关键词:矮塔斜拉桥;宽幅;设计;分析 吴淞江大桥位于江苏省昆山市吴淞江河跨处,主桥是一座跨径为10011m +10011m ,宽度为33m 的单索面矮塔斜拉桥。该桥在目前同类结构中跨径居第3位,宽度居第1位。桥上设计行车速度为50km h ;设计荷载,汽车为城市-A 级,人群为214kPa ,地震设防烈度为7度。桥梁采用塔、梁、 墩固结体系,主要构件都有一定的新颖性,效果 较好。1 设计概要111 总体布置 吴淞江大桥全桥共设14对拉索,索间距为 410m ,近塔端设有28m 的无索区段, 边墩附近设有20167m 的无索区段。总体布置如图1所示。 单位:m 图1 主桥立面布置 112 主梁 主梁采用变截面箱梁,塔根处梁高为510m ,跨中梁高310m ;梁高变化段在塔根无索区段,变化线 型为半径为16229m 的圆曲线。箱梁断面为单箱五室,箱底宽2514m ,顶宽33m ,其中悬臂长318m 。箱梁断面如图2所示。斜拉索锚固在中室内。箱形断 收稿日期:2005-11-28  公路 2006年5月 第5期 H IGHW A Y M ay 12006 N o 15

矮塔斜拉桥概述

矮塔斜拉桥概述 1.1矮塔斜拉桥的定义和特点 矮塔斜拉桥为近20年来出现的一种新桥型,瑞士、日本、韩国等一些国家这几年修建了多座这种桥梁。由于它优越的结构性能,良好的经济指标,越来越显示出巨大的发展潜力。我国在这种桥型上起步稍晚,2001年建成的漳州战备大桥,是国内第一座真正意义上的矮塔斜拉桥。 对于这种桥型的称谓尚未统一。日本的屋代南桥与屋代北桥为两座轻载铁路桥,初看起来象斜拉桥,因而日本的桥梁界对其笼统地称为斜拉桥。小田原港桥是一座公路桥,日本桥梁界没有把它称为斜拉桥,而是沿用了法国工程师1988年提出的名称—Extra-dosed Prestressing Concrete Bridge,即超配量体外索PC桥,简称EPC桥。实际上屋代南、北桥与小田原港桥其结构体系非常相似,同样可以称为EPC桥。在美国,这种桥有称为“Extra-dosed Prestressing Concrete Bridge”的,也有称为“Extra-dosed Cable-stayed Bridge”的。国内的称谓也一直存在争论,1995年我国著名桥梁专家严国敏先生首次把它定义为“部分斜拉桥”。其含义是:在结构性能上,斜拉索仅仅分担部分荷载,还有相当部分的荷载由梁的受弯、受剪来承受。“部分斜拉”即源于斜拉索的斜拉程度。后来国内一些文章根据这种桥型塔高较矮的特点,又把这种桥型定义为矮塔斜拉桥。 矮塔斜拉桥的受力是以梁为主,索为辅,所以梁体高度介于梁式桥与斜拉桥之间,大约是同跨径梁式桥的1/2倍或斜拉桥的2倍。截面一般采用变截面形式,特殊情况采用等截面。 矮塔斜拉桥的桥塔一般采用实心截面。塔高为主跨的1/8~1/12,由于桥塔矮,刚度大,一般不考虑失稳问题。梁上无索区较之一般斜拉桥要长,而且除了主孔中部和边孔端部的无索区段之外,还有较明显的塔旁无索区段。边孔与主孔的跨度比值较之斜拉桥要大。一般斜拉桥边孔与主孔的跨度比值一般小于0.5,多数在0.4左右,而矮塔斜拉桥与一般连续梁(刚构)桥相似,为避免端支点出现负反力,边孔与主孔的跨度之比一般会大于0.5,较合理的比值在0.6左右。 为了充分利用部分的高度,拉索多成扇形布置,拉索尽量向塔上部集中通过。塔顶索鞍的作用如同体外预应力索的转向点,斜拉索在转向点一般被固定而无滑动。在建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,即外钢管埋设于混凝土塔内,内套管套在外钢管中,斜拉索穿过内钢管,在两侧出口处设置抗滑锚头顶紧内管口,阻止内管滑移。斜拉索在梁上宜布置在边跨中及1/3中跨处。此外,矮塔斜拉桥由于塔较矮,塔顶水平位移不会很大,因此没有斜拉桥的特征构

【桥梁方案】预应力混凝土独塔双索面斜拉桥总体施工方案

目录 一、施工方案总体说明 (1) 1.编制依据 (1) 2.总体目标 (2) 二、总体施工方案 (5) 1.主桥工程 (5) 1.1.桩基施工方案 (5) 1.2承台施工方案 (12) 1.3斜拉桥主塔施工方案 (19) 1.4主梁施工方案 (36) 1.5斜拉索施工方案 (47) 2.引桥工程 (64) 2.1桩基施工方案 (64) 2.2系梁施工方案 (69) 2.3墩柱施工方案 (75) 2.4盖梁施工方案 (79) 2.5承台施工方案 (88) 2.6预制箱梁施工方案 (92) 2.7箱梁架设方案 (101) 2.8桥面系施工方案 (103)

xx市xx大桥总体施工方案 一、施工方案总体说明 1.编制依据 1.1亚行贷款xx市城市环境综合治理项目的有关招投标文件。 1.2现场调查、施工能力及类似工程施工工法、科技成果和经验;我单位为完成本合同段工程拟投入的管理人员、专业技术人员、机械设备等资源。 1.3建筑部颁布的《建筑工程施工现场管理规定》、及国家建设工程强制性标准、《建筑施工手册》等。 1.4国家、xx市有关部门颁布的环保、质量、合同、安全等方面的法律法规要求。 1.5国家、交通部现行的有关工程建设施工规范、验收标准、安全规则等。 《城市桥梁工程施工与质量验收规范》(CJJ 2-2008) 《城市桥梁养护技术规范》(CJJ 99-2003) 《公路桥梁抗风设计规范》(JTG/T D60-01-2004) 《公路斜拉桥实施细则》(JTG/T D65-01-2007) 《公路桥涵施工技术规范》(JTG/T F50-2011) 《公路工程技术标准范》(JTG/B01-2003) 建质【2009】87号等。

