搜档网
当前位置:搜档网 › 第十一章交变应力_材料力学

第十一章交变应力_材料力学

第十一章交变应力_材料力学
第十一章交变应力_材料力学

交变载荷:

随时间作周期性变化的载荷。

变交应力:

机器零部件受到交变载荷或由于本身的旋转而产生的随时间周期性变化

的应力称为交变应力。

疲劳失效:

当物件长期在交变应力下工作时,往往在应力低于屈服极限或强度极限的情况而突然发生断裂,即是塑性材料在断裂前也无明显的塑性变形,这种现象称为疲劳失效。

发展简史:

疲劳失效现象出现始于19世纪初叶,产业革命以后,随着蒸汽机车和机动运载工具的发展,以及机械设备的广泛应用,运动的部件破坏经常发生。破坏往往发生在零部件的截面尺寸突变处,破坏的名义应力不高,低于材料的抗拉强度和屈服点。破坏的原因一时使工程师们摸不着头脑。

1829年,法国人Albert.W.A(艾伯特)用矿山卷扬机焊链条进行

疲劳实验,疲劳破坏事故阐明。1939年法国工程师poncelet J.V在巴黎

大学讲课时首先使用“疲劳”这一术语,来描述材料在循环载荷作用下承载

能力逐渐耗尽以致最后突然断裂的现象。

抗疲劳设计的重要性

举例.

火车轮轴

齿轮齿根应力

受迫振动的梁

疲劳破坏特性

低应力脆断(骤然断裂,无征兆)

断口分为光滑区,粗糙区

破坏机理

经大量的实验及全相分析证明,在足够大的交变应力作用下,破坏原因:

金属中位置最不利或者较弱的晶体沿最大切应力作用面形成滑移带开裂形成微裂纹。

在物件外形突变(圆角、切口、沟槽等)或者表面刻痕或材料内部缺陷等部位都不能因较大的应力集中引起微观裂纹。

在交变应力作用下,微观裂纹集结沟通形成宏观裂纹,使物件截面削弱,

削弱到一定极限时,物件突然断裂。裂纹的形成、扩展和失稳扩展是导致裂

纹破坏的根源。

断面分析

光滑区是由于裂纹闭合交进行,裂纹的研磨而形成,粗糙区是骤然断裂而

形成,低应力脆断,从断裂力学的理论分析,若为平面应力状态,裂纹尖端

属于二力拉伸,平面应变张开时属三向拉伸应状态,因此由强度理论可知必

然造成脆性断裂。

应力循环:

应力重复出现一次称为一个应力循环,重复出现的次数称为循环数。

循环周期:

完成一个应力循环所需要的时间称为一个周期。循环特征(应力比)

平均应力:

应力幅:

交变应力分类

静强度指标:

疲劳强度指标:

疲劳破坏均属于低应力脆断,即工作应力低于强度极限甚至低于屈服极限不发生断裂,因此必须测定新的强度指标——持久极限(疲劳极限)。

纯弯曲(对称循环即r=-1)持久极限σ-1测定:

(1)试件:光滑小试件(d=7~10mm表面磨光)10根。

(2)试验机:旋转弯曲试验机

(3)试验步骤

夹持试件:试件处于四点弯曲(纯弯曲);

制定加载方案:

试件编号:a.

b.

c.

开机记录N

做应力一寿命曲线(S-N曲线)

确定σ-1,循环基数No

……钢等黑色金属

……铝镁有色金属

持久极限

试样经历无限次循环而不发生疲劳,交变应力这一极限值称持久极限。

11.4 影响持久极限的因素

对称循环下的持久极限,一般是常温,r用光滑小试样测定的。

对称循环下的持久极限,一般是常温,用光滑小试样测定的

影响因数

加以修正,获得构件的持久极限

构件外形的影响

构件尺寸的影响

()

构件表面质量的影响

构件工作环境的影响如强度、介质等也会影响持久极限,可用修正因数来表示。

构件扭转持久极限

影响因数

构件外型(槽、孔、缺口、轴肩等)、构件尺寸、表面质量、工作环境,以上因素都将影响持久极限的数值。因此必须将光滑小试件的持久极限加以修正,获得构件的持久极限才能用于构件的设计。

