搜档网
当前位置:搜档网 › 树脂塔设计计算

树脂塔设计计算

树脂塔设计计算
树脂塔设计计算

树脂塔设计计算

一、树脂用量的计算:

1. 罐体直径的确定

D=(4A/π)1/2

A=Q/v

式中:

D——罐体直径,m;

A——罐体截面面积,m2;

Q——处理水量,m3/h;

v——过流速度,一般取值:钠型树脂20-30m/h,磺化煤10-20m/h,混床40-60m/h;

2. 树脂装填量计算

V=1.2×1000QTc/(q/2)

式中:

V——树脂装填体积,L;

1.2——安全系数

Q——处理水量,m3/h;

T——树脂塔再生周期,h;

c——需去除的硬度,mmol/L;

q——树脂工作交换容量※,mmol/L;

3. 树脂填装高度计算

H=4V/(1000πD2)

式中:

H——树脂装填高度,m;

二、再生剂耗量计算:

1. 再生水耗量

a 反洗用水量:

V f=v f·T f·πD2/240

式中:

V f——反洗用水量,m3;

v f——反洗流速,m/h,阳离子交换树脂为10-15m/h,阴离子交换树脂为8-10m/h;

T f——反洗时间,min,通常为20-30min;

b 置换用水量:

V H=v H·T H·πD2/240

式中:

V H——置换用水量,m3;

V H——置换流速,m/h,一般<5m/h;

T H——置换时间,min,通常为20-30min;

c 正洗水量:

V Z=a·V

式中:

V Z——正洗用水量,m3;

a ——正洗水耗,m3/ m3树脂,正洗流速一般为10-15m/h,正洗时间为5-15min;

※计算过程中需注意单位的统一。由于离子交换树脂自身所能交换的离子(Na+、H+、O H-)化合价通常为一价,而处理水中需要被交换的离子(Ca2+、Mg2+)通常为二价,即两个树脂单元方能交换掉一个二价离子。此处按照需要被交换的离子为二价离子计,这是在计算过程中需注意的地方。

2. 再生剂耗量计算

G= V·r/1000

式中:

G——再生剂耗量,kg;

r——单位树脂再生盐耗量※,g/L;

三、再生程序:

1. 静置

再生开始前树脂床需要静置,时间为5分钟。

2. 反洗

静置过程结束后,打开反洗进水阀进行反洗,反洗流速和时间参照计算公式。

3. 再生

反洗结束后即可进行再生,再生药品用射流器投加,通常在计算时先假定射流器进水流量,然后根据再生药品浓度计算出总的再生水流量,计算完成后需用再生流速进行校核,一般再生流速不大于5m/h。

4. 置换

再生结束后,打开反洗进水阀进行置换,将再生剩余药品排出。

5. 正洗

置换完成后需进水进行正洗,正洗完成后树脂即再生完毕,可投入使用。

※树脂的再生盐耗量一般由树脂厂家提供,需要注意该再生剂耗量所对应的再生液浓度。在再生盐耗量未知的情况下,可查阅给排水设计手册,但须在计算结果上乘上一个系数,该系数为实际再生盐耗量为理论再生盐耗量的倍数。

100t水泥罐基础设计计算

3.8m*3.8m*120k n/m 2 =1732.8kn J01 地面标高3.5m ① 素填土 0.88m J02 地面标高3.5m ① 素填土 0.44m J03 地面标高3.5m ① 素填土 0.41m ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 -5.79m 粉土 loot 水泥罐基础设计计算 1、 水泥罐自重 G1: 200kn (20t)估 2、 水泥自重 G2: 1000kn (100t) 3、 基础承台自重 G3: 3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2 (分项系数)=1981.2kn 、受力分析 1、承台地基承载力:按12t/m 2估算,承台地基承载力为 2、桩承载力需达到 1981.2k n-1732.8k n=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 -1.72m -4.76m ④ 粉土 粉土 根据上述柱状图,打入桩范围内平均层厚:素填土 2.92m 、淤泥质粉质粘土 4.67m 、 荷载

粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范围内(9m) 土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30) /9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*( U* a *H* T)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U ----- 桩周长, a——震动沉桩影响系数,锤击沉桩取1.0 H——桩入土深度,9.0m T -----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径 273钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T) =1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61 根,取3 根, 布置如图: 3.8m ②如采用直径 630钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T)