独塔混合梁斜拉桥跨径布置优化分析

独塔混合梁斜拉桥跨径布置优化分析 摘要:以在建的安徽省蚌埠五河淮河上新的高速公路(徐州至明光高速公路)大桥为背景,对拟优化的跨径布置提出了五种不同的方案。对每种方案采用空间有限元软件进行了计算分析。研究了不同方案对结构总体受力的性能的影响,及每种方案的优缺点;比较研究了各方案中结构变形、构件应力、拉索索力的状态等。综合现阶段现场施工状况、工程总体建设计划等因素,提出了最合理的桥跨布置方案。 关键词:独塔斜拉桥;跨径布置;优化分析;受力性能; Abstract: taking the huaihe river in anhui province under the five new bengbu highway (xuzhou to bright light the highway) bridge as the background, the span to be optimized arrangement proposes five different project. For each scheme adopts the space finite element software are calculated. The different scheme in the overall structure of the influence on the performance of the force, and the advantages and disadvantages of each method; A comparative study of each scheme structural deformation, stress, and the component cable force state, etc. Comprehensive site construction condition, at this stage of the overall construction engineering plan and other factors, put forward the most reasonable arrangement for bridge spans. Keywords: a single pylon cable-stayed bridge; Span decorate; Optimization analysis; Force performance; 0引言 随着交通事业的大发展,我国的桥梁建设已达到一个高峰。各种桥梁结构形式均已有了较大的发展,尤其是斜拉桥在近年的桥梁建设中更是备受工程师青睐。斜拉桥是一种由索、梁、塔组成的缆索承重桥梁体系。斜拉桥由桥面系承担自重和外荷载,通过斜拉索将荷载传递至桥塔,再由桥塔传递至基础。主梁一般处于压弯状态,拉索处于受拉状态,主塔处于受压状态。斜拉桥为高次超静定结构,桥跨的布置对结构体系的总体受力影响极大,因此跨径的合理布置对斜拉桥的设计十分重要。

矮塔斜拉桥研究的新进展

矮塔斜拉桥研究的新进展 陈从春1,周海智2,肖汝诚1 (1.同济大学桥梁工程系,上海200092; 2.同济大学建筑设计研究院,上海200092) 摘 要:简要叙述矮塔斜拉桥在国内外的应用及研究状况,讨论该种桥型的中文和英文关键词,提出索梁恒载比、索梁活载比和名义刚度的概念,并对这种桥型进行界定,试图揭示这类桥梁的力学本质,最后对该种桥型的发展作了展望。 关键词:矮塔斜拉桥;应力幅;索梁恒载比;索梁活载比;名义刚度中图分类号:U 448.27 文献标识码:A 文章编号:1671-7767(2006)01-0070-04 收稿日期:2005-11-22 作者简介:陈从春(1970-),男,博士生,1992年毕业于湖南大学公路与城市道路专业,工学学士,1999毕业于武汉理工大学岩土工程专业,工学硕士。 0 引 言 随着桥梁技术的发展,桥梁应用的两大趋势是十分明显的,即传统桥梁的轻型化和组合化。组合体系桥梁极大地丰富了桥梁造型。组合体系桥中比较有代表性的是拱梁组合体系、斜拉-连续梁(刚构)体系等,其中斜拉-连续梁(刚构)体系是一种比较新颖的桥型,近10年来应用较多,受到广泛的关注。普遍认为,由Chr istian M enn 设计的建于1980年的的甘特(Ganter)大桥,是斜拉-连续(刚构)体系桥的先驱,其混凝土箱形梁由预应力混凝土斜拉板/悬挂0在非常矮的塔上,这种板可以看成是一种刚性的斜拉索,该桥的出现形成了斜拉桥的一个分支)))板拉桥,由于其与环境的完美结合,成为一道风景。甘特大桥的出现为其后的矮塔斜拉桥的出现奠定了基础。甘特大桥之后,又有墨西哥的帕帕加约(Papagayo )大桥、美国得克萨斯州的巴顿河(Bar -to n Creek)大桥及葡萄牙的索科雷多斯(Socorr-i dos)大桥等相继建成[1]。 1988年法国工程师Jacg ues M athivat 在设计位于法国西南的阿勒特#达雷(Arr ?t Darr ü)高架桥的比较方案时,首次明确提出了矮塔斜拉桥的方案。该方案是跨度为100m 的预应力混凝土等截面箱梁,塔、梁固结,斜拉索穿过矮塔上的鞍座与主梁锚固。 与此同时,1990年德国的Antonie Naaman 提出了一种组合体外预应力索桥,体外索的一部分伸出主梁之上,锚固在墩顶处主梁的刚柱上[2] 。这一种体系与法国Jacgues M athivat 的方案十分类似。 目前这种桥在各国得到广泛应用,日本已建成此类桥梁20多座,中国大陆地区已建和在建的已达 10多座,中国台湾地区有2座,瑞士、菲律宾、老挝、帕劳群岛、克罗地亚各1座,美国珍珠港在建1座;其中,中国在建的惠青黄河公路桥、江珠高速荷麻溪大桥分别达到220m 和230m (预应力混凝土梁),芜湖长江大桥达到340m(钢桁梁),分别为同类桥梁最大跨径。 尽管这种桥梁发展很快,但仍然有很多问题没有很好地解决,本文将就研究的最新情况作一论述。1 矮塔斜拉桥的称谓 对于这种桥型的称呼尚未统一,法国工程师Jacgues M athivat 在提出他的方案时,命名为/ex -tra -dosed PC bridg e 0,直译为/超剂量预应力混凝土桥梁0;日本工程界一直采用这种名称( ¨é?ー ?橋);在美国,这种桥有称为/extra -dosed PC bridg e 0的,也有称为/extrado sed cable -stay ed bridg e 0的;在我国台湾,最初将这种结构称为/外置预应力桥0,后来根据其外形类似恐龙高耸的脊背,而称为/脊背桥0、/拱背桥0。国内的称呼一直存在争论,学者严国敏将其称为/部分斜拉桥0,理由是这种桥型受力特性介于斜拉桥和连续梁之间,桥的刚度主要由梁体提供,斜拉索主要起体外预应力的作用;王伯惠、顾安邦、徐君兰等学者认为应该称为/矮塔斜拉桥0,而/部分斜拉桥0不够明确,没有道出其外在的形状与内在的结构特征,早期的稀索结构也有/部分0的性质。 目前,这种体系与最初相比又丰富了很多,主梁不仅采用预应力混凝土结构,还可采用钢结构(如中国的芜湖长江大桥),以及钢与混凝土的组合结构(如波形钢腹板梁及结合梁),不仅可以采用刚性梁,

