搜档网
当前位置:搜档网 › Materials Studio建模操作详细步骤(本人原创)

Materials Studio建模操作详细步骤(本人原创)

Materials Studio建模操作详细步骤(本人原创)
Materials Studio建模操作详细步骤(本人原创)

第2章Materials Studio建模

2.1界面常用操作

2.1.1 Materials Studio的启动

从Windows“启动”菜单中选择“程序”Accelrys Materials Studio 4.0| Materials Studio。如果在桌面上有Materials Studio图标,也可以通过双击图标来启动Materials Studio。在启动Materials Studio时,首先会出现一个所谓的欢迎界面(Welcome to Materials Studio),必须创建一个新的项目或从对话框中载入一个已经存在的项目。

注意:如果是第一次打开Materials Studio,会看到一个叫做Materials Studio 文件关联的对话框,如果出现这种情况,按照提示点击OK按钮即可。

2.1.2 创建项目

在欢迎界面对话框上选择创建一个新的项目,然后点击OK。然后会出现新建项目对话框,选择要存储文件的位置并且键入“tiejifeijinghejin”作为文件名,然后点击OK。此时的项目管理器如图2-1所示:

图2-1 Project 界面

Materials Studio对中文支持不好,命名时最好用英文字母,可以右击点Rename,进行重命名。

2.1.3 输出图像

可以将3D Atomistic文件显示的图像作为位图输出,输出的图像可以包含到其它文件中。位图图像被存储为.bmp格式,可以使用简单的位图编辑器比如

Windows的画图进行编辑。从菜单栏中选择File | Export...显示Export对话框。点击Export as type文本框右侧的选项箭头,从下拉列表中选择Structure Bitmap (*.bmp)。一旦选择了位图格式,Options...按钮就被激活了。点击Options...按钮以显示Bitmap Export Options对话框。可以调节对话框中的位图图像的像素尺寸以适合相关需求。

2.1.4 自动保存

Materials Studio具有自动保存功能,它可以在工作期间,以一定的时间间隔将项目中文档的变化写入硬盘中。如果希望在工作期间执行自动保存功能,则应该确保该功能是被打开的,如果有必要可以调整自动保存的时间间隔。从Materials Studio菜单栏上选择Tools | Options...,显示出选项对话框。在General 选项卡上,确保Enable AutoSave检查框被选中,自动保存时间间隔设成10分钟。如果在保存工作之前,Materials Studio程序意外地结束了,比如断电或程序错误,在重新启动程序之后,则可恢复当前项目自动保存的最新的版本。

注意:恢复文件选项只出现一次,如果拒绝恢复自动保存的文件,那么在硬盘上的自动保存文件将被删除。还可以通过在选项对话框的Folder Locations选项卡中指定的位置来手动恢复自动保存文件。选择选项对话框的Locations选项卡,检查AutoSave目录的默认位置,点击OK,关闭对话框。

2.1.5 界面介绍

1、菜单栏

1)File:文件。关于文件和工程操作,比如打开,保存,输入,输出和打印。

2)Edit:编辑。编辑所选的物体和使用剪贴板。

3)View:视图。修改MS模型的外观。

4)Modify:修改。修改当前窗口物体性能。

5)Build:建立。计算键的相关性质,关闭键之间的链接,氢键以及创建聚合物,晶体,表面和层状结构。

6)Tools:工具。控制当前窗口的物体。

7)Statistics:使用静态分析程序。

8)Module:模块。使用MS模型模块。

9)Window:窗口。在MS模型中组织和激活打开的文件窗口。

10)Help:使用MS模型帮助系统或者其他关于MS模型的网络信息。

2、工具栏:

1)Standard:标准。文件操作。

2)3D Viewer:3D视图模式和视图控制工具。3D结构视图可能通过使用3D Viewer工具栏上的按钮用不同的方法进行操作。

选择不同类型的对象:在3D视图工具栏上,选择3D Viewer Selection Mode 按钮,然后在所建结构中通过单击选择一个单一的原子。原子变成了黄色表明它已经被选择了。通过鼠标的托拽操作可以选择一定区域内的所有对象,包括原子和键。在结构中的某个原子或键上双击鼠标可以选择整个结构。同时按住SHIFT和ALT键,右键点击并向左拖动。

Rotate:旋转结构视图。等同于按Shift+鼠标右键+鼠标中键,再松开中键,即可随着鼠标移动而旋转结构视图。

Zoom:向上或者右侧拖动可以增大所选结构的视图:向下或者向左侧拖动会缩小所选结构的视图。

Translation:将结构沿着不同的方向平移。等同于按Shift+鼠标右键+鼠标中键,再松开右键,即可随着鼠标移动而平移结构视图。

Fit to View:根据窗口的尺寸,为3D结构选择合适的大小。

Recenter:将结构放置到窗口的中心,结构大小不变。

Reset View:将结构放置到窗口中原来的位置,并恢复原有大小。

3)Sketch:原子,键,画环,修改工具。

替换原子。

4)Symmetry:创建,修改,找到对称系统。

5)Atom & Bonds:创建原子和键,操作工具。

6)Animation:在3D视图中控制动画。

7)Modules:使用MS模型模块。

3、三个Explorer:从View(见图2-2)的Explorer可调出此三个Explorer,并都可以通过点击标题栏并拖动将三个Explorer放到屏幕上的任何位置。

图2-2 调出Explorer

几个重要的窗口,可分为这三类:

1)Job Explorer:见图2-3,显示己完成的、正在运行的程序。所属模块(Server);

显示动态模拟的状态(status):准备(setup)、开始(starting)、运行(running),当成功运行会出现successfully,若失败则会出现failure,此时应当选择View==>Project Log查看错误信息,如图2-4;此外还有进度(Progress :任务以百分比显示的进度)等等。

图2-3 Job Project

图2-4 查看工程日志

2)Project Explorer:见图2-5,显示运行的job,各种输入与输出文件,近端远程的状态都可以显示,可以查看结果、修改输出输入的相关设定。

3)Properties Explorer:见图2-6,材料的原子及电子结构3D模型等物性数据,例如晶体晶胞边长、原子元素种类等等。均可通过双击加以修改。

图2-5 工程文件图2-6 特性参数

2.2 晶胞的建立

2.2.1 单个晶胞的建立

1、首先要有晶胞,里面建立原子结构;可以通过file==>import打开进入structure内建的分类,选已经建好的结构。晶格参数都会自动显示。

2、也可手工输入Fe的晶体结构。先打开New Document,选3D atomistic document,见图2-7,确定之后会给出一个空的3D对象的工作稿。再点击Build==>Build Crystal,见图2-8,弹出对话框,见图2-9,据文献[15],得到Fe 晶体的参数,手工输入晶体结构,输入空间群(Enter group):space group-点群:1 P1(原胞,对称性最低)。

