搜档网
当前位置:搜档网 › matlab与控制系统仿真期末复习

matlab与控制系统仿真期末复习

matlab与控制系统仿真期末复习
matlab与控制系统仿真期末复习

考试题型

一、填空题(20分)

矩阵建立A=[1 2 3;4 5 6;7 8 9]

A([1 3],:) 表示取第一三行

A(1:2,:)表示取第一二行

a

y=a*sin(a)

例如:

Y=A.*sin(Y)表示点乘

点乘和乘是两种不同的矩阵计算符号。

(1)点乘表示两个矩阵对应位置元素相乘,所以这两个矩阵应该是尺寸等大的(这里不是说元素等大,而是行列数分别相等,都是m行n列的矩阵)。例如:

>> a = [1 2 3;2 3 4];

>> b = [1 2 3;2 3 4];

>> a.*b

1 4 9

4 9 16

>> c = [1 2 3;1 2 3;1 2 3];

>> a.*c

??? Error using ==> times

Matrix dimensions must agree.

这里a无法点乘c,因为这两个不是相同尺寸的矩阵。

(2)而乘* ,这个和我们在数学中学到的矩阵相乘是一个意义。例如:

>> a*c

ans =

>> a*b

??? Error using ==> mtimes

Inner matrix dimensions must agree.

由于a的列不等于b的行,所以两者不可相乘。

Shift+enter:一行多命令输入

…:连接符可以把断开的命令连起来,但是…后的不在被识别,是字符要单独用‘隔开

;:表示不显示结果

A=5;

A=5,B=6

\矩阵左除

/矩阵右除

x=a/b即x=a*inv(b)a乘以b的逆矩阵。

x=a\b,即x=inv(a)*b a的逆矩阵乘以b矩阵。

AB是标量A/B等于B\A

AB是矩阵A/B不等于A\B

标量:

单个数据

a=2;

向量:

一行或一列数据

a=[3,5,7,8]或a=[3 5 7 8] 行向量,在方括号内的一行数据

%:注释

close all 关闭图形窗口

clear清除工作空间

clc清屏

who:who命令只列出当前工作空间的变量名

whos:以列表的形式,给当前工作空间的变量名以及变量的其它信息(大小,字节,类等)

figure(n):figure是建立图形的意思,系统自动从1,2,3,4...来建立图形,数字代表第几幅图形,figure(1),figure(2)就是第一第二副图的意思

save acb.mat A B –append

将A B变量保存成文件名为acb.mat的文件。

load acd.mat A B 装载当前路径下的数据文件

B

冒号表达式A=0:pi/180:2*pi范围(0,2*pi)步长为pi/180

B=0:10

B =

0 1 2 3 4 5 6 7 8 9 10

linespace(0,2*pi,181)

x=linspace(a,b,n);

a为下限,b为上限,n为将a到b等分为(n-1)份即分为n个点

若没有n,则默认为将a到b等分为99份

ones(m,n):ones(m,n) : 生成m*n的全1矩阵

eye(m,n):eye(m,n):生成m*n的矩阵E,对角线元素为1,其他为0

rand(m,n):生成m*n的随机矩阵函数rand 函数用来生成[0,1]之间均匀分布的随机函数round\ fix\floor\ceil

Matlab中的取整函数fix, floor, ceil与round

1. fix 向0取整

fix([-0.5 -0.4 0.4 0.5]) ==> [0 0 0 0]

2. floor 向-inf取整

floor([-0.5 -0.4 0.4 0.5]) ==> [- 1 -1 0 0]

3. ceil 向+inf取整

ceil([-0.5 -0.4 0.4 0.5]) ==> [0 0 1 1]

4. round 四舍五入

round([-0.5 -0.4 0.4 0.5]) ==> [-1 0 0 1]

频率法超前校正零点小于极点(零点加在极点左侧),中频段,作用是提高动态性能,ts

滞后校正零点大于极点(零点加在极点右侧),低频段,作用是提高稳态性能

常用simulink模块来源:

1 Continuous(连续模块)

Integrator :输入信号积分

Derivative :输入信号微分

State-Space :线性状态空间系统模型

Transfer-Fcn :线性传递函数模型

Zero-Pole :以零极点表示的传递函数模型

Memory :存储上一时刻的状态值

Transport Delay :输入信号延时一个固定时间再输出

Variable Transport Delay :输入信号延时一个可变时间再输出

2 Discrete (离散模块)

Discrete-time Integrator :离散时间积分

Discrete Filter :IIR与FIR滤波器

Discrete State-Space :离散状态空间系统模型 Discrete Transfer-Fcn :离散传递函数模型

Discrete Zero-Pole :以零极点表示的离散传递函数模型

First-Order Hold :一阶采样和保持器

Unit Delay :一个采样周期的延时

3 Function&Tables(函数和表格模块)

Fcn :用自己定义的函数(表达式)进行运算

MATLAB Fcn :利用MA TLAB的现有函数进行运算

S-Function :调用自编的S函数的程序进行运算

Look-Up Table :建立输入信号的查询表(线性峰值匹配)

Look-Up Table (2-D):建立两个输入信号的查询表(线性峰值匹配)