150吨水泥罐基础设计计算书教案资料

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 水泥罐平面位置示意图

二、水泥罐基础计算书 1、计算基本参数 水泥罐自重约20t ,水泥满装150t ,共重170t 。 水泥罐支腿高3m ,罐身高18m ,共高21m 。 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 21700 +0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为:

除臭设备设计计算书

8、除臭设备设计计算书 8.1、生物除臭塔的容量计算 1#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 2.5×2.0× 3.0m 2000m3/h Q=2000m3/h V=处理能力Q/(滤床接触面积m2)/S=2000/ (2.5×2)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 2#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 4.0×2.0×3.0m 3000m3/h Q=3000m3/h V=处理能力Q/(滤床接触面积m2)/S=3000/ (4×2)/3600=0.1041m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1041=15.36S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa

3#生物除臭系统 参数招标要求计算过程 序 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.3m(两台) 20000m3/h Q=20000m3/h V=处理能力Q/2(滤床接触面积m2)/S=10000/ (7.5×3.0)/3600=0.1234m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.7/0.1234=13.77S 炭质填料风阻220Pa/m×填料高度 1.7m=374Pa 设备风阻<600Pa 4#生物除臭系统 参数 序 招标要求计算过程 号太仓市港城组团污水处理厂改扩建工程设备采购、安装项目 1 2 设备尺寸 处理能力 7.5×3.0×3.0m(两台) 18000m3/h Q=18000m3/h V=处理能力Q/2(滤床接触面积m2)/S=18000/ (7.5×3)/3600=0.1111m/s 3 空塔流速<0.2 m/s 臭气停留 时间4 5 ≥12s S=填料高度H/空塔流速 V(s)=1.6/0.1111=14.4S 炭质填料风阻220Pa/m×填料高度 1.6m=352Pa 设备风阻<600Pa 8.2、喷淋散水量(加湿)的计算 生物除臭设备采用生物滤池除臭形式,池体上部设有检修窗,进卸料口,侧面设有观察窗等,其具体计算如下:

螯合树脂

以N为配位原子的螯合树脂的研究进展 caspar 螯合树脂也称高分子螯合剂,是离子交换树脂的一种特殊类型。其高分子骨架上的螯合功能基团能够与金属离子发生配位,螯合物形成时,配位原子有两个或两个以上,形成闭合的环状,并且在一定的条件下,可以将螯合的金属离子脱除。螯合树脂的主要用途为金属离子的浓缩与富集。 螯合树脂相对于其他类型的螯合剂有如下优点:(1)相比于小分子螯合剂,螯合树脂制备简单,价格较低,且由于比表面积较大,使其吸附容量较大,机械性能较好,耐溶剂性较好且易脱附。(2)对有离子交换树脂来说,由于螯合树脂功能基团与金属离子之间既有离子键作用,又有配位键作用,因而螯合树脂与金属的结合强度越高,且配位具有一定的选择性。 螯合树脂的其他特点如下表所示: 表1,关于螯合树脂的其他特点 一般情况下,螯合树脂的分类方式按功能基团或高分子基体的不同进行。分类情况如下所示: ①按照功能基团的的配位原子的不同可以分为:含氮型、含氧型、含硫型、

含砷型、含磷型及多种配位原子共有的混合型。 ②按照功能基的位置不同可以分为:主链型、侧链型及功能基同时存在于主链与侧链的情况。 ③按照高分子基体的来源不同可以分为:人工合成高分子材料如交联聚苯乙烯类、聚丙烯酸类、聚乙烯醇类;天然高分子材料如甲壳质类、淀粉类、纤维素类等。 本文的主要介绍对象为以N为配位原子的螯合树脂。以N为配位原子的螯合树脂是最常见的螯合树脂之一,含氮的功能基团也是最早被应用的功能基团。1935年,英国的Adams和Holmes发现了关于酚醛树脂和苯胺甲醛树脂的离子交换性能,这是发现的第一种离子交换树脂也是最早的功能高分子材料,材料中的氨基即起到了交换阴离子的作用。1959年,陶氏化学公司开始在市场上出售螯合树脂Dowox A-1,标志着实验室中进行检测用的螯合树脂开始市场化。该螯合树脂的功能基团便是含N的功能基团亚胺醋酸。 N原子含有孤对电子且原子体积小,与金属离子具有很强的键合能力。根据软硬酸碱理论,作为配体原子的N原子具有Lewis碱的特性,即电子给体的特性。因而可以提供孤对电子与具有Lewis酸特性的金属提供的空轨道结合。所以可以预测:N原子易于碱土金属与Cu2+、Ag+、Hg2+、Pt2+、Au+、Cd2+、Pd2+、Hg2+及MO等发生配位作用及选择性吸附。 含N的功能基主要包括多胺类(乙二胺、二乙烯三胺、三乙烯四胺等)、酰肼、肟、Schiff碱(席夫碱)、羟肟酸、草酰胺、杂环、偶氮等类型。功能基主要以伯胺或仲胺的形式与金属离子发生螯合。 下面将以基体的区别为依据介绍以N为配位原子的螯合树脂的研究进展情况。 1苯乙烯系 对聚苯乙烯类树脂进行螯合功能化时,最常用的方法为氯甲基化法,其他改性方法如:Mannich胺化法,硝化反应法,酰胺甲基化法等均可对苯乙烯类共聚物进行改性,但由于化学反应效率较低应用不太广泛。 通过氯甲基化法,对交联的大孔氯甲基化聚苯乙烯进行直接胺化,即可得到多胺类螯合树脂。螯合树脂结构如下: 具体改性方法有如下几种方式:

水泥罐计算书.doc

福民站 80T 水泥罐基础设计计算书 一、水泥罐基础及承台设计 1、水泥罐基础根据现场实际情况,采用人工素填土基础; 2、基础承台设计为:承台砼C35、承台尺寸为 5000*5000*600mm,水泥罐的预埋件规格为: 450*450*20mm,由厂家提供,施工安装。 二、水泥罐基础、承台计算 1、基础竖向承载力验算 根据设计资料,本基础位置的持力层为素填土,该层土的承载力特征值为 100Kpa。 V=80+7=87t=870KN,G=5*5***10=375KN, A=5*5=25m 2 σ地 =(G+V) /A=( 870+375) / 25= m 2< [ σ地 ]=100KN/ m2 经计算地基承载满足要求。 其中式中: V——为水泥罐满载时总重量87T,根据厂家提供; G——为基础承台重量; A——为基础承台接触面积。 2、基础抗倾覆验算 w k =βzμNμz w o =1***= KN/ m 2 2 ); w ——风荷载标准值( KN/ m k βz ——高度z处的风振系数,查《建筑结构荷载规范》低于30m取1; μN——风荷载形体系数,查《建筑结构荷载规范》圆形取; μz——风压高度变化系数,查《建筑结构荷载规范》靠近海边取; 2 50 年一 w ——基本风压( KN/m),查《建筑结构荷载规范》风压深圳地区按o 遇,取; 只需计算水泥罐空载情况下抗倾覆即可: M稳= P1×1/2 ×基础宽 =(70+375)/2*5= KN?M M倾=P2×受风面× (7+7)= ***7*7= KN?M M稳/ M 倾≥即满足要求 ==>

M稳—抵抗弯距 KN?M M倾—抵抗弯距 KN?M P1—储蓄罐与基础自重KN P2—风荷载 KN 经计算满足抗倾覆要求。 为了提高储料罐的抗倾覆能力,水泥罐采用三根直径16mm的缆风绳三角对称加固,每根长度约15 米。 三、注意事项 1、水泥罐的安装必须以厂家提供的底座尺寸及预埋件为准,如机型有所变 更时,本方案的定位尺寸须重新进行调整。 2、水泥罐基础砼强度必须达到90%后方可投入安装及使用。 3、基础土质要求承载力必须达到100kPa,当开挖基础土质不能达到承载力 要求时,应挖除不合格土层并采用碎石土进行换填或掺入水泥或粉煤灰,对土体进行改良,夯实后经现场试验达到要求时,方可进行基础承台施工。 4、水泥罐应设有避雷针接地和保护接地措施。

吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 1 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1=21700+0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超 20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: 水泥罐平面位置示意图

δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为: 抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

混凝土搅拌站水泥罐基础设计知识交流

100t水泥罐基础设计计算书 一、工程概况 某大型工程混凝土搅拌站采用100t水泥罐,水泥罐直径2.7m,顶面高度20m。水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为4.2m×0.5m+3.2m×1.0m。 基础立面图 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001) 2、《混凝土结构设计规范》(GB50010-2010) 3、《建筑地基基础设计规范》(GB50007-2011) 4、《钢结构设计规范》(GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t;满仓时水泥重量为100t。 2、风荷载计算: 宜昌市50年一遇基本风压:ω0=0.3kN/㎡, 风荷载标准值: ωk=βzμsμz ω0 其中:βz=1.05,μz=1.25,μs=0.8,则:

ωk=βzμsμz ω0=1.05×0.8×1.25×0.3=0.315 kN/㎡ 四、水泥罐基础计算 1、地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN 混凝土基础自重荷载:G ck=(3.2×3.2×1.0+4.2×3.2×0.5)×24=407kN 风荷载:风荷载作用点高度离地面12.5m,罐身高度15m,直径2.7m。 F wk=0.315×15×2.7=12.8kN 风荷载对基底产生弯矩:M wk=12.8×(12.5+2)=185.6kN·m 基础底面最大应力: p k,max= G ck+G k bh+ M wk W= 407+1080 4.2×3.2+ 185.6 9.408=130.6kPa。 2、基础配筋验算 (1) 基础配筋验算 混凝土基础底部配置Φ16钢筋网片,钢筋间距250mm,按照简支梁

说说二次盐水精制所用的树脂塔

说说二次盐水精制所用的树脂塔,再生酸碱洗的时候为什么酸要顺流,碱要逆流? 酸洗的时候,树脂已经转化到氢型,体积比较小,而在碱洗过程中转化为钠型,体积要增大,如果碱从上向下,与树脂膨胀的方向相反,会不利于树脂全面转化。如果碱从下向上流动,不仅可以将树脂均匀鼓起,能够充分转化,还会与树脂膨胀方向一致,减少树脂破碎。 碱从下往上很好理解,在经过酸洗后,树脂体积比正常体积小,进行碱洗时,树脂溶胀,碱液从下部开始往上充入,下部树脂充分溶胀,蓬松上部树脂,当溢流后,破碎树脂随碱液一起流出树脂塔,碱液比重大,从下部进入流量稳定,不易将树脂冲出。 至于酸从上往下,我理解是酸洗主要是将树脂里面的钙镁离子置换出来,盐酸比重比氯化钙,氯化镁比重小,盐酸进入后,下部废液也是顺流进入废水池,因此,更容易将里面的杂质去除。 第一步是吸附,螯合树脂也是一种离子交换树脂,与普通的交换树脂不同的是,它吸附金属离子后形成环状结构。以亚胺基乙酸为例,吸附金属离子发生以下反应:CH2-COONa CH2-COO R-N +M2+ R-N M+2Na+ CH2-COONa CH2-COO 第二步是脱吸,在一定的外界条件下(如PH值和浓度温度)改变金属螯合物的平衡条件而使金属离子离解开,本装置采用浓度为5%左右的高纯盐酸对树脂进行漂洗。以亚胺基乙酸为例,脱洗金属离子发生以下反应: CH2-COO CH2-COOH R-N M +2H+ R-N +M+ CH2-COO CH2-COOH 第三步是再生,在已经洗脱金属离子的“H”型树脂中加入4%的NaOH溶液,调节PH值为14,由于溶液中的H+大量减少,使平衡向右移动,树脂由H型变为钠型。以亚胺基乙酸为例,发生如下反应: CH2-COOH CH2-COONa R-N +2NaOH R-N +2H2O CH2-COOH CH2-COONa 树脂又回到吸附前的状态。 盐水二次精制包括盐水中的阳离子被螯合树脂选择吸附进行交换和失去交换能力的螯合树脂进行再生处理两个部分。 (1)、螯合树脂离子交换反应原理: 螯合树脂是带有活性离子交换基因,并具有螯合结构的有机高分子聚合物,并带有固定的负电荷,这些固定的负电荷和带有正电荷的离子有相对亲和力。由于螯合树脂对盐水中的多价阳离子的吸附能力大于对一价离子的吸附能力,故含有Ca2+、Mg2+的盐水流经螯合树脂塔时,其中的Ca2+、Mg2+离子将取代树脂中的Na+,从而发生下列离子交换反应。(以CR -11螯合树脂吸附Ca2+、Mg2+ 为例):

螯合树脂

HYC-500胺基膦酸树脂 1.树脂物化指标 出厂型式 Na型 官能团 -NHCH 2PO 3 Na 2 体积交换容量≥1.8mmol/ml 含水量 50-60% 湿真密度 1.10-1.20g/ml 湿视密度 0.70-0.80g/ml 渗磨圆球率≥90% 转型膨胀率(H Na)≤40% 2.选择性顺序: Pb2+ >Cu2+>Fe2+>Zn2+>Ca2+ >Cd2+>Ni2+>Co2+ >Sr2+ >Ba2+ 3 4.交换过程(柱法) 根据需要调整流速为5-30倍体积,将料液通过交换柱,重金属离子与Na型树脂上携带的Na+交换,通液至重金属离子泄漏超过指定值,交换过程完成。 5.再生: 交换过程结束后,通5-10%的盐酸或硫酸2-3BV,流速为2BV/小时,通完后浸泡30-60min,水洗至出水PH为5.5左右运行结束。 6.转型 逆流通4%NaOH 2-4BV。使树脂为Na型,水洗至8-9左右,即可进行下一周期运行。 注:BV为倍树脂体积 HYC-300巯基树脂