图2-7新建类型图2-8 建立晶胞

图2-9 选择空间群图2-10 晶格参数的设定注意:一旦在Space Group选项卡上输入了space group的信息,a、b、c、α、β和γ点阵参数就根据所设置的空间群的对称性被自动地设置了。

这一操作将space group设置为229 IM-3M,Space group information框中的信息改变,显示空间群的细节。Operators框也用与空间群相联系的对称性操作进行了更新。

设置点阵参数。选择Lattice Parameters选项卡,如图2-10。显示Lattice Parameters,填写晶格常数,比如a,b,c的值,以及三个角度,Fe的a=b=c=3.6468,由于所选择空间群的对称性,只有某些参数能被设置。在Lengths区,给出了对称性所规定的约束的暗示,这样可以知道参数a必须等于b和c。

option里面基本上是预设就可以,如图2-11。Lattice option里的orientation standard指晶胞在绝对坐标中的方向。

图2-11 Options选项卡

最后按Build或者Apply就可以生成该结构的晶格模型了。

3、添加原子

在刚才的model中加入原子。从工具栏上蓝色球按下去,得到对话框,如图2-12所示,就可以加原子,从元素周期表中选原子Fe,如图2-13,名字自己会补,abc用分数坐标,Options选项卡(见图2-14)包括额外的键设置和笛卡儿坐标与分数坐标的选择等。这里要注意的是,在开始添加原子之前,要确保Test for bonds as atoms are created选项是激活的。即在Add Atoms对话框上选择Options选项卡,Test for bonds as atoms are created应该是被选中的。由于所建为晶胞,所以在Options 中,坐标系统要选择Fractional。(Fractional坐标系统用于描述周期单胞,而Cartesian坐标系统用于描述非周期结构。)再次选择Atoms 选项卡。重复操作,直到添加完晶胞中的所有原子。关闭Add Atoms框。

图2-12 Atoms选项卡图2-13 元素周期表窗口

图2-14 Options选项卡

在3D model里可以看到这个Fe晶体。properties explore的filter(见图2-15)选单选有3D lattice,atom和symmetry system等。选symmetry system,从cell formula可以看到Fe2,表示目前晶胞是一个2颗原子的单晶铁晶胞;还可以看见密度体积等。

图2-15 Symmetry System窗口图2-16 Lattice 3D窗口

filter里的3d lattice显示晶格信息:角度αβγ、对称性、晶胞边长、空间群等,见图2-16。以晶胞边长为例,双击可以修改。并不是所有的属性都可以编辑,不能编辑的属性以灰色显示,见图2-17。

Properties Explorer中的每个原子的charge有两种:一种是Partial Change,一种是Formal Charge。前者比较精确,是分子上各原子的实际分布电荷,是分数;后者可以认为是各原子的得失电子个数,是整数。讨论时一般都用实际分布电荷。

图2-17 编辑角度

2.2.2 更改3D显示形式

主要是Display Style、Display Options、Lighting以及Label的设置。

1)Display Style:在3d工作稿,见图2-18,按右键打开一个弹出菜单,里头Display Style设置3D对象显示方式,见图2-19、图2-20。比方说atom 选项里面的Display Style可以选stick、ball & stick;lattice也有多种选项。

图2-18 3D视图

图2-19 Display Style 图2-20 Atom选项卡

①选择Atom选单,显示原子或键的方式,这选项和所用机器显示性能有关,要是使用机器性能不好,可选择不要太多贴图的显示方式,这里选了Ball and stick显示方式:球棍模型,Stick radius则是控制键的粗细,Ball radius可以控制显示原子的半径大小。(其中:Line:线状模型,Line width键的粗细;Stick:棍状模型;CPK:球堆砌模型,CPK scale控制原子大小;Polyhedron:多面体堆积模型(晶体))。

②Lattice:如图2-21所示:

图2-21 Lattice选项卡图2-22 效果图左边Display Style中的style下拉列表包括4个选项:

Default:分子被转化为几何中心位于晶胞内。

In-Cell:所有原子都被转化到单晶胞内。

Original:原子由对称性定义的位置来显示,不进行额外的变换。

None:原子和点阵都不显示。

Range:显示在X、Y、Z方向上晶胞的数量,这是可以将我们的结构显示范围变大的功能,这里要注意的是,他只是将显示范围变大,和super cell 并不相同。这功能在观看范围窄小的primitive cell 更是有极大的帮助。将Min调成-0.5(可以使负数),Max调成1.5(可以非整数),并将复杂的Lattice关掉(选择None),画面会变成如2-22图所示。

图2-21的Lattice可以选Lattice的呈现方式及颜色,即显示晶胞边界的形状和颜色。

None:晶胞边界被删除,即点阵格子从屏幕上被删除了。

Dashed line:晶胞边界呈现虚线。

Line:晶胞边界呈现实线,并可通过Line width来改变线的宽度。

Stick:晶胞边界呈现棍棒形状,并可通过Stick radius改变棍棒的半径。

在Lattice区选择Line选项,关闭Display Style对话框。

2)Display Options,如图2-23所示。

图2-23 Graphics选项卡图2-24 Legends选项卡图2-25 改变背景选项卡

①在Graphics选项卡上的投影(Projection)命令允许你选择正投影(Orthographic)或立体投影(Perspective)。对于大的结构比如正在构建的结构,立体投影是很有用的。这里选择Orthographic单选按钮。现在增加图像质量以适合输出。向High方向拖动Quality滑块,停止在右侧第4个小格上。图像质量随着滑块向右移而增加。

②Legends,如图2-24所示,若不选中则不出现坐标,具体视需要而定。

③选择Backgrounds选项卡,见图2-25。在调色板上选择你需要的颜色作为背景色,点击OK。

3)Lighting:如图2-26、图2-27所示。

图2-26 Lighting 图2-27 Lighting窗口在3D 结构上单击右键并选择Lighting 选项,该选项将指定加光情况:在此选项卡内可以设定三个光源,并改变光源的照射位置(照射位置用箭头显示)。球上的箭头指示光的照射方向。将鼠标移到球上,鼠标变成手形,按左键,拖动球,改变光的照射方向。Shininess:调节亮度高低。

4)Label:见图2-28、图2-29。3d工作稿里按右键选择Label,可以选择显示多种标签(Properties),比如说显示某个或全部原子的化学符号(element symbol),见图2-29,2-30。还可以选择字形的大小(Font);对已做操作也可以使用remove从而删除标签,见图2-31。还可以输入一些文字。