4 Math Operations(数学运算模块)

Sum :加减运算 Product :乘运算

Dot Product :点乘运算

Gain :比例运算

Math Function :包括指数函数、对数函数、求平方、开根号等常用数学函数

Trigonometric Function :三角函数,包括正弦、余弦、正切等

MinMax :最值运算

Abs :取绝对值

Sign :符号函数

Logical Operator :逻辑运算

Relational Operator :关系运算

Complex to Magnitude-Angle :由复数输入转为幅值和相角输出

Magnitude-Angle to Complex :由幅值和相角输入合成复数输出

Complex to Real-Imag :由复数输入转为实部和虚部输出

Real-Imag to Complex :由实部和虚部输入合成复数输出

5 Signals&Systems (信号和系统模块)

In1:输入端

Out1:输出端

Mux:将多个单一输入转化为一个复合输出

Demux:将一个复合输入转化为多个单一输出

Ground:连接到没有连接到的输入端

Terminator:连接到没有连接到得输出端

SubSystem:建立新的封装(Mask)功能模块

6 Sinks (接收器模块)

Scope:示波器

XY Graph:显示二维图形

To Workspace:将输入写入MA TLAB的工作空间

To File(.mat):将输出写入数据文件

7 Sources (输入源模块)

Constant :常数信号

Clock:时钟信号

From Workspace:来自MA TLAB的工作空间

From File(.mat):来自数据文件

Pulse Generator:脉冲发生器

Repeating Sequence:重复信号

Signal Generator:信号发生器,可以产生正弦、方波、锯齿波及随意波Sine Wave :正弦波信号

Step:阶跃波信号

根轨迹:

开环传递函数G=11.9/s(s+10)

直接利用rlocus()函数可绘制根轨迹

具体程序如下:

s=tf('s');%定义传递函数算子

G=11.9/(s*(s+10));

rlocus(G)

二、选择题(20分)

三、问答题(60分)

1.方程组的求解P39

AX=B B一般是列向量B=[0;0 ;1] X=inv(A)*B=A\B

2.矩阵的组合和分解、ones、eye

例一:

a=[1 2];

b=[3 4];

c=cat(1,a,b);

结果:

c =

1 2

3 4

例二:

a=[1 2; 3 4];

b=[11 22;33 44];

c=cat(1,a,b);

d=cat(2,a,b);

结果:

c =

1 2

3 4

11 22

33 44

d =

1 2 11 22

3 4 33 44

3.图形的绘制plot,subplot,hold on/off,text,title 第五章

a.plot(x,y,’r’) 图形修饰title ,text

b. 图形保持(hold on)

c. 子图

4.符号表达式的操作sym syms 简化,分解P45

a.定义sym syms

b.求解

c.积分,微分

5.超前滞后校正(自动控制原理课后)

6.系统稳定性判定feedback root if

练习

1.在MATLAB的命令行窗口中按上方向键可以恢复已执行或已输入的上一行命令。

2.将已计算变量T1和T2存入已有数据的数据文件daa.mat中,数据文件的原数据不丢失,在命令行中输入的指令为save daa.dat T1 T2,从daa.mat文件中导入T1,T2的命令为:load daa.mat T1 T2

3.如果一个表达式或命令过长,在MATLAB命令行中的一行书写不下,可以使用连接符…将断开的命令连起来。

4.MATLAB中变量名由字母/数字/下划线等组成,区分字母的大小写;变量中不能包含有标点符号。

5.MATLAB的预定义变量inf表示无穷大,pi表示圆周率,ans为默认变量名,虚数单位用i或者j表示。

6.为了调整数据的输出格式为15位定点数,需在命令行窗口执行format long命令。

7.在公式后加符号;可以使命令行不显示运算结果,在表达式或文字前加符 % 可以将其转换为注释。

8.在使用MATLAB时,要查找名称中有plot的函数用 lookfor plot 命令查找;要查看plot的功能,使用 help plot

9.A矩阵和B矩阵进行点乘运算,两个矩阵的行列数应相等,A和B进行矩阵运算,其乘法A(m行n列),B(n行p列)才符合。

10.对于除法运算,左除和右除的区别:、有标量A和B,及矩阵C和D,除法运算A/B等于

B\A ,C/D 不等于D\C

11. 用冒号表达式建立从数值A 到B ,间隔为0.1的线性行向量C 的命令为C=A :0.1:B 。用linspace 产生1到10,间隔为1的向量的表达式为linspace (1,10,11) 12. 查找出矩阵A 大于4的元素的位置的matlab 命令为find(A>4)

13. 已知矩阵A=[1 2 3;2 4 6;3 4 5];,其逆矩阵计算命令为inv(A),算其特征矢量c和特征值d的命令为[c,d]=eig(a)

14. 对于一次输入多行命令语句的情况,可以在每条命令输入完后,按组合键shift+enter 后输入下一条命令,直至按enter 键后一次性执行。

15. 在MATLAB 的工作空间中查看所有已存在变量的名称、sizes 可以用以下whos 命令。 16. 在MATLAB 的主窗口中,可以在历史命令面板中利用已执行的命令建立m 文件。 17. Clc 为清屏,clear 为清除变量工作空间,clf 为关闭图形窗口