一、树脂物化指标: 1.官能团:-SH 2.出厂型式:H型 3.湿视密度:0.65-0.75g/ml 4.湿真密度: 1.02-1.18 g/ml 5.体积交换容量:≥2.0mmol/ml 二、选择性顺序: Hg2+>Ag+>Cu2+>Pb+>Cd2+>Ni2+>Co2+>Fe3+>Ca2+>Na+ 三、使用参考数据: 1.通液流速:5~20BV/hr 2.工作交换容量:0.3~1.5mmol/ml 3.再生剂:HNO3 、HCL 、H2SO4 4.再生剂浓度:1~5 mol/l 5.再生速度:1~3BV/hr 四、应用举例: 1.处理工业废水中汞:汞存在形式:Hg 0、Hg+、Hg2+及甲基汞。含量5~50PPM,以5BV/hr通过树脂柱,出水含量在5ppb以下。通液量:120BV,树脂用于 3mol/lHCL或HNO3再生。 2.从照相定影中回收银:将照相定影液(组成:Ag=10g/l,(NH4)2S2O3=150g/l)以通液速度6m/h的流速处理时,处理液中银浓度为25ppm以下。 HYC-100胺基羧酸螯合树脂

搅拌站粉罐基础设计

目录 1、工程概况 (1) 2、编制依据 (1) 3、设计说明 (1) 3.1、地质条件 (1) 3.2、结构形式 (2) 3.3、设计荷载 (2) 3.4、材料性能指标 (2) 4、地基承载力验算 (2) 4.1、基础尺寸选择 (2) 4.2、地基承载力验算 (3) 5、筏板基础在集中荷载下的冲切计算 (6) 6、筏板基础在集中荷载下的局部承压计算 (6) 7、风荷载影响 (6) 7.1、抗倾覆验算 (6) 7.2、抗拔计算 (8) 8、筏式基础受力分析 (10)

搅拌站粉罐基础设计 1、工程概况 京津城际轨道交通线是环渤海京津冀地区城际轨道交通网的重要组成部分,也是沟通北京、天津两大直辖市的便捷通道,本线由北京南站东端引出,沿京津塘高速公路通道至杨村,后沿京山线至天津站,全长115.4km。本标段包含跨北京环线特大桥和凉水河特大桥两座特大桥的预制梁工程,设置三个简支箱梁预制场,分别为跨北京环线特大桥制梁场(1号梁场)、凉水河特大桥1#制梁场(2号梁场)、凉水河特大桥2#制梁场(3号梁场)。 本标段由中铁大桥局股份有限公司、中铁四局集团有限公司、中铁六局集团有限公司组成的联合体中标。我公司承担的是凉水河特大桥1#制梁场的制梁任务(2#梁场),起讫里程为DK21+457至DK32+665,共340孔双线箱梁。梁场位于张家湾镇高营村,中心里程在线路DK27+697处。预制场设置五个区:生活办公区、混凝土拌和区、箱梁生产区、横移存梁区、箱梁提升区,生产区布置布置32m箱梁制梁台座8个,32m兼24m制梁台座3个,梁场可存32m箱梁64孔,32m兼24m箱梁24孔。2、编制依据 (1)、《建筑地基基础设计规范》(GB50007-2002); (2)、《建筑桩基设计规范》(JGJ94-94); (3)、《混凝土结构设计规范》(GB50010-2002); (4)、福建南方路面机械公司提供的HZS120搅拌站图纸 (5)、《建筑结构荷载规范》GB50009-2001 (6)、浙江有色建设工程有限公司提供的《岩土工程勘察报告》 中华人民共和国、铁道部、地方政府及有关部门颁发的相关现行法规、规范、标准及办法。 3、设计说明 3.1、地质条件 勘探资料显示:场地基本平整,为河陆相沉积地貌;土质结构为粉质粘土与粉