矮塔斜拉桥的设计与施工

文章编号:1671-2579(2004)01-0014-03 矮塔斜拉桥的设计与施工 ———日本新东明高速公路上的京川桥 金增洪 编译 (中交公路规划设计院,北京市 100010) 摘 要:日本新东明高速公路上的京川桥,位于观光和娱乐区,而且处在地震高发区。因此,桥梁既要考虑高抗震特性又要考虑美学特性。该矮塔斜拉桥的悬臂跨度达到96.5m ,已属日本国内此类桥梁中最大者。此悬臂跨径几乎等效于现有PC 斜拉桥的跨径。桥墩由高耸的钢管混凝土结构形成的组合桥墩,高56.5m 。 关键词:预应力混凝土;矮塔斜拉桥;斜拉索;预制;组合桥墩 Ξ 1 引言 矮塔斜拉桥是由法国马秀佛特(Mathivat )教授于1988年建议的,称谓超配量体外索PC 桥(Extradosed prestressing concrete bridge )。这种桥梁是从体外预应力桥发展而来,从应用跨径长度观点来看,矮塔斜拉桥的性态处于PC 箱梁桥和PC 斜拉桥之间。 京川桥跨越日本二级河流,该河为流经日本滨松市和滨北市行政管辖区之间的一条界河。建桥地点是观光和娱乐区域,还是地震高发区。因此,既要考虑桥梁的高抗震特性,也要考虑美学设计。至于矮塔斜拉桥悬臂跨径长度,是日本国内同类桥梁中的最大跨径。这种悬臂跨径相当于现有PC 斜拉桥的跨径(译者注:指日本国内现有斜拉桥的跨径)。京川桥的总体布置见图1所示 。 图1 京川桥总体布置图(单位:cm ) 2 一般概念 京川桥是由三肢桥墩支承的双幅箱梁组成的,而 桥面的长度为268m 。两主跨各长133m ,由44根间距为6m 的斜拉索支承(每一幅桥面在塔的每一侧各 有2×11根=22根斜拉索)。塔的高度为20m ,在顶 上安装索鞍。桥墩总高度为56.5m 。各墩截面:在基底部位尺寸为9.0m ×7.0m ;在与上部结构联结部位的尺寸为5.0m ×7.0m 。桥墩和桥塔都选用钢管混凝土新结构。钢管混凝土组合结构,不仅展示其特有的高延展性和高抗震性能效应,采用螺旋高强钢索箍 14 中  外 公 路 第24卷 第1期 2004年2月 Ξ 收稿日期:2003-03-11

独塔双索面混合梁斜拉桥斜拉索安装施工方案[优秀工程方案]

赣州市飞龙岛大桥 斜拉索安装 施 工 方 案 编制: 审核: 审批: 柳州欧维姆工程有限公司

一、工程概况 飞龙岛大桥位于赣州中心市区的西部,连接河套老城区和章江新城区.起点为客家大道,由南向北跨越章江南大道、章江、飞龙岛、章江北大道,连接文明大道与扬公路交叉口,止点为交叉口以北100米,工程总长1449.761米,其中主桥长230米,引桥长565米,接线道路长624.761米,桥下道路长373.35米.主要工程内容:桥梁工程、道路工程、排水工程、交通工程、照明工程.全桥共21个墩台,南岸引桥0号到7号墩,第一联(0号到2号)2x30米整幅桥,单箱双室;第二联(2号到7号)30+2x35+2x30米连续梁,为双幅桥, 单箱双室.北岸引桥10号到21号,第四联(10号到14号)4x30米连续梁,双幅桥,第五联(14号到19号)30+2x35+30米连续梁,为双幅桥,第六联(19号到21号)2x30米整幅桥. 主桥为独塔双索面混合梁斜拉桥,主桥长230米,主跨150米,采用不对称布置,即150+(45+35)=230米,其中长128.5米为钢箱梁,其余101.35米均为混凝土箱.主塔顺桥向为曲线型斜塔、横桥向为“A”型,顺桥向:索塔塔背为圆曲线.塔高承台以上为87米,桥面以上为70.823米. 斜拉索采用空间双索面,每索面共9对斜拉索,全桥共36根斜拉索.斜拉索采用ф7米米镀锌平行钢丝,外挤双层PE,内层为黑色,外层为彩色,钢丝标准强度 =1670米pa.斜拉索规格共8种,即:61ф7,73ф7,91ф7,109ф7,121ф7,127фf pk 7,151ф7,187ф7.斜拉索在主梁处最小倾角28.5°,最大倾角61.7°.斜拉索锚具采用冷铸墩头锚,梁端及塔端锚具均采用张拉端锚具.