18. ones(A)为全1矩阵,eye(m,n)为对角线为1的矩阵,rand (n )为随机矩阵

19. 已知数组a ,则运行mean(a)命令是计算a 每列的平均值,det(a)为求矩阵a 的行列式,inv (a )为其逆运算,a ‘为其转置运算

20. 已知x 向量, 其对数函数有以e 为底的log(x), 以10为底的log10(x), 以2为底的log2(x),

21. 在取整函数中:ceil :向正无穷方向舍入 ;fix :向零方向舍入 ;floor :向负无穷方向舍入;round 为四舍五入。

22. a=0:4,b=1:5,a 和b 可以做加法和减法,可以求转置,但不可以做矩阵的乘法和除法,点乘和点除可以。

23. 利用conv 函数计算三个多项式s1、s2和s3的乘积,则算式为 conv(conv(s1,s2),s3) 24. 已知方程c bx ax ++2,通过符号方程求解x

syms a b c x s=a*x^2+b*x+c; r=solve(s) 已知方程

,求解方程的根

r=roots(a)

对下式进行部分分式展开:

2

7243645232345234+++++++++x x x x x x x x x

b=[3 2 5 4 6];

[r,s,k]=residue(b,a) 求矩阵??

?

?

??=2221

1211a a a a A 的行列式值、逆 AD=det(A)

AI=inv(A)

计用符号方法求下列极限或导数

Matlab结构图控制系统仿真

图5. 利用 SIMULINK仿

4. 建立如图11-54所示的仿真模型,其中PID控 制器采用Simulink子系统封装形式,其内部 结构如图11-31(a)所示。试设置正弦波信号 幅值为5、偏差为0、频率为10πHz\始终相位 为0,PID控制器的参数为Kp=10.75、 Ki=1.2、Kd=5,采用变步长的ode23t算法、 仿真时间为2s,对模型进行仿真。 (6)观察仿真结果。系统放着结束后,双击仿真模型中的示波器模块,得到仿真结果。单击示波器窗口工具栏上的Autoscale按钮,可以自动调整坐标来 使波形刚好完整显示,这时的波形如图所示。 图3 2. 题操作步骤如下: (1) 打开一个模型编辑窗口。 (2) 将所需模块添加到模型中。在模块库浏览器中单击Sources,将 Clock(时钟)拖到模型编辑窗口。同样,在User-Defined Functions(用户定义模块库)中把Fcn(函数模块)拖到模型编辑窗口,在Continuous(连续系统模块库)中把 Integrator(积分模块)拖到模型编辑窗口,在Sinks中把Display模块编辑窗口。 (3) 设置模块参数并连接各个模块组成仿真模型。双击Fcn模块,打开Function Block operations中把Add模块拖到模型编辑窗口,在Sinks中把Scope模块拖到模型编辑窗口。 (3) 设置模块参数并连接各个模块组成仿真模型。先双击各个正弦源,打开其Block Parameters对话框,分别设置Frequency(频率)为2*pi、 6*pi、10*pi、 14*pi、18*pi,设置Amplitude(幅值)为1、1/3、1/5、1/7和1/9,其余参数不改变。对于求和模块,將符号列表List of signs设置为 +++++。 (4) 设置系统仿真参数。单击模型

控制系统MATLAB仿真基础

系统仿真 § 4.1控制系统的数学模型 1、传递函数模型(tranfer function) 2、零极点增益模型(zero-pole-gain) 3、状态空间模型(state-space) 4、动态结构图(Simulink结构图) 一、传递函数模型(transfer fcn-----tf) 1、传递函数模型的形式 传函定义:在零初始条件下,系统输出量的拉氏变换C(S)与输入量的拉氏变换R(S)之比。 C(S) b1S m+b2S m-1+…+b m G(S)=----------- =- -------------------------------- R(S) a1S n + a2S n-1 +…+ a n num(S) = ------------ den(S) 2、在MATLAB命令中的输入形式 在MATLAB环境中,可直接用分子分母多项式系数构成的两个向量num、den表示系统: num = [b1, b2, ..., b m]; den = [a1, a2, ..., a n]; 注:1)将系统的分子分母多项式的系数按降幂的方式以向量的形式输入两个变量,中间缺项的用0补齐,不能遗漏。 2)num、den是任意两个变量名,用户可以用其他任意的变量名来输入系数向量。 3)当系统种含有几个传函时,输入MATLAB命令状态下可用n1,d1;n2,d2…….。 4)给变量num,den赋值时用的是方括号;方括号内每个系数分隔开用空格或逗号;num,den方括号间用的是分号。 3、函数命令tf( ) 在MATLAB中,用函数命令tf( )来建立控制系统的传函模型,或者将零极点增益模型、状态空间模型转换为传函模型。 tf( )函数命令的调用格式为: 圆括号中的逗号不能用空格来代替 sys = tf ( num, den ) [G= tf ( num, den )]

matlab控制系统仿真.

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称龙蟠学院 专业自动化 班级M10自动化 学生姓名 学号 课程设计地点 C208 课程设计学时一周 指导教师应明峰 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。

(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统PID控制器取参数分别为:50 2 5 有积分作用单回路控制系统PID控制器取参数分别为:50 0 5

大比例作用单回路控制系统PID控制器取参数分别为:50 0 0 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;