100t水泥罐基础设计计算

100t水泥罐基础设计计算 一、荷载 1、水泥罐自重G1:200kn(20t)估 2、水泥自重G2:1000kn(100t) 3、基础承台自重G3:3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2(分项系数)=1981.2kn 二、受力分析 1、承台地基承载力:按12t/m2估算,承台地基承载力为3.8m*3.8m*120kn/m2=1732.8kn 2、桩承载力需达到1981.2kn-1732.8kn=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 J01 J02 J03地面标高3.5m 地面标高3.5m 地面标高3.5m ①素填土①素填土①素填土 0.44m 0.41m 0.88m ③淤泥质粉质粘土③淤泥质粉质粘土③淤泥质粉质粘土 -1.72m -4.76m ④粉土-5.79m ④粉土④粉土 根据上述柱状图,打入桩范围内平均层厚:素填土2.92m、淤泥质粉质粘土4.67m、粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范

围内(9m)土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30)/9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U--------桩周长, а-----震动沉桩影响系数,锤击沉桩取1.0 H------桩入土深度,9.0m τ-----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径273钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61根,取3根,布置如图: 3.8m 0.650m 2.5m 0.650m 3.8m ②如采用直径630钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.63*3.14*1.0*9*18.45=218.99kn,需打入的根数为248.4kn/218.99kn=1.1根,取2根。

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在 2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ= h C K V Q η = (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273 *4.22641η+ (7) 在喷淋塔操作温度 10050 752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

水泥罐基础

目录 一、概述 (2) 二、基础设计方案 (2) 1、基础形式 (2) 2、埋件 (3) 三、基础验算 (3) 四、构造要求 (6) 五、基础施工 (6) 六、安全注意事项 (6)

一、概述 为了满足现场需要,拟安装3台水泥储料罐,安装位置见水泥罐平面布置图。砂浆罐自重为9吨,可装最大水泥重量为100吨。 水泥罐参数:砂浆罐总高15m,其中罐身高13m,罐脚高2m,直径3m。 二、基础设计方案 1、基础形式 砂浆罐采用钢筋混凝土基础,尺寸为4.0m×4.0m×0.5m,混凝土强度为C30,配筋为双层双向Φ16@250,钢筋保护层为25mm,详见下图:

2、埋件 水泥罐采用脚底板与基础预埋件烧焊连接(满焊),焊缝高度与钢板同厚,脚底板由厂家提供。 预埋件锚板采用与脚底板材质相同的钢板。锚筋采用4Φ20钢筋。钢筋与锚板连接采用焊接,采用E43型焊条,焊缝高度大于10mm,预埋件做法详见下图: 三、基础验算 1、荷载计算 C30混凝土轴心抗压强度设计值f c=14.3Mpa,轴心抗拉强度设计值f t=1.43Mpa。 (1)恒荷载 基础自重:F1=4.0×4.0×0.5×25=200kN,砂浆罐空载时自重F2=90KN,砂浆罐满载时自重F3=1000KN。 (2)风荷载 风荷载标准值按照以下公式计算 W k=βzμz·μs·ω0 其中βz --风振系数,按照《建筑结构荷载规范》(GB50009-2001)的规定采用:βz =2.09; ω0-- 基本风压(kN/m2),按照《建筑结构荷载规范》(GB50009-2001)的规定采用:ω0= 0.5 kN/m2; μz -- 风荷载高度变化系数,按照《建筑结构荷载规范》(GB50009-2001)的规定采用:μz= 1.14; μs -- 风荷载体型系数:取值为0.5; 经计算得到,风荷载标准值为: W k = 2.09 ×0.5×1.14×0.5 = 0.60 kN/m2; 受风面积S=d×H=3×13=39m2(d为罐身直径,H为罐身高度),则风荷载F风=S× W k=1.4×39×0.60=32.7KN,风荷载产生弯距M=F风×h=32.7×9=294.3KN.m(h为风荷载作用点离基础底面的距离)。 2、地基承载力验算: 基础位置地基土为夯实的杂填土,地基承载力必须满足下面的验算要求。 受偏心荷载作用时,基础底面的压力应满足(依据《建筑地基基础设计规范》GB 50007-2002第5.2.1和5.2.2条): Pk≤fa Pkmax≤1.2fa 式中:Pk---相应于荷载效应标准组合时基础底面处的平均压力值;