广东独塔双索面斜拉桥施工方案

. 目录 一、概述 (1) 二、总体施工工艺 (2) 三、主要施工方法 (5) 1、施工准备 (5) 2、斜拉索的制作、运输、检查验收及存放 (9) 3、斜拉索提升至桥面 (9) 4、斜拉索的塔端挂设 (10) 5、桥面放索 (11) 6、斜拉索梁端安装 (12) 7、塔端软牵引 (14) 8、塔端张拉 (17) 9、斜索力调整 (18) 10、斜拉索施工注意事项 (19) 四、主要材料、机械、设备计划(全桥) (20) 五、劳动力使用计划 (21) 六、斜拉索施工进度计划 (21) 七、斜拉索相关参数 (22) 八、质量保证措施 (26) 九、安全保证措施 (27)

独塔双索面斜拉桥施工方案 一、概述 广东省***大桥为独塔双索面斜拉桥,桥跨布置为180+101+45m,索塔采用由直塔柱和斜拉柱组成,无上横梁的异型索塔,主梁采用预应力混凝土∏形梁,双向预应力混凝土结构,并采用前支点挂篮悬臂浇筑主梁混凝土。斜拉索两端均采用张拉端锚具,张拉端设在塔上;斜拉索中心线处的梁高为2.3m,斜拉索按扇形布置,塔上竖向间距1.8m,梁上水平间距6.0M,采用平行钢丝斜拉索。 主桥标准横断面布置为:1.5m(人行道)+2.0m(非机动车道)+2.25m(斜拉索布索区)+0.5m(防撞栏杆)+23.0m(机动车道)+0.5m(防撞栏杆)+2.25m(斜拉索布索区)+2.0m(非机动车道)+1.5m(人行道),总宽35.5m。 主桥斜拉索共设4×27=108根,斜拉索为塑包平行钢丝束,钢丝采用φ7镀锌高强钢丝,钢丝排列整齐,同心绞合,外缠包带,在缠包带外挤包高密度聚乙烯护套两层(黑色和彩色)。斜拉索两端均为带螺纹的冷铸锚。斜拉索共分为PES7-127、PES7-151、PES7-7、PES7-199、PES7-223、PES7-253六种规格,最长索A27长190.923m、重12.8682t,斜拉索钢丝总重756.1539t。平行钢丝斜拉索构造见图1。全桥斜拉索布置情况见图2。 图1平行钢丝斜拉索构造示意图

独塔混合梁斜拉桥摘要

摘要 混合梁斜拉桥是指斜拉桥的主梁沿梁的长度方向由两种不同材料组成,主跨的梁体为钢梁,边跨(或伸入主跨的一部分)的梁体为混凝土梁。混合梁斜拉桥由于其主跨采用钢梁,所以具有跨越能力大的优点,而边跨采用混凝土梁从而起到了很好的锚固作用且兼有可降低建桥成本的特点。斜拉桥与其它一般梁式桥在结构体系、材料受力性能等方面都有明显的差异,其抗风、抗震性能以及车振性能等均有其自身的特点。 桥梁结构的动力学特性主要包括桥跨结构的自振频率、振型、阻尼比以及在车辆、风、地震等动荷载作用下的动力响应等。斜拉桥的动力特性分析是研究斜拉桥动力行为的基础,其自振特性决定其动力反应特性,分析斜拉桥自振特性意义重大。近半个世纪以来,斜拉桥的设计理论、结构风动稳定试验和减振控制、计算机技术的应用、有限元分析和施工质量的控制、检测技术日趋成熟,与上述较成熟的理论相比,斜拉桥的动力特性分析方面较落后。目前,斜拉桥正不断的向大跨度、轻型化方向发展,对其在动荷载(如车辆、风和地震等)作用下的动力响应研究更显得十分迫切。 桥梁结构的地震反应分析是一个抗震动力学问题。对桥梁结构进行地震反应分析,必须从抗震动力学出发来思考问题、解决问题,而桥梁结构的地震反应分析必须以地震场地的运动为依据。但是由于实际强震记录的不足,这个关键问题还未能很好的解决,因此仍然是结构抗震设计计算中最薄弱的环节。 斜拉桥动力学分析的方法大致可以分为两类,一类为传统的理论解析方法,对结构作一定的简化后作解析分析,最后得出解析公式。另一类是有限元数值分析方法,利用电子计算机强大的计算功能采用有限单元法分析,该方法能够更为真实地模拟实际结构,分析结果精度高。本桥采用有限元数值分析方法。 本文在现有研究的基础上,以广州东沙特大桥为背景,围绕独塔混合梁斜拉桥动力特性及地震响应的分析,展开进一步的研究。 混合梁斜拉桥由于其主梁沿梁的长度方向由两种不同材料组成,主跨的梁体为钢梁,边跨为混凝土梁。因此混合梁斜拉桥的动力特性及抗震性能方面与混凝土斜拉桥及钢箱梁斜拉桥相比,有其相似处,但亦有其自身的特色。本文在现有研究的基础上,以广州东沙特大桥作为计算背景,围绕混合梁斜拉桥动力特性及混合梁斜拉桥地震响应的计算分析,展开了以下几个方面的工作: 1、以广州东沙特大桥为背景,运用大型通用软件ANSYS建立该桥的动力分析模型,对设置辅助墩和不设置辅助墩情况下的动力特性做比较分析。