——有效后力集中因数

——尺寸因数

β——表面质量因数

构件外形的影响

用带槽、孔、缺口或轴肩的试样试验测持久极限()K——有应集中的持久极限。测定方法与前同。

定义:或

()d——无应力集中的光滑试件

()K——有应力集中同尺寸的光滑试件

构件尺寸的影响

持久极限一般只用直径为7~10mm的小试样测定的,随着试样横截面尺寸的增大,测得的持久极限相应降低。因为大试样处于高应力状态的晶粒要比小试样多,所以形成裂纹的机会就多。

()d——光滑大试样的持久极限

“()K——光滑小巧玲珑试样的持久极限

构件表面质量的影响

一般情况下,构件的最大应力发生于表层,疲劳裂纹也多于表层生成。

(a)表面加工的刀痕、擦伤会引起应力集中降低持久极限,表面加工质量有明显影响表现在表面粗糙度。

(b)如构件淬火,渗碳,氮化等热处理或化学处理使表层强化;或者滚压、喷丸等机械处理,使表层形成预压应力,减弱引起裂纹的工作抗应力,这些明显提高构件的持久极限。

()β——表面为其它加工情况下构件的持久极限

()d——表面磨光的试样的持久极限

构件工作环境的影响如强度、介质等也会影响持久极限,可用修正因数来表示。构件扭转持久极限

第11章梁的弯曲应力要点

第11章梁的弯曲应力 教学提示:梁纯弯曲和横力弯曲时横截面上的正应力;梁横力弯曲时横截面上的切应力;提高弯曲强度的若干措施、薄壁杆件的切应力流和弯曲中心。 教学要求:掌握梁纯弯曲时横截面上正应力计算公式的推导过程,理解横力弯曲正应力计算仍用纯弯曲公式的条件和近似程度。掌握中性层、中性轴和翘曲等基本概念和含义。熟练掌握弯曲正应力和剪应力强度条件的建立和相应的计算。了解什么情况下需要对梁的弯曲切应力进行强度校核。从弯曲强度条件出发,掌握提高弯曲强度的若干措施。 在外荷载作用下,梁截面上一般都有弯矩和剪力,相应地在梁的横截面上有正应力和剪应力。弯矩是垂直于横截面的分布内力的合力偶矩;而剪力是切于横截面的分布内力的合力。本章研究正应力σ和剪应力τ的分布规律,从而对平面弯曲梁的强度进行计算。 11.1梁的弯曲正应力 平面弯曲情况下,一般梁横截面上既 有弯矩又有剪力,如图11.1所示梁的AC、 DB段。而在CD段内,梁横截面上剪力等 于零,而只有弯矩,这种情况称为纯弯曲。 下面推导梁纯弯曲时横截面上的正应力公 式。应综合考虑变形几何关系、物理关系 和静力学关系等三个方面。 11.1.1 弯曲正应力一般公式 1、变形几何关系 为研究梁弯曲时的变形规律,可通过 试验,观察弯曲变形的现象。取一具有对 称截面的矩形截面梁,在其中段的侧面上, 画两条垂直于梁轴线的横线mm和nn,再 在两横线间靠近上、下边缘处画两条纵线 ab和cd,如图11.2(a)所示。然后按图 11.1(a)所示施加荷载,使梁的中段处于纯弯曲 状态。从试验中可以观察到图11 .2(b)情况: (1)梁表面的横线仍为直线,仍与纵线正 交,只是横线间作相对转动。

工程力学材料力学答案-第十一章解析

11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的 最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。 解:(1) 画梁的弯矩图 (2) 最大弯矩(位于固定端): max 7.5 M kN = (3) 计算应力: 最大应力: K 点的应力: 11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。 试求梁内的最大弯曲拉应力与最大弯曲压应力。 解:(1) 查表得截面的几何性质: 4020.3 79 176 z y mm b mm I cm === (2) 最大弯曲拉应力(发生在下边缘点处) ()30max 8 80(7920.3)10 2.67 17610x M b y MPa I σ -+-?-?-?===? 6max max max 22 7.510176 408066 Z M M MPa bh W σ?====?6max max 33 7.51030 132 ******** K Z M y M y MPa bh I σ????====? x M 1 z M M z

(3) 最大弯曲压应力(发生在上边缘点处) 30max 8 8020.3100.92 17610 x M y MPa I σ ---???===? 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底 边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。 解:(1) 求支反力 31 44 A B R qa R qa = = (2) 画内力图 (3) 由胡克定律求得截面C 下边缘点的拉应力为: 49max 3.010******* C E MPa σε+-=?=???= 也可以表达为: 2 max 4C C z z qa M W W σ+== (4) 梁内的最大弯曲正应力: 2 max max max 993267.5 8 C z z qa M MPa W W σσ+ = === q x x F S M