水泥罐混凝土桩基础设计计算书-30m

水泥罐桩基础计算书 1.水泥罐基础设计 拌合站投入8个200t 型水泥罐,水泥罐直径4.8m ,支腿临边间距3.395m ,每4个为一组,见图附1。根据以往砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用8根C30混凝土灌注桩桩基础,钢筋笼见附图4。桩直径1.2m ,桩长30m ,平面布置见附图1。基础承台厚0.8m ,采用C30混凝土浇筑。承台采用Φ14200mm ×200mm 上下两层钢筋网片。架立筋采用2000mm ×2000mm φ14钢筋双排双向布置,平面图见附图2,立面图见附图3。基础顶预埋地脚钢板与水泥罐支腿满焊。 承台及单桩工程量见附图5。 2.计算基本参数 单个水泥罐自重约20t ,水泥满装200t ,共重220t 。 桩直径1.2m ,桩长30m 。 水泥罐罐身高18.6m ,总高21m 。 基础承台0.8m (高)。 3.单桩轴向受压承载力容许值计算 单桩轴向受压承载力容许值为: q A l q r p i n 1i ik μ21R + =∑=a 上式中q r 为桩端处土的承载力容许值 [] []kPa 5.478)330(195.118072.07.0)(=-??+??=-+=3h λγK f m q 2 2a0 r u ---桩身周长(m ); A p ---桩端截面积(m 2); n ---土的层数 l i ---承台底面以下各土层的厚度(m ); q ik ---与l i 层对应的各土层与桩侧的侧摩阻力标准值(kPa ); q r ---桩端处土的承载力容许值; [f a0] ---桩端处土的承载力基本容许值(kPa ); h ---桩端的埋置深度(m ),h>40时按40计算;

水泥罐基础设计计算书

水稳拌合站投入两个100t 型水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m 。根据以往水稳拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×1.5m (高),基础埋深1.2m ,外漏0.3m ,承台基础采用Φ16@250mm ×250mm 上下两层钢筋网片,架立筋采用750mm ×750mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 架立筋-1号 11 1-1剖面1号 3号 50700 50 基础配筋图 2号8000 4000 35 450 2050 ?320罐支脚 8000 4000 22 00 60 600 ?3300 3700 水泥罐平面位置示意图

1、计算基本参数 水泥罐自重约20t ,水泥满装150t ,共重170t 。 水泥罐支腿高3m ,罐身高18m ,共高21m 。 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 21700 +0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: δ2= ( )1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =??? ÷(18)?M 水泥罐空罐自重 20t ,则基础及水泥罐总重为: 风荷载(500N/m2)

螯合树脂的合成及其应用

螯合树脂的合成及其应用 孔令芳,王振平,张相春,杨玉奇 (河北工业大学应用化学2003,天津 300130) 摘 要:从螯合树脂的组成出发,按母体的类型,综述了近几年的有关螯合树脂的相关动态,引用文献24篇。 关键词:螯合树脂;吸附;应用 高分子螯合树脂,是由母体和螯合功能基以化 学键的形式相结合。螯合树脂是指含有能与金属离 子形成螯合物的分析功能团的一类呈树脂状的高聚 物。功能基中存在着具有未成键孤对电子的O、N、 S、P、As等原子。这些原子能以一对孤对电子与金 属离子形成配位键,构成与小分子螯合物相似的稳 定结构[1]。螯合吸着剂是指含有上述分析功能团、 具有选择性交换能力的呈纤维、薄膜以及各种织物 状的高聚物。这类新型的离子交换剂,不仅保持着 一般离子交换树脂所具有的优点,有具备有机试剂 所特有的高选择性的特色。但高分子螯合树脂由于 高分子效应又增添了许多新的功能,如它具有合成 简便、价格低廉、吸附容量大、易洗脱、干扰少和稳定 性好等优点。离子交换树脂具有机械性能好,对于酸碱及各种溶剂极为稳定,能将各种离子进行有效分离;但也存在不足之处,主要就是缺乏选择性。在应用阳离子树脂时,凡是阳离子都可能被交换在树脂上。因此被测离子与干扰离子都存在被交换在树脂上的趋势[2]。与离子交换树脂相比,螯合树脂与金属离子的结合能力更强,选择性也更高。其合成方法基本上与离子交换树脂相似,一是使具有配位基的低分子化合物聚合;二是通过高分子反应将配位基引入交联聚合物,得到各种结构的螯合树脂。在这两种方法中,后者研究较多。 本文一方面以构成螯合树脂的母体来分类,概述了螯合树脂的合成及其在水处理、 环保、冶金、医药卫生、金属的回收、分析与纯化等方面的应用。1 按组成螯合树脂的母体分类 螯合树脂的母体一般是疏水性的高聚物,又称功能载体。人们通常是利用高分子反应在母体上引入螯合试剂,相比小分子的萃取剂,这种树脂在水溶性,稳定性等方面有突出的优点,被广泛的用于金属离子的萃取剂,有机反应的催化剂等。按母体的来源,我们通常分为人工合成载体(如聚苯乙烯系、离子交换树脂等)和天然高分子(如壳聚糖、纤维素等)。 1.1 人工合成母体 1.1.1 聚苯乙烯系 聚苯乙烯系树脂是应用最为广泛的螯合树脂母体骨架,一般是利用傅克反应,在芳环上引入CH2Cl、SO3H等基团,而CH2Cl有高度的活泼性能,易与多电子的原子结合,一般是含有N、O原子的试剂,如用氯甲基聚苯乙烯和二乙醇胺、三乙醇胺、吡啶偶氮-β-奈酚、4-羟基苯甲醛等试剂反应,能合成多齿配体的高分子螯合物。以下是这类反应的代表合成路线[3]: 采用“模板聚合”技术合成的螯合树脂,其功能基团大部分包埋在树脂的内部,因而树脂的吸附容量和吸附速度较低。Takagi等人通过五皂乳液聚合合表面铸型聚合二步法合成的铸型螯合树脂,为球形亚微粒子,具有良好的单分散性,功能基团大部分分布在粒子的表面,对金属离子具有较高的吸附率。 目前,太原理工大学的杨冬花等人在总结前人的基础上,采用苯乙烯(St)、丙烯酸丁酯(BA)和羧基单体(甲基丙烯酸(MAA)和衣康酸(LA))进行无皂乳液聚合,考察了引发剂浓度、电解质浓度和羧基单体配比对种子乳液的粒径和表面羧基量的影响,以期制备表面羧基含量和粒子径较大的种子乳液,选取LA:MAA=1:1(mole ratio)种子乳液,分别采用氧化—还原引发和60Coγ—射线辐射引发的表面铸型聚合,合成了Cu(Ⅱ)铸型螯合树脂[4]。 91  2006年第2期 内蒙古石油化工收稿日期:2005-11-15 作者简介:孔令芳(1980-),女,在读硕士研究生,专业方向:石油与地球化学。