图2-28 Label图2-29 Label窗口

图2-30 3D效果图图2-31移除点击Remove All可以移除标记。

2.2.3 对称性的相关操作

在建模过程中,可随时查看对称性。点击Build→Symmetry→Find Symmetry,见图2-32,弹出查找对称性窗口,见图2-33。

图2-32 查找对称性图2-33 查找对称性窗口找到单晶Fe的对称性为IM-3M (体心)。若找到的对称性与建立时不符,则可以使用with tolerance(公差),可以通过缩小公差来提高查找对称性的准确度。原子加入后检查晶体对称性,序号没变,正确。若原子的分数坐标有误,对称性改变。

2.2.4原子的替换

由于所建晶胞为合金,原子呈中性,因而要将Fe原子的价态改成零价,在Properties里双击FormalCharge,弹出对话框,见图2-34。取消Automatic,然后将价态改为0。

图2-34

选中其中一个铁原子,由于是随机替换,所以在铁晶胞里随机选中一个铁原子即可,再点击工具栏上的按钮,在弹出来的元素周期表中选择Cr,再点击OK,即完成了一次原子替换。用此方法再完成Si原子的替换。

2.2.5 超晶胞的建立

在上面的窗口中Build→Symmetry→Super Cell,见图2-35,弹出对话框2-36所示。

图2-35 调出超晶胞窗口图2-36建立超晶胞这里选择10×10×10的晶胞,得到含有2000个原子的Fe80Cr10Si10的铁基合金。见图2-37。

图2-37 超晶胞效果图

(完整版)城市建筑三维建模工艺方法研究毕业设计

本科毕业论文(设计) 题目:城市建筑三维建模工艺方法研究——化石林为例 院(系):信科学院专业:地信 指导教师:雷震职称:教授 评阅人:职称: 2014 年 6 月

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1、保密□,在_________年解密后适用本授权书。 2、不保密□。 (请在以上相应方框内打“√”) 作者签名:年月日 导师签名:年月日

摘要 数字城市的提出给传统的地理信息系统(GIS)带来的不仅仅是许许多多的机遇,同时也可以看到很多挑战。数字城市的特点在于利用真实的地理位置信息,包括其中的各种自然情况,以及建筑物之间的布局与拓扑关系,来搭建出城市的数字化信息框架,同时在这个信息框架中嵌入人们所需要的相应信息。 随着科技的进步和人们对信息需求的增长,传统的地理信息系统基于二维数据的查询分析功能已经不能满足市场对更直观、更海量的数据的需求,三维可视化的数字城市能够更加直观、更加真实的表达与展现空间信息,特别是随着虚拟现实技术、视景仿真技术以及硬件设备等等各方面的发展,更加加速了三维数字城市和三维GIS的发展。在三维虚拟场景中,能够看到贴近事实的三维景观,并且能够通过动态交互的方式,观察和控制场景,达到与虚拟场景的交互[3]。 由于当前各行业对于构建城市三维GIS研究的高成本、长周期、大手笔且存在许多不足之处,基于GIS行业中三维领域这样的特点,本文就利用传统的软硬件来建立城市三维景观进行一些初步探讨,概述了三维GIS数据的特点及其获取方法,分析了基于3DMAX建立建筑三维模型的技术路线,并以地大东区化石林虚拟场景建立为例详细讨论了基于skyline构建仿真三维场景的实现方法,提出了建立城市三维GIS的作用、意义和发展前景。 关键字:三维,skyline,3DMAX

2003全国大学生数学建模竞赛b题参考答案

2003大学生数学建模竞赛 B 题参考答案 注意:以下答案是命题人给出的,仅供参考。各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 问题分析: 本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。 运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现; 第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从1207 10 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。 对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。 调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。 这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。 合理的假设主要有: 1. 卡车在一个班次中不应发生等待或熄火后再启动的情况; 2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即 可,不进行排时讨论; 3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量; 4. 卡车可提前退出系统。 符号:x ij ~ 从i 号铲位到j 号卸点的石料运量 单位 吨; c ij ~ 从i 号铲位到j 号卸点的距离 公里; T ij ~ 从i 号铲位到j 号卸点路线上运行一个周期平均所需时间 分; A ij ~ 从i 号铲位到j 号卸点最多能同时运行的卡车数 辆; B ij ~ 从i 号铲位到j 号卸点路线上一辆车最多可以运行的次数 次; p i ~ i 号铲位的矿石铁含量。 % p =(30,28,29,32,31,33,32,31,33,31)

三维建模方案分析

三维建模方案及报价 1 矢量数据生成建模 管线在已知边界坐标等参数情况下,可直接构造模型。按照一定的顺序剖分为三角网,保证其法向量向外;平面则通过边界多边形的三角剖分来构造,保证其法向量向上。基准高通过查询属性数据得到。 若模型结构相似,可复制相关属性建模,勾勒轮廓线,基本忽略细节,贴仿真纹理,即该类型管线的通用纹理,不追求与真实情况完全一致。 2 软件建模 软件建模即人工外业采集拍照,内业通过一些模型制作软件(如:3dsmax、maya 等),以多方面数据为依据(如:照片、图纸等),手工建立模型数据。这种数据的特点是模型结构准确,外观美观;可以根据应用精度来自用控制模型的数据量;可维护性比较高。但制作的周期比较长。比较适合高精度、高美观度、密集度较低的场合使用。

1)获取准确的位置及外观数据 首先,将管线外轮廓线提取出来,并进行整理。以确定管线的真实地理位置和大致外形轮廓。 2)将数据转换为模型制作软件的可用数据。 将数据转换为模型制作软件可以识别的格式,如:AutoCAD的dwg和dxf 格式;并导入到模型制作软件中。 3)在模型制作软件中建立模型结构。 三维模型的搭建主要是指手工建模的部分,建模之前根据现有采集的,经过整理和编号的照片,以及甲方提供的资料(如cad 等),对建筑的级别进行划分,针对每个级别进行不同精度的模型搭建。 依据模型的外轮廓线建立模型的大体结构。然后参考照片和结构图,分别建立管线的各个结构。基本上分为三个等级: 一级模型:0.5 米以上的凹凸特征要建模表现。 二级模型: 1 米以上的凹凸特征要建模表现。 三级模型:1.5 米以上凹凸特征要建模表现。每个级别有相应的精度和规范,总体概括为:模型结构特征准确,能够通过该特征明显辨认,模型制作要求和注意事项有专门的制作规范。 4)制作贴图 为模型制作纹理,必须依据模型的结构调整贴图的尺寸。不同的模型精度要求,所对应的贴图尺寸也有所不同。 在保证贴图的清晰度的前提下将制作好的贴图尽量合并,以减少贴图加载数