控制系统的MATLAB仿真与设计课后答案

控制系统的MATLAB仿真与设计课后答案

>>z=-4*sqrt(2)*sin(t); >>plot3(x,y,z,'p'); >>title('Line in 3-D Space'); >>text(0,0,0,'origin'); >>xlabel('X'),ylable('Y'),zlable('Z');grid; 4>>theta=0:0.01:2*pi; >>rho=sin(2*theta).*cos(2*theta); >>polar(theta,rho,'k'); 5>>[x,y,z]=sphere(20); >>z1=z; >>z1(:,1:4)=NaN; >>c1=ones(size(z1)); >>surf(3*x,3*y,3*z1,c1); >>hold on >>z2=z; >>c2=2*ones(size(z2)); >>c2(:,1:4)=3*ones(size(c2(:,1:4))); >>surf(1.5*x,1.5*y,1.5*z2,c2); >>colormap([0,1,0;0.5,0,0;1,0,0]); >>grid on >>hold off 第四章 1>>for m=100:999 m1=fix(m/100); m2=rem(fix(m/10),10); m3=rem(m,10); if m==m1*m1*m1+m2*m2*m2+m3*m3*m3 disp(m) end end 2M文件:function[s,p]=fcircle(r) s=pi*r*r; p=2*pi*r; 主程序: [s,p]=fcircle(10) 3>>y=0;n=100; for i=1:n y=y+1/i/i; end >>y

MatLab与控制系统仿真(重点编程)

第 4 章 MatLab 的程序设计 MatLab 是一个工具、开发平台,同时它也是一门编程语言。与在命令窗口用交互的方式工作相比,通过程序运行来解决实际问题,其效率更高,因此,凡是复杂的、大型的应用都是以程序的方式执行。相对其它高级语言, MatLab 更简单、编程的效率更高、调试过程也更容易。 MatLab 中的程序文件是以 m 为后缀,所以通常将 MatLab 的程序文件称为 m 文件。MatLab提供了两种形式的m文件,即:脚本(Script)式m文件(就简称m文件)、函数型 m 文件。在 MatLab 中已经嵌入了一个功能强大的集成开发环境—— m 文件编辑器,用它来进行程序的编辑、修改、调试、运行等,完成应用开发工作。 4.1 MatLab 程序设计基础 通过前面内容的学习,大家对 MatLab 已经有了一个初步的认识和印象,到目前为止,我们都是在“命令”窗口中,以交互的方式运行,完成我们的工作。实际上简单的m 文件,就是一个批处理程序,它是若干条命令的集合。 例: 4.1.1 M 文件规则和属性 函数 M 文件必须遵循一些特定的规则。除此之外,它们有许多的重要属性,这其中包括: 1. 函数名和文件名必须相同。例如,函数 fliplr 存储在名为 fliplr.m 文件中。 2. MATLAB 头一次执行一函数个 M 文件时,它打开相应的文本文件并将命令编辑成存储器的内部表示,以加速执行以后所有的调用。如果函数包含了对其它函 数 M 文件的引用,它们也同样被编译到存储器。普通的脚本 M 文件不被编译,即使它们是从函数 M 文件内调用;打开脚本 M 文件,调用一次就逐行进行注释。 3. 在函数 M 文件中,到第一个非注释行为止的注释行是帮助文本。当需要帮助时,返回该文本。例如, ? help fliplr 返回上述前八行注释。 4. 第一行帮助行,名为 H1 行,是由 lookfor 命令搜索的行。 5. 函数可以有零个或更多个输入参量。函数可以有零个或更多个输出参量。

MATLAB控制系统各种仿真例题(包括simulink解法)

一、 控制系统的模型与转换 1. 请将下面的传递函数模型输入到matlab 环境。 ]52)1)[(2(24)(322 33++++++=s s s s s s s G ) 99.02.0)(1(568 .0)(22+--+=z z z z z H ,T=0.1s >> s=tf('s'); G=(s^3+4*s+2)/(s^3*(s^2+2)*((s^2+1)^3+2*s+5)); G Transfer function: s^3 + 4 s + 2 ------------------------------------------------------ s^11 + 5 s^9 + 9 s^7 + 2 s^6 + 12 s^5 + 4 s^4 + 12 s^3 >> num=[1 0 0.56]; den=conv([1 -1],[1 -0.2 0.99]); H=tf(num,den,'Ts',0.1) Transfer function: z^2 + 0.56 ----------------------------- z^3 - 1.2 z^2 + 1.19 z - 0.99 2. 请将下面的零极点模型输入到matlab 环境。请求出上述模型的零极点,并绘制其位置。 )1)(6)(5()1)(1(8)(22 +++-+++=s s s s j s j s s G ) 2.8() 6.2)(2.3()(1 511-++=----z z z z z H ,T=0.05s >>z=[-1-j -1+j]; p=[0 0 -5 -6 -j j]; G=zpk(z,p,8) Zero/pole/gain: 8 (s^2 + 2s + 2) -------------------------- s^2 (s+5) (s+6) (s^2 + 1) >>pzmap(G)

《MATLAB与控制系统。。仿真》实验报告剖析

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一 MATLAB环境的熟悉与基本运算(一)实验二 MATLAB环境的熟悉与基本运算(二)实验三 MATLAB语言的程序设计 实验四 MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一 MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MA TLAB常用命令 表1 MA TLAB常用命令 3.MATLAB变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor 逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 4.MATLAB的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

《控制系统MATLAB仿真》实验讲义88

《自动控制原理实验》 目录 第一部分实验箱的使用 第二部分经典控制实验 第一章基本实验 实验一典型环节及其阶跃响应 实验二二阶系统阶跃响应 实验三控制系统的稳定性分析 实验四控制系统的频率特性 实验五连续控制系统的串联校正 实验六数字PID控制实验 第二章综合实验 第三部现代控制理论实验 第一章基本实验 第二章综合实验