矮塔斜拉桥

浅谈矮塔斜拉桥和多塔斜拉桥 矮塔斜拉桥是介于连续梁与斜拉桥之间的一种斜拉组合体系桥,具有塔矮、梁刚、索集中的特点。 矮塔斜拉桥主梁刚度较大,是主要的承重构件,斜拉索对梁起加劲、调整受力的作用,斜拉索的恒载索力占总索力(恒载索力十活载索力)的比重较斜拉桥大,斜拉索的应力变幅较小,疲劳问题不突出,因而斜拉索的容许应力可取0.6pk f ,从而降低工程造价。矮塔斜拉桥与连续梁相比具有结构新颖跨越能力大、施工简单、经济等优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。使得矮塔斜拉桥具有广阔的发展空间。 矮塔斜拉桥结构特点: 1、塔高较矮。拉索倾角较小,拉索为主梁提供较大的轴向力,并且拉索尽可能密集地从塔顶鞍座上通过,锚固于主梁。一般塔高可取主跨的1/8-1/12; 2、以梁为主,索为辅,梁体高度约是同跨径梁式桥的1/2或斜拉桥的2倍,梁高与跨度之比较大,一般为1/40-1/20,并且主梁自身承受大部分荷载作用约70%斜拉索只承受30%起到帮扶作用; 3、主梁无索区段较一般斜拉桥要长,有较明显的塔旁无索区段,不设置端锚索; 4、边孔与主孔的跨度比值在0.5-0.6左右,类似连续梁; 5、为了充分利用矮塔的高度,拉索多成扇形布置且布置较集中,通常布置 在边跨、中跨跨中1/3附近。在己建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,拉索应力变幅一般只有斜拉桥的1/3左右,施工过程及合拢后,基本不需要进行拉索索力调整; 6、适用跨径宜选择在100m-200m 之间,如果采用组合梁或复合梁,则跨径可达300m. 7、尤其适用于多塔多跨和塔高受限制的情形,从刚度和疲劳考虑,它更适用于铁路桥或双层桥面,但采用多跨时存在较大的挠度问题。 矮塔斜拉桥的受力特点: 索塔将斜拉索索力按一定比例分配给主梁的水平和垂直方向,当主梁刚度较大时,就可以降低塔高,以节约材料,并给主梁提供较大的水平分力,以解决主梁体内预应力的不足。所以矮塔斜拉桥索塔的作用主要是通过分配斜拉索索力,从而实现对结构性能的改善。索塔对索力的分配作用不仅与自身高度有关,同时还与索力大小有关。拉索、预应力钢筋的用量和索塔塔高是相互影响的,索塔高些,拉索用量可少些,则预应力筋也可以相应少些,反之,亦然。在一定的范围内,通过索力优化调整因塔高降低对结构的负面影响,具有十分重要的意义。同

矮塔斜拉桥施工控制要点

矮塔斜拉桥施工控制要点 矮塔斜拉桥施工控制要点 摘要:本文以津沪联络线特大桥矮塔斜拉桥为背景,介绍矮塔斜拉桥索塔和拉索施工控制要点。 关键词:斜拉桥施工控制 中图分类号:TU74 文献标识码:A 文章编号: 一、工程概况 津沪联络线特大桥-跨外环线斜拉桥段为4跨 (64.6m+115m+115m+64.6m) 一联360.6m单箱三室预应力混凝土矮塔斜拉桥,全桥位于直线及缓和曲线上。线路为双线,线间距4.2m,轨道形式为有砟轨道。桥梁结构采用三塔双柱式双索面预应力矮塔斜拉桥。 二、矮塔斜拉桥施工索塔和拉索施工控制要点 斜拉桥属于组合体系桥,它的上部结构由主梁、拉索和索塔三种构件组成。支撑体系以拉索受拉和索塔受压为主。该桥中塔采用塔墩固结体系,边塔采用塔梁固结体系。 (一)索塔施工控制要点 主塔形式为双柱式,距名义梁顶面以上结构高为15m,采用实心截面,中塔与边塔采用相同尺寸,塔底横桥向宽为2m,纵桥向宽为3.7m,墩身斜率为40:1。由于索塔截面不规则,且高度仅为15米,索塔施工采用搭架分节立模浇注法。斜拉桥的平面位置、轴线控制、截面尺寸、预埋件制作、安装精度等要求较高。且索塔施工系高空作业范畴,为此施工应特别注意严格遵守有关高空作业安全技术规定。主塔中未布设预应力钢筋。索塔断面尺寸较小,而且轴向压力非常大,故在施工中对索塔的尺寸和轴线位置的准确性应有一定的要求。对于索塔轴向的允许偏差应考虑下面两个原则,其一,偏差值对结构物受力的影响甚微;其二,施工中达到的精度。沿塔高每米高度允许偏差值为0.5mm,即倾角正切值tgα=1/2000。按照H/2000的垂