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级 题目基于SIMULINK的基带传输系统的仿真姓名学号 指导教师胡娟 2014年6月27日

1任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功率谱进行估计。假设接收定时恢复是理想的。 2基带系统的理论分析 1.基带系统传输模型和工作原理 数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。系统工作过程及各部分作用如下。 g T(t) n 定时信号 图 1 :数字基带传输系统方框图 发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。 基带传输系统的信道通常采用电缆、架空明线等。信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。 接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。 抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。 2.基带系统设计中的码间干扰和噪声干扰以及解决方案

注塑机三维建模毕业设计

第1章绪论 1.1注塑成型模具概述 注塑用模 具简称注塑 模,主要用于 热塑性制品的 成型,但近年 来也越来越多 地用于热固性 塑料的成型。 图1-1 化妆瓶盖用模具 注塑成型在塑 料制品成型中占有很大比重,世界塑料成型模具产量中约半数以上为注塑模具。 注塑模主要由成型零部件和浇注系统组成,使来自注塑机的熔融物料成型为适应于各种用途的制品。注塑过程中,塑料先加在注塑机的加热料桶,塑料受热熔融后,在注塑机的螺杆或活塞推动下,经喷嘴和模具的浇注系统进入模具型腔,塑料在模具的型腔固化成型,这就是注塑成型的简单过程。 1.2注塑成型模具的分类及其典型结构 1.2.1注塑成型模具的分类 生产中使用的注塑模具种类繁多,可从不同的角度分类。本论文要模拟模

具的工作和装配过程,要对各类不同的模具结构进行精密的三维建模,因此本文按照模具的结构不同来对其进行分类:单分型面注塑模具,双分型面注塑模具,带活动镶件的注塑模具,横向分型抽芯的注塑模具,自动卸螺注塑模具,多层注塑模具,无流道注塑模具等。下文将主要针对单分型面,双分型面,斜导柱抽芯注塑模具以及目前应用广泛的潜伏浇口的注塑模具进行模拟。 1.2.2注塑成型模具的典型结构 注塑模具的结构是由塑件结构合注塑机的形式决定的。凡是注塑模具均可分为动模和定模两大部分。注塑时动模定模闭合成为型腔和浇注系统,开模时。动模和定模分离,通过脱模机构推出制品。定模安装在注塑机的固定模板上,而动模则安装在注塑机的移动模板上。根据注塑模具上各个部分的作用,可细分为以下几个部分: 成型零部件包括凸模,凹模,型芯或成型杆,镶块等组成,是直接成型的部分。 浇注系统由主流道,分流道,浇口和冷料井构成,是塑料熔体在模具中的流动路径。 导向部分为了保证动模和定模在分开后重新闭合时的准确对中而设置的部件,通常有导柱,导套(孔)。 分型抽芯系统帮助带有外侧凹或者侧孔的塑件成型的部件,以便其顺利分型和脱模。

三维建模方案分析

三维建模方案分析

1矢量数据生成建模 建筑物可以看作屋顶面和各个铅直外墙面的组成。在已知区域边界坐标和房屋高的参数下,可直接构造房屋的铅直外墙面,并按照一定的顺序剖分为三角网,保证其法向量向外;屋顶平面则通过边界多边形的三角剖分来构造,保证其法向量向上。房屋的基准高通过查询DEM地形数据得到。 要求模型(含建筑、道路和高架桥等)结构相似,可从地形图上直接提取相关属性建模,勾勒轮廓线,基本忽略细节,贴仿真纹理,即该类型建筑的通用纹理,不追求与真实情况完全一致。 2软件建模 软件建模就是人工外业采集拍照,内业通过一些模型制作软件(如:3dsmax、maya等),以多方面数据为依据(如:照片、图纸等),手工建立模型数据。这种数据的特点是模型结构准确,外观美观;可以根据应用精度来自用控制模型的数据量;可维护性比较高。但制作的周期比较长。比较适合高精度、高美观度、密集度较低的场合使用。 1)获取准确的建筑位置及外观数据 首先,将地形图中的建筑外轮廓线提取出来,并进行整理。以确定建筑的真实地理位置和大致外形轮廓。 2)将数据转换为模型制作软件的可用数据。 将数据转换为模型制作软件可以识别的格式,如:AutoCAD的dwg和dxf 格式;并导入到模型制作软件中。

3)在模型制作软件中建立模型结构。 三维模型的搭建主要是指手工建模的部分,建模之前根据现有采集的,经过整理和编号的照片,以及甲方提供的资料(如cad,航拍影像等),对建筑的级别进行划分,针对每个级别进行不同精度的模型搭建。 依据模型的外轮廓线建立模型的大体结构。然后参考照片和建筑的结构图,分别建立建筑的各个结构。基本上分为三个等级: 一级模型:0.5米以上的凹凸特征要建模表现,这类建筑主要是指重点区域,城市主干道两侧建筑、一些经济、文化、体育,大型公建和知名历史意义的重点建筑或建筑群,(例:大型体育场馆、大剧院、会展中心、规划馆博物馆、展览馆、机场、五星级以上宾馆酒店、具有城市代表性建筑、重要古建)。 二级模型:1米以上的凹凸特征要建模表现,这类建筑主要是城市次干道两侧建筑、地块内部建筑(例如一些新建高档小区,学校,宾馆、酒店等)。 三级模型:1.5米以上凹凸特征要建模表现,这类建筑主要指城市边缘地区建筑,农村住房、城中村、棚户区、低层老旧住宅、待拆迁住宅、平房、禁区建筑等。 每个级别有相应的精度和规范,总体概括为:模型结构特征准确,能够通过该特征明显辨认,模型制作要求和注意事项有专门的制作规范。 4)制作贴图 为模型制作纹理,必须依据模型的结构调整贴图的尺寸。不同的模型精度要求,所对应的贴图尺寸也有所不同。

系统建模与仿真

一、基本概念 1、数字正弦载波调制 在通信中不少信道不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即所谓数字正弦载波调制。 2、数字正弦载波调制的分类。 在二进制时, 数字正弦载波调制可以分为振幅键控(ASK)、移频键控(FSK)和移相键控(PSK)三种基本信号形式。如黑板所示。 2、高斯白噪声信道 二、实验原理 1、实验系统组成 2、实验系统结构框图