实验一 典型环节及其阶跃响应 预习要求: 1、复习运算放大器的工作原理;了解采用A μ741运算放大器构成各种运算电路的方法; 2、了解比例控制、微分控制、积分控制的物理意义。 一、实验目的 1、学习自动控制系统典型环节的电模拟方法,了解电路参数对环节特性的影响。 2、学习典型环节阶跃响应的测量方法; 3、学会根据阶跃响应曲线计算确定典型环节的传递函数。 二、实验内容 1、比例环节 电路模拟: 图1-1 传递函数: 2211 ()()()U s R G s U s R ==- 2、惯性环节 电路模拟: 图1-2 传递函数: 22112()/()()11 U s R R K G s U s Ts R Cs = =-=- ++ 3、积分环节 电路模拟: A/D1 D/A1 A/D1

图1-3 传递函数: 21()11 ()()U s G s U s Ts RCs = =-=- 4、微分环节 电路模拟: 图1-4 传递函数: 211() ()() U s G s s RC s U s τ= =-=- 5、比例微分 电路模拟: 图1-5 传递函数: 222111 ()()(1)(1)()U s R G s K s R C s U s R τ= =-+=-+ 6、比例积分 电路模拟: 图1-6 A/D1 2 R D/A1 A/D1 A/D1 A/D1 C

MatLab与控制系统仿真(重点编程)

第4章MatLab的程序设计 MatLab是一个工具、开发平台,同时它也是一门编程语言。与在命令窗口用交互的方式工作相比,通过程序运行来解决实际问题,其效率更高,因此,凡是复杂的、大型的应用都是以程序的方式执行。相对其它高级语言,MatLab更简单、编程的效率更高、调试过程也更容易。 MatLab中的程序文件是以m为后缀,所以通常将MatLab的程序文件称为m文件。MatLab提供了两种形式的m文件,即:脚本(Script)式m文件(就简称m文件)、函数型m文件。在MatLab中已经嵌入了一个功能强大的集成开发环境——m文件编辑器,用它来进行程序的编辑、修改、调试、运行等,完成应用开发工作。 4.1 MatLab程序设计基础 通过前面内容的学习,大家对MatLab已经有了一个初步的认识和印象,到目前为止,我们都是在“命令”窗口中,以交互的方式运行,完成我们的工作。实际上简单的m文件,就是一个批处理程序,它是若干条命令的集合。 例: 4.1.1 M文件规则和属性 函数M文件必须遵循一些特定的规则。除此之外,它们有许多的重要属性,这其中包括: 1. 函数名和文件名必须相同。例如,函数fliplr存储在名为fliplr.m文件中。 2. MATLAB头一次执行一函数个M文件时,它打开相应的文本文件并将命令编辑成存储器的内部表示,以加速执行以后所有的调用。如果函数包含了对其它函数M文件的引用,它们也同样被编译到存储器。普通的脚本M文件不被编译,即使它们是从函数M文件内调用;打开脚本M文件,调用一次就逐行进行注释。 页脚内容1

3. 在函数M文件中,到第一个非注释行为止的注释行是帮助文本。当需要帮助时,返回该文本。例如,? help fliplr返回上述前八行注释。 4. 第一行帮助行,名为H1 行,是由lookfor命令搜索的行。 5. 函数可以有零个或更多个输入参量。函数可以有零个或更多个输出参量。 6. 函数可以按少于函数M文件中所规定的输入和输出变量进行调用,但不能用多于函数M文件中所规定的输入和输出变量数目。如果输入和输出变量数目多于函数M文件中function语句一开始所规定的数目,则调用时自动返回一个错误。 相对于函数m文件,脚本式m文件就简单多了,它没有严格的格式要求,只要将有关的命令或函数一一敲入即可,但是还是有几个问题需要注意: 1. m文件的名称不得与MatLab的内部函数同名、第一个字符不得为数字(这点与变量的命名规则相同); 2. 最好在文件的头部加上注释,对该m文件的作用、功能作一个简要说明,而在一些重要命令行后也加上注释行,以方便使用者阅读、查找; 3. 要特别注意m文件的保存路径或位置,如果不是保存在MatLab默认的路径下,可以使用addpath函数来设置、添加路径,否则,m文件不能运行。 脚本式m文件与函数m文件还有一个重要区别:脚本式m文件中的变量均为全局变量,而函数m文件中的变量则是局部变量。这可以从这两种程序文件运行后在Workspace中留下痕迹看出。当然,在函数m文件中也可以专门将某些变量定义为全局变量(关键字是:global)。不过,在使用全局变量(函数m文件中)时应特别注意: ①.全局变量需要函数体的变量赋值语句之前定义或说明; ②.全局变量名最好是大写,而且要尽量长,能反映它本身的含义; 页脚内容2