【精品】第十一章交变应力

第十一章交变应力 §11。1交变应力与疲劳失效 §11.2交变应力的循环特征应力幅和平均应力 §11.3持久极限(疲劳极限) §11.4影响持久极限的因素 §11.5对称循环下构件的疲劳强度计算 §11。6持久极限曲线 §11。7非对称循环下构件的疲劳强度计算 §11。8弯扭组合交变应力的强度计算 §11。1交变应力与疲劳失效 1。交变载荷:随时间作周期性变化的载荷。 2.变交应力:机器零部件受到交变载荷或由于本身的旋转而产生的随时间周期性变化的应力称为交变应力。

3.疲劳失效:当物件长期在交变应力下工作时,往往在应力低于屈服极限或强度极限的情况而突然发生断裂,即是塑性材料在断裂前也无明显的塑性变形,这种现象称为疲劳失效。 4。发展简史:

疲劳失效现象出现始于19世纪初叶,产业革命以后,随着蒸汽机车和机动运载工具的发展,以及机械设备的广泛应用,运动的部件破坏经常发生。破坏往往发生在零部件的截面尺寸突变处,破坏的名义应力不高,低于材料的抗拉强度和屈服点。破坏的原因一时使工程师们摸不着头脑.1829年,法国人Albert 。W 。A(艾伯特)用矿山卷扬机焊链条进行疲劳实验,疲劳破坏事故阐明。1939年法国工程师ponceletJ 。V 在巴黎大学讲课时首先使用“疲劳"这一术语,来描述材料在循环载荷作用下承载能力逐渐耗尽以致最后突然断裂的现象。 5。抗疲劳设计的重要性 绝大多数机器零件都是在交变载荷下工作,这些零部件疲劳失效是主要的破坏形式。例如转轴有50%或90%都是疲劳破坏。其它如连杆、齿轮的轮点、涡轮机的叶片,轧钢机的机架,曲轴,连接螺栓、弹簧压力容器、焊接结构等许多机器零部件,疲劳破坏占绝大部分。因此抗疲劳设计广泛应用于各种专业机械设计中,特别是航空、航天、原子能、汽车、拖拉机、动力机械、化工机械、重型机械等抗疲劳设计更为重要. 6.举例 ①火车轮轴I t Mr I My ωσsin == ②齿轮齿根应力 ③受迫振动的梁

材料力学第八章复习题

第八章 应力状态分析 1.矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b ) 所示。关于他们的正确性,现有种答案: (A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的; 正确答案是 。 2.已知单元体AB 、BC 面上只作用有剪应力 τ ,现关于AC 面上应力有下 列四种答案: (A )2/ττ=AC ,0=AC σ; (B )2/ττ=AC ,2/3τσ=AC ; (C )2/ττ=AC ,2/3τσ-=AC ; (D )2/ττ-=AC ,2/3τσ=AC ; 正确答案是 。 3.在平面应力状态下,对于任意两斜截面上的正应力 βασσ= 成立的充分 必要条件,有下列四种答案: (A )y x σσ=,0≠xy τ; (B )y x σσ=,0=xy τ; (C )y x σσ≠,0=xy τ; (D )xy y x τσσ==; 正确答案是 。 C τ (a) (b)

4.对于图示三种应力状态(a )、(b )、(c )之间有下列四种答案 : (A )三种应力状态均相同; (B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同; 正确答案是 。 5.直径为d 的圆截面杆,两端受扭转力偶m 作用。设 ?=45α,关于下列结 论(E 、v 分别表示材料的弹性模量和泊松比) 1) 在A 、B 、C 点均有0==y x εε; 2) 在点C 处,() 3 /16d m πσα-=; 3) 在点C 处,)]/(16[]/)1[(3 d m E v πεα?+-=; 现有四种答案: (A )1)、2)正确; (B )2)、3)正确; (C )1)、3)正确; (D ) 全正确; 正确答案是 。 6.广义虎克定律适用范围,有下列四种答案: (A )脆性材料; (B )塑性材料; (C )材料为各向同性,且处于线弹性范围内; (D )任何材料; 正确答案是 。 τ (a) (b) (c) m A C