图 1 2FSK信号在高斯白噪声信道中传输模拟框图 各个模块介绍p12 3、仿真程序 x=0:15;% x表示信噪比 y=x;% y表示信号的误比特率,它的长度与x相同FrequencySeparation=24000;% BFSK调制的频率间隔等于24KHz BitRate=10000;% 信源产生信号的bit率等于10kbit/s SimulationTime=10;% 仿真时间设置为10秒SamplesPerSymbol=2;% BFSK调制信号每个符号的抽样数等于2 for i=1:length(x)% 循环执行仿真程序 SNR=x(i);% 信道的信噪比依次取中的元素 sim('project_1');% 运行仿真程序得到的误比特率保存在工作区变量BitErrorRate中 y(i)=mean(BitErrorRate); end hold off% 准备一个空白的图 semilogy(x,y);%绘制的关系曲线图,纵坐标采用对数坐标 三、实验结论

图 4 2FSK信号误比特率与信噪比的关系曲线图 系统建模与仿真(二) ——BFSK在多径瑞利衰落信道中的传输性能 一、基本概念 多径瑞利衰落信道 二、实验原理 1、实验系统组成

3d毕业设计论文开题报告

第一章绪论 3DMAX是目前世界上应用最广泛的三维建模、动画、渲染软件,目前最基本的实际应用要算是室内、外的效果图的设计制作了。设计是连接精神文明与物质文明的桥梁,人类寄希望于通过设计来改造世界,改善环境,提高人类生存的生活质量。 第二章3DS Max学习:贴图与材质 2.1材质场景的建立 3DS Max创作中,建立模型之后的工作就是给模型赋予材质和贴图,我之所以没有像其它书里面介绍材质和贴图是使用“添加”等字眼,是因为我一直觉得在3DSMax中材质就是模型的灵魂,一个好的材质会使模型有生气,反之你的模型永远只能是模型。要成为一个有创造性的3DSMax使用者,学习获取、管理和使用材质是极其重要的一个方面。 在运行3DSMax时无疑打开一个新的场景是最快的,所以在给复杂的场景赋材质时,最好用Reset 命令,把场景恢复成一个新的场景并释放内存,这是创建好的材质和材质库的良好开端。当你要设计的场景很大时,如果实现没有仔细的设计和组织材质的话,材质的设计和使用都会变得非常困难。3DSMax有了将保存为库类外部文件的能力,就可以把同类材质组织在一起,保存到材质库中,并在场景之外编辑和处理它们。另外你还可以把它们应用于任何场景,这也是材质独立于场景之外的另一个重要原因。 在3DSMax的材质编辑器中,可以用不同形状,不同角度光源,来测试材质,甚至可以用自定义的模型来测试。在3DSMax的材质编辑器中的大量工作是在不影响场景的情况下完成的,测试好后的材质保存到分类文件中,输入到复杂的场景内,赋给模型对象,这样就不需要在场景中过多的调整材质。 一般在材质设计之初应考虑以下问题: 1、材质需要什么样的位图作贴图:

三维建模思路教学浅析

AutoCAD(中级)培训中三维建模思路教学浅析 谢珍真 内容摘要:复杂的形体大多都是由简单的基本形体进行布尔运算或面截切得到的。在教学中从简单零件的画法开始,就注重引导学生进行形体分析,养成良好的建模思维习惯,同时,让学生理解UCS变换的目的是至关重要的一步。重视建模思路的分析引导,让学生自主探求模型的构建方法,使不同层次的学生得到不同程度的发展。 关键词:三维建模思路,形体分析,UCS变换 AutoCAD是目前应用最广的计算机辅助设计(CAD)通用软件,从AutoCAD2000以后,其三维建模与功能随着软件版本的不断升级而日显强大。AutoCAD(中级)培训其主要任务是完成三维建模的学习。这个过程既是AutoCAD 三维建模技能的教学过程,更是为学生构建三维设计理念,拓展三维设计视野,为今后触类旁通地学习其他更专业的3D参数化设计软件做铺垫的过程,因此在教学中不仅要重视通过建模实例熟悉命令,更应注重通过三维建模思路的分析,让学习者能举一反三,熟悉三维建模的思维过程,达到真正理解与掌握三维建模过程的目的。本文拟通过多年的AutoCAD实践对三维建模思路的教学加以总结分析。 一、形体分析是三维建模的思维基础 正如我们在《工程制图》教学中,形体分析法是读懂图纸的基本分析方法一样,在3D设计中,无论是象AutoCAD这种基于二维发展起来的三维设计模块,还是参数化3D 设计软件:如3dmax、 Pro/E、ug,其建模的基本思路都是首先对模型进行形体分析,因为复杂的形体大多都是由简单的基本形体进行布尔运算或面截切得到的。在教学中从简单零件的画法开始,就注重引导学生进行形体分析,养成良好的建模思维习惯,只有这样才能使学生真正掌握三维建模的技能。 三维建模时的形体分析(本文主要讨论实体造型),主要从以下几方面进行考虑:1)是否为3d工具条中已有基本体(长方体、圆柱体、球体、圆锥体、楔体、圆环体, AutoCAD2007又新增了螺旋体、棱锥体等)的布尔运算(并、差、交集),2)是否为二维几何面拉伸、旋转、放样(2007新增)后与基本体的布尔运算3)是否为基本体的面截切。一些形体,尽管看起来复杂,但基本形体的判断与分解并不困难,这是由于组合形体主要是布尔并、差运算,运算后基本形体的特征仍然明显。例如(图1)所示泵体,建模时可将其分解为图2所示的二维几何面拉伸体与圆柱体的布尔并、差运算,复杂的形体也就变得简单了。而有些形体,

AutoCAD根据二维图画三维图的思路和方法

AutoCAD根据二维图画三维图的思路和方法 用Auto CAD进行二维绘图,对具有机械制图基础的人来说,一般都比较容易掌握。但对三维建模,特别是自学者,却总觉得不知从何下手。有鉴于此,特撰本教程,以冀对初学者有所帮助。 本教程旨在介绍由三视图绘制三维实体图时,整个建模过程的步骤和方法。 一、分析三视图,确定主体建模的坐标平面 在拿到一个三视图后,首先要作的是分析零件的主体部分,或大多数形体的形状特征图是在哪个视图中。从而确定画三维图的第一步――选择画三维图的第一个坐标面。这一点很重要,初学者往往不作任何分析,一律用默认的俯视图平面作为建模的第一个绘图平面,结果将在后续建模中造成混乱。 看下面几例:图1

图1 此零件主要部分为几个轴线平行的通孔圆柱,其形状特征为圆,特征视图明显都在主视图中,因此,画三维图的第一步,必须在视图管理器中选择主视图,即在主视图下画出三视图中所画主视图的全部图线。

图2 此零件的特征图:上下底板-四边形及其中的圆孔,主体-圆筒及肋板等,都在俯视图,故应在俯视图下画出三视图中的俯视图。 图3是用三维图模画三维图,很明显,其主要结构的形状特征――圆是在俯视方向,故应首先在俯视图下作图。