MATLAB语言与控制系统仿真-参考答案

5.6 控制系统的时域响应MATLAB 仿真实训 5.6.1实训目的 1. 学会利用MATLAB 绘制系统的单位阶跃响应曲线,掌握读取系统动态性能指标的方法; 2. 学会利用MATLAB 绘制系统的单位脉冲响应曲线的方法; 3. 掌握利用MATLAB 绘制系统的零输入响应曲线的方法; 4. 掌握利用MATLAB 绘制系统的一般输入响应曲线的方法; 5. 学会通过仿真曲线读取相关信息,并依据有关信息进行系统的时域分析。 5.6.2实训内容 1.编写程序求取下列各系统的单位阶跃响应,完成表5-5并记录相关曲线。 162.316)(21++= s s s G 16 4.216 )(22 ++=s s s G 166.116)(2 3++=s s s G 1616 )(24++=s s s G 解:>> n1=16; >> d1=[1,3.2,16]; >> sys1=tf(n1,d1); >> step(sys1) >> n2=16; >> d2=[1,2.4,16]; >> sys2=tf(n2,d2); >> step(sys2)

>> n3=16; >> d3=[1,1.6,16]; >> sys3=tf(n3,d3); >> step(sys3) >> n4=16; >> d4=[1,1,16]; >> sys4=tf(n4,d4); >> step(sys4)

序号ξnω m ax c p t s t(% 5 = ?) 计算值实验计算值实验计算值实验值 1 0.4 4 1.2538 1.25 0.8569 0.863 2.1875 2.1 2 0. 3 4 1.3723 1.37 0.8233 0.828 2.9167 2.81 3 0.2 4 1.5266 1.53 0.8016 0.8 4.3750 4.9 4 0.12 5 4 1.6731 1.67 0.791 6 0.803 7.0000 7.33 w=4; cmax1=1+exp(-z1*pi/sqrt(1-z1^2)); tp1=pi/(w*sqrt(1-z1^2)); ts1=3.5/(z1*w); [cmax1,tp1,ts1] ans = 1.2538 0.8569 2.1875 >> z2=0.3; w=4; cmax2=1+exp(-z2*pi/sqrt(1-z2^2)); tp2=pi/(w*sqrt(1-z2^2)); ts2=3.5/(z2*w); [cmax2,tp2,ts2]

基于MATLAB的自动控制系统仿真

摘要 自动控制原理理论性强,现实模型在实验室较难建立,因此利用SIMULINK进行仿真实验,可以加深我们学生对课程的理解,调动我们学习的积极性,同时大大提高了我们深入思考问题的能力和创新能力。本文针对自动控制系统的设计很大程度上还依赖于实际系统的反复实验、调整的普遍现象,结合具体的设计实例,介绍了利用较先进的MATLAB软件中的SIMULINK仿真工具来实现对自动控制系统建模、分析与设计、仿真的方法。它能够直观、快速地分析系统的动态性能、和稳态性能。并且能够灵活的改变系统的结构和参数,通过快速、直观的仿真达到系统的优化设计。关键词:MATLAB;自动控制;系统仿真

Abstract Strong theory of automatic control theory, the reality is more difficult to establish in the laboratory model, thus using the SIMULINK simulation experiment, students can deepen our understanding of the course, to mobilize the enthusiasm of our study, while greatly increasing our ability to think deeply and Innovationcapacity.In this paper, the design of automatic control system is still largely dependent on the actual system of repeated experiments, adjustment of the universal phenomenon, with specific design example, introduced the use of more advanced software in the MATLAB SIMULINK simulation tools to achieve the automatic control systemModeling, Analysis and design, simulation methods.It can intuitively and quickly analyze the dynamic performance, and steady-state performance. Keywords:MATLAB; Automatic control; System simulation

MATLAB语言与控制系统仿真-参考答案-第5章

控制系统的时域响应MATLAB 仿真实训 实训目的 1. 学会利用MATLAB 绘制系统的单位阶跃响应曲线,掌握读取系统动态性能指标的方法; 2. 学会利用MATLAB 绘制系统的单位脉冲响应曲线的方法; 3. 掌握利用MATLAB 绘制系统的零输入响应曲线的方法; 4. 掌握利用MATLAB 绘制系统的一般输入响应曲线的方法; 5. 学会通过仿真曲线读取相关信息,并依据有关信息进行系统的时域分析。 实训内容 1.编写程序求取下列各系统的单位阶跃响应,完成表5-5并记录相关曲线。 162.316)(21++= s s s G 16 4.216 )(22 ++=s s s G 166.116)(2 3++=s s s G 1616 )(24++=s s s G 解:>> n1=16; >> d1=[1,,16]; >> sys1=tf(n1,d1); >> step(sys1) >> n2=16; >> d2=[1,,16]; >> sys2=tf(n2,d2); >> step(sys2)

>> n3=16; >> d3=[1,,16]; >> sys3=tf(n3,d3); >> step(sys3) >> n4=16; >> d4=[1,1,16]; >> sys4=tf(n4,d4); >> step(sys4)

序号ξnω m ax c p t s t(% 5 = ?)计算值实验计算值实验计算值实验值 14 24 34 44 w=4; cmax1=1+exp(-z1*pi/sqrt(1-z1^2)); tp1=pi/(w*sqrt(1-z1^2)); ts1=(z1*w); [cmax1,tp1,ts1] ans = >> z2=; w=4; cmax2=1+exp(-z2*pi/sqrt(1-z2^2)); tp2=pi/(w*sqrt(1-z2^2)); ts2=(z2*w); [cmax2,tp2,ts2]