《钳工》第十一章 矫正和弯形

第十一章矫正和弯形 第一节矫正 1.矫正的概念: 消除条料、棒料或板料的弯曲或翘曲等缺陷,这个作业叫,做矫正。 矫正可在机器上进行(如用棒料校直机、压床或冲床等),也可靠手工矫正。本章讲的是钳工用手工矫正的方法。 手工矫正由钳工用手锤在平台、铁砧或在虎钳等工具上进行,包括扭转、弯曲、延展和伸张等四种操作。根据工件变形情况,有时单独用一种方法,有时几种方法并用,使工件恢复到原来的平整度。 金属变形有两种: (1)弹性变形:在外力作用下,材料发生变形,外力去除,变形就恢复了。这种可以恢复的变形称为弹性变形。弹性变形量一般是较小的。 (2)塑性变形:当外力超过一定数值,外力去除后,材料变形不能完全恢复。这种不能恢复的永久变形称为塑性变形。 矫正是使工件材料发生塑性变形,将原来不平直的变为平直。因此只有塑性好的材料(材料在破坏前能发生较大的塑性变形)才能进行矫正。而塑性差的材料如铸铁、淬硬钢等就不能矫正,否则工件要断裂。 矫正时不仅改变了工件的形状,而且使工件材料的性质也发生了变化。矫正后,金属材料表面硬度增加,也变脆了。这种在冷加工塑性变形过程中产生的材料变硬的现象叫做冷硬现象(即冷作硬化)。冷硬后的材料给进一一步的矫正或其他冷加工带来的困难,可用退火处理,使材料恢复到原来的机械性能。 2.矫正用的工具 (1)矫正平板——用来做矫正工件的基准面。 (2)软、硬手锤和压力机一一手工矫正,一般用圆头硬手锤。矫正已经加工过的表面、矫正薄钢件或有色金属制件,应该采用软手锤(如铜锤、铅锤和木锤等)。另外还可用压力机进行机器矫正。 (3)检验工具——平板、直角尺、钢皮尺和百分表。 3.矫正的方法 (1)条料的矫直 条料由于堆放、搬运或加工不当,常产生扭 曲和弯曲等变形,现将矫直的方法介绍如下: 条料扭曲变形时,必须用扭转的方法来矫直 它(如图9—1)。将工件夹在虎钳上,用特制的 扳手扭转到原来的形状。操作时,左手扶着扳手 的上部,右手握住扳手的末端,施加扭力。 条料在厚度方向上弯曲时,则用弯曲法来矫 直它(如图9-2)。矫直时,把条料上靠近弯曲的 地方夹入虎钳,然后在它的末端用扳手扳动(如 图9-2甲),使它回直;或将条料弯曲的地方放在

第八章应力状态强度理论

第八章 应力状态 强度理论 1 基本概念及知识要点 1.1 基本概念 点的应力状态、 应力圆、 主平面、 主应力、 主方向、 最大剪应力。 以上概念是进行应力应变分析以及强度计算的基础,应准确掌握和理解这些基本概念。 1.2 二向应力状态的解析法与图解法 实际工程中的许多问题,可以简化成二向应力状态问题,建议熟练掌握二向应力状态解析法和图解法。在学习该知识点时,应注意以下几点: (1) 单元体平衡,则单元体中任取出的一部分在所有力的作用下也平衡; (2) 过一点相互垂直两平面上有 y x σσσσαα+=90++ 90+ααττ-= 主应力和最大剪应力间 2 min max min max σστ-± = 01045±αα= 请注意理解以上各式所代表的物理意义。 (3) 主要公式:任意斜截面应力、主应力、主平面、最大剪应力及其作用平面,详见教材。上述公式建议熟记。 (4) 应用图解法时注意以下对应关系 应力:圆上一点,体上一面;直径两端,垂直两面。 夹角:圆上半径,体上法线;转向一致,转角两倍。 1.3 三向应力状态的最大剪应力 无论是三向应力状态,还是做为特例的二向应力状态或单向应力状态,都是用如下公式计算最大剪应力 2 3 1max σστ-= 在二向应力状态下,垂直于主应力为零的主平面的那一组平面中,剪应力的最大值,称为面内最大剪应力。可用公式 2 2 min max 2xy y x τσστ+??? ? ? ?-±=计算。 1.4 广义胡克定律 在比例极限范围内,变形非常小。线应变只与正应力有关,与剪应力无关;剪应变只与剪应力有关,与正应力无关。换言之,正应力与剪应力、线应变与剪应变,彼此间互不影响。 1.5 常用的四种强度理论及其应用

弹性力学 第十一章 弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

相关主题