图3 二、构型处理,尽量在一个方向完成基本建模操作 确定了绘图的坐标平面后,接下来就是在此平面上绘制建模的基础图形了。必须指出,建模的基础图形并不是完全照抄三视图的图形,必须作构型处理。所谓构型,就是画出各形体在该坐标平面上能反映其实际形状,可供拉伸或放样、扫掠的实形图。 如图1所示零件,三个圆柱筒,按尺寸要求画出图4中所示6个绿色圆。与三个圆筒相切支撑的肋板,则用多段线画出图4中的红色图形。其它两块肋板,用多段线画出图中的两个黄色矩形。

3DMAX毕业作品

重庆信息技术职业学院 毕业设计 题目《萌小呆的早晨》 选题性质:□√设计□报告□其他 院系软件学院 专业动漫设计与制作 班级 10级动漫2班 学号 1010080234 学生姓名雍萍萍 指导教师王刚 教务处制 2012年 9 月 1 日

2013 届软件学院 毕业设计选题审批单 年级 2010级专业动漫设计与制作班级 2班 学生姓名雍萍萍学号1010080234 选题萌小呆的早晨选题性质□√设计□报告□其他选题论证:《萌小呆的早晨》作为学业结束的代表性的作品,旨在实践三年来学习3d来完成毕业设计。这一软件主要运用3D MAX中biped 骨骼进行动作的调节。通过故事情节来设定人物的动作及场景中的需要对模型的制作最终完成选题。biped骨骼动作的流畅性和协调性是此设计的关键部分。而模型制作是辅助故事情节这块不可缺少的内容。俩者结合能充分的表达故事整个剧情。 指导教师初审意见: 签名: 2012年 9月 3日 毕业设计工作领导小组审批意见: 签名: 2012年9月4日

2013 届软件学院 毕业设计开题报告及进度要求 年级 2010级动漫设计与制作班级 2班 学生姓名雍萍萍学号1010080234 指导教师王刚选题性质□√设计□报告□其他选题萌小呆的早晨 选题的目的和意义:选择《萌小呆的早晨》利用biped骨骼动作设计剧情作为我的大学三年的一个结束性作品,主要在实践我们三年来所学习到3D动作的认识和熟识对动画动作有更深层次的了解。 从现代动漫市场的整个前景来看,对角色动作的协调和连贯性以成为一个动画好坏的主要因素。对角色动作有创新的布局和过渡是观赏者们选择动画重要因素之一,使之产生对故事接下来发生的情节产生更大的兴趣。 选题研究的主要内容和技术方案:三维动作剧情设计主要应用到了3ds max软件中biped,他是一种专门可以在3d中调整骨骼及对模型板定后对动作的调节,具有着很强大的功能。此次软件通过对关键帧的选定,和命令面板中对模型制作。最终完成整个动作剧情的设计。

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

系统建模与仿真项目驱动设计报告

系统建模与仿真项目驱动设计报告 学院:电气工程与自动化学院 专业班级:自动化143班 学号:2420142928 学生姓名:李荣 指导老师:杨国亮 时间:2016年6月10号

仿真技术是一门利用物理模型或数学模型模拟实际环境进行科学实验的技术,具有经济、可靠、实用、安全、灵活和可多次重复使用的优点。 本文中将使用Matlab软件实现一个简单的控制系统仿真演示,可实现对一些连续系统的数字仿真、连续系统按环节离散化的数字仿真、采样控制系统的数字仿真以及系统的根轨迹、伯德图、尼克尔斯图和奈氏图绘制。 本设计完成基本功能的实现,基于Matlab的虚拟实验仿真的建立和应用,培养了我们的兴趣,提高了我们的实践能力。 关键字:Matlab;系统数字仿真;根轨迹;伯德图。

第一章概述 (4) 1.1 设计目的 (4) 1.2 设计要求 (4) 1.3设计内容 (4) 第二章 Matlab简介 (6) 2.1 Matlab的功能特点 (6) 2.2 Matlab的基本操作 (6) 第三章控制系统仿真设计 (8) 3.1 控制系统的界面设计 (8) 3.2 控制系统的输入模型设计 (9) 3.3 欧拉法的Matlab实现 (12) 3.4 梯形法的Matlab实现 (14) 3.5 龙格-库塔法的Matlab实现 (15) 3.6 双线性变换法的Matlab实现 (16) 3.7 零阶保持器法的Matlab实现 (17) 3.8 一阶保持器法的Matlab实现 (18) 3.9 系统PID控制的Matlab实现 (19) 3.10 系统根轨迹的绘制 (21) 3.11系统伯德图的绘制 (22) 3.12系统尼克尔斯图的绘制 (23)

CAD三维建模实例

CAD三维建模实例操作一-----创建阀盖零件的三维模型将下面给出的阀盖零件图经修改后,进行三维模型的创建。阀盖零件图如图1所示。 ●图形分析: 阀盖零件的外形由左边前端倒角30度的正六边体,右边四个角R=12mm的底座,中间有一个倒45度角和R=4mm连接左右两边。该零件的轴向为一系列孔组成。根据该零件的构造特征,其三维模型的创建操作可采用: (1)拉伸外轮廓及六边形; (2)旋转主视图中由孔组成的封闭图形; (3)运用旋转切除生成30度和45度、R4的两个封闭图形,生成外形上的倒角;(4)运用差集运算切除中间用旋转生成的阶梯轴(由孔组成的图形旋转而成),来创建该零件中间的阶梯孔,完成三维模型的创建。 如需室内设计学习指导请加QQ技术交流群:106962568 庆祝建群三周年之际,如今超级群大量收人!热烈欢迎大家! ●零件图如图1所示。

图1 零件图 具体的操作步骤如下: 1.除了轮廓线图层不关闭,将其他所有图层关闭,并且可删除直径为65mm的圆形。然后,结果如图2所示。 图2 保留的图形 2.修改主视图。将主视图上多余的线条修剪,如图3所示。 3.将闭合的图形生成面域。单击“绘图”工具条上的“面域”按钮,框选所有的视 图后,按回车键,命令行提示:已创建8个面域。

4.旋转左视图。单击“视图”工具条上的“主视”按钮,系统自动将图形在“主视平面”中显示。注意:此时,显示的水平线,如图4 a)所示。输入“RO”(旋转)命令,按回车键,再选择右边的水平线(即左视图)的中间点,输入旋转角度值90,按回车键,完成左视图的旋转如图4 b)所示。在轴测图中看到旋转后的图形如图4 c)所示。 图4 a)旋转前图4 b)放置后 提示:图中的红色中心线是绘制的, 用该线表明二视图的中心是在一条 水平线上。 图4 c)轴测视图 5.移动视图将两视图重合的操作如下: ①单击“视图”工具条上的“俯视”按钮,系统自动将图形转换至俯视图中,如图5所示。 图5 俯视图显示图6 标注尺寸 ②单击“标注”菜单,选择“线性”标注,标注出二图间的水平距离,如图6所示。标注尺寸的目的是便于将图形水平移动进行重合。