MATLABSimulink和控制系统仿真实验报告

MATLAB/Simulink与控制系统仿真实验报 告 姓名:喻彬彬

学号:K031541725

实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立 一、实验目的 1、掌握MATLAB/Simulink 仿真的基本知识; 2、熟练应用MATLAB 软件建立控制系统模型。 二、实验设备 电脑一台;MATLAB 仿真软件一个 三、实验内容 1、熟悉MATLAB/Smulink 仿真软件。 2、一个单位负反馈二阶系统,其开环传递函数为2 10()3G s s s = +。用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。 3、某控制系统的传递函数为 ()()()1()Y s G s X s G s = +,其中250()23s G s s s +=+。用Simulink 建 立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。 4、一闭环系统结构如图所示,其中系统前向通道的传递函数为 320.520()0.11220s G s s s s s +=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表 示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

matlab 控制系统仿真

摘要 MATLAB语言是一种十分有效的工具,能容易地解决在系统仿真及控制系统计算机辅助设计领域的教学与研究中遇到的问题,它可以将使用者从繁琐的底层编程中解放出来,把有限的宝贵时间更多地花在解决科学问题上。MATLAB GUI 是MATLAB的人机交互界面。由于GUI本身提供了windows基本控件的支持,并且具有良好的事件驱动机制,同时提供了MATLAB数学库的接口,所以GUI 对于控制系统仿真的平台设计显得十分合适。GUI对于每个用户窗口生成.fig和.m 文件。前者负责界面的设计信息,后者负责后台代码的设计。 本文所做的研究主要是基于MATLAB GUI平台,结合控制系统基础理论和MATLAB控制系统工具箱,实现了用于控制系统计算机辅助分析与设计的软件。本软件主要功能:实现传递函数模型输入、状态方程模型输入、模型装换、控制系统稳定性分析、系统可观性可控性判断,绘制系统奈奎斯特图、波特图、根轨迹图以及零极点分布图。在继续完善的基础上能够用于本科自动控制原理教程的教学实验和一般的科学研究。 关键词:控制系统;MATLAB GUI;计算机辅助设计

Abstract MATLAB language is a very effective tool,and can be easily resolved in the system simulation and control system of teaching in the field of computer-aided design and research problems,it could be the bottom of the user from tedious programming liberate the limited spend more valuable time to solve scientific problems.The MATLAB GUI is the interactive interface.As the GUI itself provides the basic control windows support,and has a good mechanism for event-driven,while providing the MATLAB Math Library interface,the GUI for control system simulation platform for the design of it is suitable. GUI window generated for each user. Fig and.M file. The former is responsible for the design of the interface information,which is responsible for the design of the background code. Research done in this article is mainly based on MATLAB GUI platform,the basis of combination of control system theory and MATLAB Control System Toolbox,the realization of control systems for computer-aided analysis and design software. The main functions of the software: the realization of transfer function model input,the state equation model input,the model fitted for the control system stability analysis,system observability controllability judgments、rendering the system Nyquist diagram、Bode plots、root locus and Pole-zero distribution. While continuing to improve based on the principle of automatic control can be used for undergraduate teaching course experiments and scientific research in general. Key words:Control System;MATLAB GUI; Computer-assistant design

MATLAB与控制系统仿真及实验 2016(五)

MATLAB与控制系统仿真及实验 实验报告 (五) 2015- 2016 学年第 2 学期 专业: 班级: 学号: 姓名: 2016 年 5 月18日

实验五 SIMULINK系统仿真设计 一、实验目的 1、掌握SIMULINK工作环境及特点 2、掌握线性系统仿真常用的基本模块的用法 3、掌握SIMULINK的建模与仿真方法 4、子系统的创建和封装设计 二、实验设备及条件 计算机一台(包含MATLAB 软件环境)。 三、实验原理 Simulink是MATLAB的重要组成部分,提供建立系统模型、选择仿真参数和数值算法、启动仿真程序对该系统进行仿真、设置不同的输出方式来观察仿真结果等功能。 1、 Simulink的基本模块 Simulink的模块库提供了大量模块。单击模块库浏览器中Simulink前面的“+”号,将看到Simulink模块库中包含的子模块库,单击所需要的子模块库,在右边的窗口中将看到相应的基本模块,选择所需基本模块,可用鼠标将其拖到模型编辑窗口。同样,在模块库浏览器左侧的Simulink栏上单击鼠标右键,在弹出的快捷菜单中单击Open the …Simulink? Libray 命令,将打开Simulink基本模块库窗口。单击其中的子模块库图标,打开子模块库,找到仿真所需要的基本模块。 Simulink中几乎所有模块的参数都允许用户进行设置,只要双击要设置的模块或在模块上按鼠标右键并在弹出的快捷菜单中选择相应模块的参数设置命令就会弹出模块参数对话框。该对话框分为两部分,上面一部分是模块功能说明,下面一部分用来进行模块参数设置。同样,先选择要设置的模块,再在模型编辑窗口Edit菜单下选择相应模块的参数设置命令也可以打开模块参数对话框。 一个Simulink仿真模型的基本模块包括信源、信宿以及系统三个部分。其中,信源可以是常数、正弦波、阶梯波等信号源,信宿可以是示波器、图形记录仪等,系统则是被研究系统的SIMULINK方框图。系统、信源、信宿,可以从SIMULINK模块库中直接获得,也可以根据用户意愿用库中的模块构建而成。