直度偏差允许值计算。 1、施工控制要点: 1)支架和操作平台应有足够的强度、刚度和稳定性,并应设置安全护栏,支架还应具有足够的抗风稳定性。支架顶端应有防雷击装置。 2)索塔砼性能良好,具有较高的弹性模量和较小的砼收缩、徐变性能,应采用高集料、低水灰比,低水泥用量,适量掺加粉煤灰和泵送剂,以满足缓凝、早强、高强、阻锈、低水化热、小收缩、可泵性好等要求。 3)建立完善的测量系统,索塔施工应用绝对高程放样,消除累计误差。应对其平面位置、垂直度、倾斜度、锚箱位置、锚箱各孔道的角度以及各部分几何尺寸进行检查,以上各项检查的误差必须在允许范围之内。 4)节段模板的强度、刚度和稳定性应满足要求。模板轴线、标高、垂直度或斜度、模内尺寸、预埋件和预留孔位置、内表面平整度和拼缝高差等检测项目,应满足设计和规范要求。 5)、斜拉索锚索管的定位与固定。安设斜拉索管道时,应设置稳定的钢筋骨架固定管道,防止在浇注混凝土时移位,在管道测量定位时,应考虑斜拉索应重力垂直而导致其端部角位移时的方向、位置、标高的改变。 6)、塔身混凝土浇注时应掌握均匀分层,有塔中向两端的原则。每次浇注的混凝土均应在混凝土的初凝时间内完成,并注意加强养护。 (二)、斜拉索施工施工要点 在斜拉索中恒载引起的内力平衡主要依靠索、塔及主梁的轴力来实现,因此,索力的微小偏差均能在主梁引起较大弯矩,这一点是施工阶段计算的重点。本桥采用的斜拉索为矮塔斜拉桥专用的高强钢绞线,抗拉强度为1860MPa的高强低松弛环氧喷涂钢绞线。采用可调换式250AT-31群锚体系,斜拉索锚头外露部分及预埋钢管均采用80μm 锌加防腐涂料防护。斜拉索为双索面,立面为半扇形布置。每索塔设7对斜拉索,斜拉索规格为31-7φ5,单根钢绞线规格直径为15.2mm,

双层桥

国内、外双层桥梁介绍 一、上层机动车、下层人非 1、南昌市朝阳大桥 南昌朝阳大桥连接朝阳新城和红角洲地区,西起红角洲地区丰和南大道,东至朝阳新城抚生路,沿线接前湖大道、跨赣江南大道、跨滨江南大道、接九洲大街,为快速路桥梁。该大桥跨越赣江范围全长1560米,其中主桥长720米,桥宽38.5米,为六塔七孔单索面斜拉桥结构,拉索间距为6米。双向八车道,塔高35米。主梁梁高4.5米,采用单箱多室形式,顶板之上通行机动车,边箱内用于行人和非机动车通行。2012年9月开工,2014年底建成。 2、南昌大桥 大桥横跨于朝阳洲和红谷滩之间,是中国在赣江上修建的第一座行人、公路两用桥梁,被称为“千里赣江第一桥”。南昌大桥于1994年9月1日开工建设,于1994年元月10日建成通车,总投资达6.18亿元。主桥为预应力混凝土连续

梁桥,桥面总宽为30.35米,上层为双向六机动车道,下层为非机动车道和人行道。南昌大桥设有观光电梯,游人可乘电梯上桥观光。 3、上虞外环南路曹娥江大桥 上虞市环城南路曹娥江大桥采用双层连续梁桥方案,通过箱梁底板挑出悬臂设置人行道和非机动车道,箱梁顶板仍作为行车道,非机动车和行人与机动车道的完全分离保证了车道的快速无阻,并降低了人行和非机动车道的坡度,从而有效地降低了桥梁标高、减小了桥梁的宽度和长度,大大降低了工程造价。 主桥为双层桥面七跨一联预应力混凝土连续梁桥,跨径组合为 55m+5×72m+55m。上层桥面总宽18m,横向布置为:0.5m(防撞栏)+17m(机动车道)+0.5m(防撞栏);下层桥面单侧宽度5.5m,横向布置为:4m(非机动车道)+1.5m(人行道与护栏)。 4、奥地利首都维也纳的帝国桥

大跨度混合梁斜拉桥施工控制关键技术

大跨度混合梁斜拉桥施工控制关键技术 崔彬文,北京铁城建设监理有限责任公司100855 北京海 淀区 摘要:随着科学技术的迅速发展,新技术、新材料的不断研发应用,计算机辅助设计在大跨度桥梁的设计中被广泛的应用,再利用遥控技术和GPS控制桥梁的施工,使得大跨度桥梁向着大跨度、新型、轻质和美观方向发展。但是大跨度桥梁比普通桥梁在施工时,投资大,成本高,施工更为复杂。本文主要探讨大跨度桥梁在施工过程中的关键技术。 【关键词】大跨度桥梁施工技术 一、前言 自从改革开放以来,我国大跨度桥梁施工的发展进入了一个高速的发展时期,主要表现在近几年来大幅度增加的桥梁建筑总数量,多样化体系的桥梁结构,桥梁结构的跨度也日益变大,建筑桥梁施工的工程环境也越来越复杂化,因此对大跨度建筑桥梁施工的技术有了更高程度的要求。施工是桥梁建筑工程中很重要的一个环节,合理正确的施工措施能使得施工管理与组织的水平得到有效提升。 二、大跨度桥梁施工施工前期的准备工作 2.1合理选取桥梁结构:一般情况下,普通的桥梁常采用T 型或槽型(U型)的桥梁截面,而大跨度预应力混凝土桥梁在截面形状的选择上与此有很大差别,其截面形状采用的是变截面箱型的结构,与一般形状相比,这种截面形状的承载能力更强,且自重较轻。另外,对桥梁截面形状的选择,受到桥梁自身跨度的弯矩以及分布不均等因素的影响,综合各种因素,变截面箱型的结构形状是桥梁截面形状的最佳选择。 2.2科学合理的运用线性控制技术:对于大跨度预应力混凝土桥梁的建设施工技术而言,线性控制技术在桥梁工程中的运用是较为普遍的,通过分析桥梁整体结构,进行科学设计,并对施工过程进行有效控制。 三、大跨度桥梁基础施工关键技术 3.1桥梁基础施工 (1)大型深水群桩基础施工 钻孔平台搭设:对大型深水桩基础结构进行施工时,近年来发展出了不少具有代表性的新技术和新工艺,如钢护筒平台和钢吊箱平台技术,这两种新工艺较之传统施工工艺在技术上更具有先进性。钢吊箱围堰工程是通过精确定位的钢吊箱加装钢护筒,以形成钻孔平台,当承台地面与河床基层较高时,或承台高程以下土层结构较为松软时,可采用此种方法进行施工。而钢护筒平台结构则是完全以钢护筒作为竖向承重荷载的支撑结构,通过打桩船和打桩机具的精确施工技术,可将钢护筒准确打入足够深度的土层,并在钢护筒顶部安装支撑、布置平台板和安装相应钻孔施工机械进行作业。 大型钢吊箱施工:大型钢吊箱近年来较为先进的是整体吊装和现场整体同步控制下放两种工艺。大型钢吊箱水上浮运、现场整体吊装工艺。岸上基层使用整体钢吊箱技术,通过滑道、预制管道或水上浮运等措施将钢吊箱运至施工现场,并在已完成的桩基础施工现场使用吊装、定位和水下封孔等措施进行施工。采用此种施工技术具有施工进度快、作业精度高、施工安全性好、结构稳定等优点;计算机控制整体同步下方技术。钢吊箱在施工中采用了计算机控制的整体同步下放技术,改善了以往钢吊箱下放施工受到结构质量和规模的制约,此种技术的应用对大跨度桥梁施工的发展具有十分广阔的发展前景。 3.2沉井基础施工 沉井基础大量应用与大跨度桥梁的基础,如主塔基础及悬索桥的锚钉基础等。沉井基础施工主要包括沉井基础处理、钢壳沉井的加工、安装及混凝土浇筑、混凝土沉井的接高及下沉、清基及封底等步骤。其