三维建模及装配设计

六安职业技术学院 毕业论文(设计) 题目P ro/ENGINEER三维建模及装配设计 机电工程系计算机辅助设计与制造0701 专业学号 学生姓名 指导教师 起迄日期2009.7.11至2009.9.14 设计地点六安职业技术学院

六安职业技术学院学生毕业设计(论文)开题报告书 2009年 7 月 11 日

目录 第一章设计目的与要求 (04) 1.1设计目的 (04) 1.2设计要求 (04) 第二章应用软件介绍 (05) 2.1 Pro/ENGINEER软件简介 (05) 第三章绘图 (07) 3.1垫板的绘制 (07) 3.2轮子的绘制 (09) 3.3辅助版的绘制 (11) 3.4螺栓的绘制 (17) 3.5轴的绘制 (19) 第四章装配 (20) 4.1底板 (20) 4.2组装辅助版 (20) 4.3组装轮子 (21) 4.4组装轴 (22) 4.5装上螺栓 (22) 致谢 (24) 参考文献 (25)

第一章设计目的与要求 1.1设计的目的: 培养学生独立分析和处理专业问题的能力;完成技术人员的基本训练。通过本课程的学习,使学生能用绘图软件绘制中等复杂的机械零件和装配图。 1. 培养学生综合运用所学基础课、技术基础和专业课,分析和解决工程技术问题的独立工作能力。 2. 巩固、深化和扩大学生所学基本理论、基本知识和基本技能。 3. 使学生受到综合产品设计的能力的综合训练。例如,产品设计的一般程序和方法、产品系统设计以及产品的开发设计等产品设计的全过程,并以此为核心,对产品设计过程中所涉及的设计理论以及美学和工学基础、设计表达和计算机辅助设计的相关知识和内容作全面系统的训练,同时不断总结提高撰写论文和设计说明书的能力等等。 4. 培养学生的创新能力和团队精神,树立良好的学术思想和工作作风。 1.2设计的要求: (1)应掌握查阅本专业涉及的各种文献资料和各种工具书的方法。(2)应在思想作风、工作态度、纪律和团结协作等方面受到良好的训练,为毕业后走上工作岗位作好思想和心理上的准备。 (3)参加毕业设计的学生,应在规定的时间内,在教师的指导下,独立完成毕设课题给定的任务(如;完成工程图纸和设计任务)充分发挥主动性,创造性和刻苦钻研精神,严禁抄袭他人的设计成果。(4)参加毕业制造的学生,在教师的指导下,应在规定的时间内,完成数控工艺、合格制品及编写设计说明书。

2018全国大学生数学建模大赛模板

全国大学生数学建模竞赛论文格式规范 (全国大学生数学建模竞赛组委会,2018年修订稿) 为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。 一、纸质版论文格式规范 第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。 第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。 第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。 第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。 第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行(或者运行结果与正文不符),可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有源程序,也应在论文附录中明确说明“本论文没有源程序”。 第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。 第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。 第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。 二、电子版论文格式规范 第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和

建模技术三种方法

建模技术是虚拟现实中的技术核心,也是难点之一,目前主要有三种方法实现。 虚拟现实是在虚拟的数字空间中模拟真实世界中的事物,这就需要真实世界的事物在数字空间中的表示,于是催生了虚拟现实中的建模技术。虚拟现实对现实“虚拟”得到底像不像,是与建模技术紧密相关的。因此,建模技术的研究具有非常重要的意义,得到了国内外研究人员的重视。 数字空间中的信息主要有一维、二维、三维几种形式。一维的信息主要指文字,通过现有的键盘、输入法等软硬件。二维的信息主要指平面图像,通过照相机、扫描仪、PhotoShop等图像采集与处理的软硬件。对于虚拟现实技术来说,事物的三维建模是更需要关心的核心,也是当今的难点技术。按使用方式的不同,现有的建模技术主要可以分为: 几何造型、扫描设备、基于图像等几种方法。 基于几何造型的建模技术 基于几何造型的建模技术是由专业人员通过使用专业软件(如AutoCAD、3dsmax、Maya)等工具,通过运用计算机图形学与美术方面的知识,搭建出物体的三维模型,有点类似画家作画。这种造型方式主要有三种: 线框模型、表面模型与实体模型。 1. 线框模型只有“线”的概念,使用一些顶点和棱边来表示物体。对于房屋、零件设计等更关注结构信息,对显示效果要求不高的计算机辅助设计(CAD)应用,线框模型以其简单、方便的优势得到较广泛的应用。AutoCAD软件是一个较好的造型工具。但这种方法很难表示物体的外观,应用范围受到限制。 2. 表面模型相对于线框模型来说,引入了“面”的概念。对于大多数应用来说,用户仅限于“看”的层面,对于看得见的物体表面,是用户关注的,而对于看不见的物体内部,则是用户不关心的。因此,表面模型通过使用一些参数化的面片来逼近真实物体的表面,就可以很好地表现出物体的外观。这种方式以其优秀的视觉效果被广泛应用于电影、游戏等行业中,也是我们平时接触最多的。3dsmax、Maya等工具在这方面有较优秀的表现。 3. 实体模型相对于表面模型来说,又引入了“体”的概念,在构建了物体表面的同时,深入到物体内部,形成物体的“体模型”,这种建模方法被应用于医学影像、科学数据可视化等专业应用中。 利用三维扫描仪 理论上说,对于任何应用情况,只要有了方便的建模工具,有水平的建模大师都可以用几何造型技术达到很好的效果。然而,科技在发展,人们总希望机器能够帮助人干更多的事。于是,人们发明了一些专门用于建模的自动工具设备,被称为三维扫描仪。它能够自动构建出物体的三维模型,并且精度非常之高,主要应用于专业场合,当然其价格也非常“专业”,一套三维扫描仪价格动辄数十万,并非普通用户可以承受得起。三维扫描仪有接触式与非接触式之分。