MATLAB语言与控制系统仿真-参考答案-第7章

7.3控制系统根轨迹分析MATLAB 仿真实训 7.3.1实训目的 1. 掌握运用MATLAB 绘制180度、0度根轨迹图的编程方法; 2. 学会通过根轨迹图获取相关信息的方法; 3. 利用仿真结果对系统根轨迹进行分析; 4. 学会通过根轨迹图分析和解决一些实际问题。 7.3.2实训内容 1. 单位反馈系统的开环传递函数为 ) 3)(2()1()(+++= s s s s K s G g 试编程绘制闭环系统的根轨迹。并回答 (1)闭环系统稳定的g K 的取值范围; (2)系统的阶跃响应有超调的g K 的取值范围; (3)分离点的坐标。 %ggj01.m z=[-1]; p=[0;-2;-3]; k=[1]; sys=zpk(z,p,k); rlocus(sys) 系统稳定的g K 的取值范围:0>g K ; 系统的阶跃响应有超调的g K 的取值范围:419.0>g K 分离点的坐标:47.2-=d 2. 设单位反馈控制系统的开环传递函数为 ) 136)(5.3)(1()(2 ++++= s s s s s K s G 试编程绘制闭环系统的根轨迹。并回答 (1)闭环系统稳定的K 的取值范围;

(2)根轨迹与虚轴的交点坐标; (3)分离点的坐标。 ggj02.m %根轨迹仿真实训第2题 n=1; d=conv([1,0],conv([1,1],conv([1,3.5],[1,6,13]))); rlocus(n,d) 由图上数据可知: 闭环系统稳定的K 的取值范围:9.700<

控制系统Matlab仿真 (传递函数)

控制系统仿真 [教学目的] 掌握数字仿真基本原理 控制系统的数学模型建立 掌握控制系统分析 [教学内容] 一、控制系统的数学模型 sys=tf(num,den)%多项式模型,num为分子多项式的系数向量,den为分母多项式的系%数向量,函数tf()创建一个TF模型对象。 sys=zpk(z,p,k)%z为系统的零点向量,p为系统的极点向量,k为增益值,函数zpk()创建一个ZPK模型对象。 (一)控制系统的参数模型 1、TF模型 传递函数 num=[b m b m-1b m-2…b1b0] den=[a m a m-1a m-2…a1a0] sys=tf(num,den) 【例1】系统的传递函数为。 >>num=[01124448]; >>den=[11686176105]; >>sys=tf(num,den); >>sys Transfer function: s^3+12s^2+44s+48 ------------------------------------- s^4+16s^3+86s^2+176s+105 >>get(sys) >>set(sys) >>set(sys,'num',[212])

>>sys Transfer function: 2s^2+s+2 ------------------------------------- s^4+16s^3+86s^2+176s+105 【例2】系统的传递函数为。 >>num=conv([20],[11]); >>num num= 2020 >>den=conv([100],conv([12],[1610])); >>sys=tf(num,den) Transfer function: 20s+20 ------------------------------- s^5+8s^4+22s^3+20s^2 【例3】系统的开环传递函数为,写出单位负反馈时闭环传递函数的TF模型。>>numo=conv([5],[11]); >>deno=conv([100],[13]); >>syso=tf(numo,deno); >>sysc=feedback(syso,1) Transfer function: 5s+5 ---------------------- s^3+3s^2+5s+5 【例4】反馈系统的结构图为: R

MATLAB控制系统仿真实验报告

清华大学自动化工程学院 实验报告 课程:控制系统仿真 专业自动化班级 122 姓名学号 指导教师: 时间: 2015 年 10 月 19 日— 10 月 28 日

目录 实验一 MATLAB环境的熟悉与基本运算 (1) 实验二 MATLAB语言的程序设计 (6) 实验三 MATLAB的图形绘制 (9) 实验四采用SIMULINK的系统仿真 (14) 实验五控制系统的频域与时域分析 (17) 实验六控制系统PID校正器设计法 (23)

实验一 MATLAB环境的熟悉与基本运算 一、实验时间及地点: 实验时间:2015.10.19上午8:30—9:30 实验地点:计算中心 二、实验目的: 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 三、实验内容: 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB6.5,将该文件夹添加到MATLAB路径管理器中。 3、保存,关闭对话框 4、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指 令eye(其它不会用的指令,依照此方法类推) 5、学习使用clc、clear,观察command window、command history和workspace等窗口的 变化结果。 6、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、 exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。 注意:每一次M-file的修改后,都要存盘。 练习A: (1)help rand,然后随机生成一个2×6的数组,观察command window、command history和workspace等窗口的变化结果 (2)学习使用clc、clear,了解其功能和作用 (3)输入一个2维数值数组,体会标点符号的作用(空格和逗号的作用)。 (4)一维数组的创建和寻访,创建一个一维数组(1×8)X,查询X数组的第2个元素,查询X数组的第3个元素到第6个元素,查询X数组的第5个元素到最后 一个元素,查询X数组的第3、2、1个元素,查询X数组中≤5元素,将X数 组的第2个元素重新赋值为111,实例expm1。 (5)二维数组的创建和寻访,创建一个二维数组(4×8)A,查询数组A第2行、第3列的元素,查询数组A第2行的所有元素,查询数组A第6列的所有元素, 查询数组A按列拉长形成新的数组B(1×8),查询数组A按行拉长形成新的数组 C(1×8),以全元素赋值的方式对数组A赋值。 (6)两种运算指令形式和实质内涵的比较。设有3个二维数组A2×4,B2×4,C2×2,写出

相关主题