独塔单索面斜拉桥主塔稳定性分析

独塔单索面斜拉桥主塔稳定简化分析 郭卓明 李国平 袁万城 上海城建设设计院 同 济 大 学 摘要:由于悬吊桥梁采用索塔支撑,其主塔往往须承受强大的轴向压力,因此其稳定是一个比较突出的问题。尤其独塔单索面斜拉桥在空间受力和稳定性方面都相对比较薄弱,对其进行稳定性分析更显必要。本文在对其主塔受力的适当简化之后,分别对其弹性及弹塑性稳定进行了简化分析,在传统的弹塑性稳定内力分析的基础上提出了一种独塔单索面斜拉桥主塔弹塑性稳定分析的简化方法。并以两座独塔单索面斜拉桥为背景做了算例,分析结果表明本文采用的简化分析方法是可行的。 关键词:独塔单索面 斜拉桥 主塔稳定 简化分析 一、引言 国民经济的飞速发展和国家对基础设施投入的进一步加强为我国大跨桥梁的发展提供了一个良好的条件,近十几年来,斜拉桥在我国迅速发展。由于单索面斜拉桥在美学上的优势,目前采用这种形式的斜拉桥也越来越多。由于悬吊桥梁的主塔均需承受巨大的轴向压力,而且随着桥梁跨度的增大,主塔也越来越高,结构越来越柔,其稳定问题成为一个非常突出的问题。尤其是其侧向稳定在设计时更需特别注意。 结构的稳定是一个较为经典的问题。从1744年欧拉的弹性压杆屈曲理论,到1889年恩格赛的弹塑性稳定理论,到Prandtl, L.和Michell, J. H. 的侧倾稳定理论,再到李国豪教授、项海帆教授等对桁梁桥、拱桥稳定的研究[1]以及近来国内外许多学者对各种具体结构稳定的研究,稳定问题在理论上已经比较成熟。在斜拉桥的稳定方面,1976年Man-chang Tang 提出了弹性地基梁的屈曲临界荷载估算法,葛耀君[5]用能量法分析了斜拉桥的面内稳定,此外樊勇坚、李国豪以及钱莲萍等都提出过各种实用计算方法,但都是仅限于弹性稳定的简化分析,且基本集中于主梁的稳定。对于弹塑性稳定,最近谭也平、景庆新[2]等都用有限元的方法进行了分析。稳定问题在计算方法上经历了经典的平衡微分方程方法、能量法等简化方法和有限元的数值计算方法这三个阶段,目前众多的研究尤其是对弹塑性稳定的研究大都集中在有限元分析上。然而在精确的有限元分析的同时,采用直观明了、概念清晰的力学简化分析,无论在对有限元分析结果的检验还是在初步设计时进行简单的估算都十分必要。本文在对独塔单索面斜拉桥主塔的受力特性进行适当简化之后,对独塔单索面斜拉桥主塔的弹性及弹塑性稳定问题分别进行了简化分析。 二、弹性稳定简化分析 考虑最一般的情况,主塔失稳方向和拉索平面成夹角β,如图(1)所示。失稳线形假定为()()v z V f z H ?=,分解到斜拉索平面内和平面外分别为: 平面内:()()()x z v z V f z H =?=?cos cos ββ 平面外:()()()y z v z V f z H =?=?sin sin ββ 主塔产生变形以后,外力功主要有拉索做功、主塔本身轴压做功和风荷载做功,其中拉索做功需考虑其在平面内的弹性支撑和平面外的非保向力作用,则由能量法可方便的导出主塔势能的总表达式:

独塔斜拉桥钢箱梁合龙架设施工技术要点

独塔斜拉桥钢箱梁合龙架设施工技术要点 大桥(32+57+130+256+64)m为独塔混合梁斜拉桥,大桥长540.5m,主跨256m为通航孔。其中8#-13#墩为水中墩。主塔为H型塔,截面采用空心箱型断面。斜拉索采用平行高强钢丝 斜拉索。采用钢锚梁锚固,主梁采用钢箱梁结构和混凝土箱梁。 梁高4.6m。桥面横向宽14m,两侧各设0.6m宽风嘴,顶面设2%横向排水坡。箱梁顶宽 3.75m,底宽2m,梁外侧高 4.56m。 8#-10#墩为砼现浇箱梁,10#-11#墩为钢箱梁,节段划分为8.5m(钢混)+21m+30m*3+9m, 采用支架法和浮吊吊装架设施工;中跨11#墩-12#墩(主跨)为钢箱梁节段划分为(1-17#段)16m+15m*15+6m(17#段合龙段),其中2-17#采用桥面吊机施工;12#墩-13#墩为钢箱梁阶 段划分为24m+30m+23.3m,采用支架法和浮吊吊装架设施。 二、施工准备 (一)前期工作 1.12#、13#墩(支架法)支座灌浆完成,13#墩支座解除约束。 2.灌浆料强度达到100%后,对18-20#段(12#、13#墩)梁底临时支墩进行拆除,使18-20# 段梁体系转换在永久支座上。 3.17#、18#、19#、20#梁箱内、梁底顶推装置设置完毕,并对12#墩支座约束进行解除,合 龙预偏量设置完毕。 4.合龙段提前1天运到待架区域,与18#对接端预留150mm配切余量。选择温差较小、相对稳定的时段多次(每小时1次)精确测量16#、18#梁段端里程及12#墩中心口里程,为合龙 段配切提供参考数据;分析检测数据精确配切合龙段余量。 5.M15#(在16#节段)斜拉索第一次张拉后桥面吊机松钩,桥面吊机前行至合龙段吊装为定位,测量组在凌晨温度稳定时段测量16#梁前端标高,提交监控小组,由监控小组计算并提 供合龙标高数据。 6.劲性骨架材料倒到位,并完成单端焊接。 (二)18#、19#、20#梁段预偏顶推(拉)装置设置 1.在18#段底板靠近12#墩大里程方向焊接反力座及反顶装置,使18#-20#节段向大里程纵移,移出合龙空间,待17#合龙段与16#节段连接完毕后,在17#、18#段箱内底板位置焊接反力 座及反拉装置,利用17#、18#段上焊接反力座及反拉装置反向移动18#梁段,完成18#梁段 与合龙段的顺利对接。 2.18#段梁底板焊接反力座采用100t油顶来反顶墩身,为保证顶推平衡设置2组反顶装置,(反力座需在梁横隔板位置,若不在需在箱内加固)达到增大力满足合龙空间的目的。 3.待16#-17#段合龙口高栓连接完后,采用箱内反拉装置将向大里程预偏的18#~20#梁整体回 拉至合龙位置,完成17#段与18#段对接。反力座设置在17#段与18#段梁端横梁处,采用两 台100吨穿心千斤顶,完成18#-20#梁段的回拉纵向滑移作业。 (三)合龙空间确定 1.选择在气温低的时间段安装合龙段,利用较大的温差使合龙空间增大,减少18#~20#段预 偏量。

矮塔斜拉桥单侧抗滑体系介绍(OVM)全解

2)OVMAT矮塔斜拉桥拉索 1)OVMAT矮塔拉索体系介绍 矮塔斜拉桥是欧洲工程师于1988年提出的一种新型桥梁结构型式。 1994年日本建成世界第一座矮塔斜拉桥,柳州欧维姆机械股份有限公司于2000年开始立项开展新型矮塔斜拉桥拉索体系的课题研究,我国2001年建成了国内第一座矮塔斜拉桥——漳州战备桥,欧维姆公司为该桥提供了拉索产品,并承担专项施工。由于矮塔斜拉桥项目创新程度高,市场前景广阔,于2004年被广西区科技厅列为广西区科技攻关项目,文号为桂科技字<2004>28号。OVM公司研制开发全新的OVMAT矮塔斜拉桥拉索体系。先后形成了独到的拉索技术:如塔上分丝索鞍技术,塔端抗滑技术、拉索防水技术、索体防腐技术、拉索单根可换技术、索力监测系统等。 2006年7月OVMAT矮塔斜拉桥拉索体系项目通过社会鉴定,其结构体系综合评定为“国内首创,国际领先”。2007年由国家科学技术部、商务部、质量监督检验检疫总局、环保总局四部委联合签发授予“国家重点新产品”称号。经过十多年的自主研发,历经六代产品的变革,目前国内外有百余座矮塔斜拉桥采用OVMAT矮塔斜拉桥拉索体系,大大领先国内同行,已处于世界领先水平,世界范围内拥有70%以上的市场占有率。 2)桥型结构图

(图配文:OVMAT矮塔斜拉索第六代抗滑锚固装置)

优点: ●自主研发,拥有多项国内外专利技术,技术达到国际领先水平; ●锚具抗疲劳性能优异,可达到250Mpa的高应力幅。 ●四层防护结构确保索体卓越的防腐能力,具有完善的防水、防渗漏结构; ●施工便捷,产品用于国内外多项工程,有成熟的施工技术和长期安全实践认证; ●第六代抗滑设计,保证拉索在施工阶段形成足够的抗滑力。 分丝索鞍结构设计,实现钢绞线的单根换索功能。 3)适用标准: 1、斜拉索符合国际预应力混凝土协会(fib)《预应力钢质拉索的验收推荐性规范》 2、美国后张协会《Recommendations for stay cable design testing and installation》 (PTI2007第五版) 3、环氧钢绞线满足GB/T25823-2010《单丝涂覆环氧涂层预应力钢绞线》要求。 4、镀锌钢绞线满足YB/T152-1999《高强度低松弛预应力热镀锌钢绞线》要求 5、JT/T771-2009《无粘结钢绞线斜拉索技术条件》

相关主题