毕业设计虚拟校园三维模型设计制作

目录 摘要 (2) 前言 (4) 1.论文的选题背景与研究意义 (5) 1.1选题的背景 (5) 1.2论文的研究意义 (5) 2.当前虚拟现实系统的主要问题与发展方向 (5) 2.1虚拟现实系统中场景建模的问题 (5) 2.2虚拟现实系统中场景绘制的主要问题 (6) 2.3虚拟现实系统今后的发展方向 (7) 3.虚拟校园系统的三维建模 (7) 3.1场景的建模技术 (7) 3.1.1基于图形绘制的建模技术 (7) 3.1.2基于图像的建模绘制技术 (8) 3.1.3基于图形与图像的混合建模技术 (9) 3.2层次细节模型生成和绘制 (9) 3.3系统的建模方法 (10) 4.建模设计与数据表现 (11) 4.1三维建模的原则 (11) 4.2实体建筑的构建 (12) 4.2.1构建实体建筑的基本原理 (12) 4.2.2实体建筑的构建 (12) 5.建模中常见的问题 (16) 5.1过分强调细节 (16) 5.2实体拼接组合的位置关系不正确 (16) 5.3存在冗余多边形 (17) 结束语 (18) 参考文献 (19) 致谢 (20)

摘要 随着计算机技术、通信技术及其他相关技术的飞速发展,虚拟现实的仿真技术也日益成为当前研究的热点。通常传统的校园三维立体图内容单一,缺乏实体感,实用价值受到限制,而虚拟校园是将虚拟现实技术引入到“数字校园”的研究中,为校园的规划和设计提供了一种全新的手段。虚拟校园三维模型不仅能自然、真实、形象地表达现实世界的对象,而且拓展了现实校园的时间和空间维度,从而扩展其功能。 本文在分析了虚拟现实(Virtual Reality)技术的概念、基本特征及其在国内外发展应用情况的基础上,结合校园的具体情况,构建了基于Web的VCS虚拟校园系统采用图形与图像混合建模技术,实现了VCS虚拟校园系统的三维建模,并对虚拟世界中复杂物体建模技术进行了探索,总结出了树木、花草等复杂对象建模的一般方法,分析并解决了几何体的纹理映射问题,极大地减少了场景制作的工作量。 关键词:虚拟校园,三维建模,

2007年全国大学生数学建模竞赛题目

2007年全国大学生数学建模竞赛题目 [日期:2009-11-05] 阅读:307 次 A 题:中国人口增长预测 中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。2007 年初发布的《国家人口发展战略研究报告》(附录1) 还做出了进一步的分析。关于中国人口问题已有多方面的研究,并积累了大量数据资料。附录2就是从《中国人口统计年鉴》上收集到的部分数据。试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;别要指出你们模型中的优点与不足之处。 B题:乘公交,看奥运 我国人民翘首企盼的第29届奥运会明年8月将在北京举行,届时有大量观众到现场观看奥运比赛,其中大部分人将会乘坐公共交通工具(简称公交,包括公汽、地铁等)出行。这些年来,城市的公交系统有了很大发展,北京市的公交线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题。针对市场需求,某公司准备研制开发一个解决公交线路选择问题的自主查询计算机系统。

为了设计这样一个系统,其核心是线路选择的模型与算法,应该从实际情况出发考虑,满足查询者的各种不同需求。请你们解决如下问题:1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。并根据附录数据,利用你们的模型与算法,求出以下6对起始站→终到站之间的最佳路线(要有清晰的评价说明)。 (1)、S3359→S1828 (2)、S1557→S0481 (3)、S0971→S0485 (4)、S0008→S0073 (5)、S0148→S0485 (6)、S0087→S3676 2、同时考虑公汽与地铁线路,解决以上问题。 3、假设又知道所有站点之间的步行时间,请你给出任意两站点之间线路选择问题的数学模型。

三维解决方案

ArcGIS 三维解决方案 ArcGIS 为3D GIS 提供了全面的解决方案: 利用ArcSDE空间数据库引擎来存储和管理空间地图数据,通过ArcMap、ArcGlobe等桌面软件来制作准备二维、三维地图数据文件,然后通过ArcGIS Server发布和管理地图服务,供ArcGlobe、ArcGIS Explorer和Web浏览器等客户端来访问。 与二维GIS一样,3DGIS同样包含了数据可视化、空间分析、数据管理三个部分。Geodatabase模型将彻底支持3D,不是2.5D的可视化,而是真3D的数据对象和要素,同时,ArcGIS还提供了处理3D数据模型的分析工具,包括3D line of site、对象的3D buffering、envelopes和体积表现的可视化和三维分析。 一、地图数据组织和管理 数据是整个系统的关键,3D GIS数据包括: 主要成分 建筑及构造物 ArcMap, ArcGlobe ArcSDE 桌面3DGIS应用 ArcGlobe ArcEngine 3DGIS服务 ArcGIS Server ArcGIS Server Web 浏览器 ArcGIS Explorer ArcGlobe

●底图或航片/卫星图片 ●数字地形模型(DEM) 视觉增强辅件: ●植物 ●街景构件 ●字标 动态数据: ●交通 ●街灯 ●树木 1、三维数据建库流程 数据准备阶段 –可获取的资源 –影像数据;(DOM、DEM……) –矢量数据;(路网、管网、电网……) –地名数据;(Label、Annotation……) –模型数据;(Multipatch、SketchUp、3dMax……) –其他GIS数据;(GDB、Shp……)

电力系统建模及仿真课程设计

某某大学 《电力系统建模及仿真课程设计》总结报告 题目:基于MATLAB的电力系统短路故障仿真于分析 姓名 学号 院系 班级 指导教师

摘要:本次课程设计是结合《电力系统分析》的理论教学进行的一个实践课程。 电力系统短路故障,故障电流中必定有零序分量存在,零序分量可以用来判断故障的类型,故障的地点等,零序分量作为电力系统继电保护的一个重要分析量。运用Matlab电力系统仿真程序SimPowerSystems工具箱构建设计要求所给的电力系统模型,并在此基础上对电力系统多中故障进行仿真,仿真波形与理论分析结果相符,说明用Matlab对电力系统故障分析的有效性。实际中无法对故障进行实验,所以进行仿真实验可达到效果。 关键词:电力系统;仿真;短路故障;Matlab;SimPowerSystems Abstract: The course design is a combination of power system analysis of the theoretical teaching, practical courses. Power system short-circuit fault, the fault current must be zero sequence component exists, and zero-sequence component can be used to determine the fault type, fault location, the zero-sequence component as a critical analysis of power system protection. SimPowerSystems Toolbox building design requirements to the power system model using Matlab power system simulation program, and on this basis, the power system fault simulation, the simulation waveforms with the theoretical analysis results match, indicating that the power system fault analysis using Matlab effectiveness. Practice can not fault the experiment, the simulation can achieve the desired effect. Keywords: power system; simulation; failure; Matlab; SimPowerSystems - 1 - 目录 一、引言 ............................................ - 3 -

相关主题