搅拌站粉罐基础设计

搅拌站粉罐基础设计

目录 1、工程概况 (1) 2、编制依据 (1) 3、设计说明 (2) 3.1、地质条件 (2) 3.2、结构形式 (2) 3.3、设计荷载 (2) 3.4、材料性能指标 (2) 4、地基承载力验算 (3) 4.1、基础尺寸选择 (3) 4.2、地基承载力验算 (3) 5、筏板基础在集中荷载下的冲切计算 (6) 6、筏板基础在集中荷载下的局部承压计算 (6) 7、风荷载影响 (6) 7.1、抗倾覆验算 (7) 7.2、抗拔计算 (8) 8、筏式基础受力分析 (10)

搅拌站粉罐基础设计 1、工程概况 京津城际轨道交通线是环渤海京津冀地区城际轨道交通网的重要组成部分,也是沟通北京、天津两大直辖市的便捷通道,本线由北京南站东端引出,沿京津塘高速公路通道至杨村,后沿京山线至天津站,全长115.4km。本标段包含跨北京环线特大桥和凉水河特大桥两座特大桥的预制梁工程,设置三个简支箱梁预制场,分别为跨北京环线特大桥制梁场(1号梁场)、凉水河特大桥1#制梁场(2号梁场)、凉水河特大桥2#制梁场(3号梁场)。 本标段由中铁大桥局股份有限公司、中铁四局集团有限公司、中铁六局集团有限公司组成的联合体中标。我公司承担的是凉水河特大桥1#制梁场的制梁任务(2#梁场),起讫里程为DK21+457至DK32+665,共340孔双线箱梁。梁场位于张家湾镇高营村,中心里程在线路DK27+697处。预制场设置五个区:生活办公区、混凝土拌和区、箱梁生产区、横移存梁区、箱梁提升区,生产区布置布置32m箱梁制梁台座8个,32m兼24m制梁台座3个,梁场可存32m箱梁64孔,32m兼24m箱梁24孔。 2、编制依据 (1)、《建筑地基基础设计规范》(GB50007-2002); (2)、《建筑桩基设计规范》(JGJ94-94); (3)、《混凝土结构设计规范》(GB50010-2002); (4)、福建南方路面机械公司提供的HZS120搅拌站图纸 (5)、《建筑结构荷载规范》GB50009-2001

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量% 工况满负荷烟气量 285000m3/h 引风机量 1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。 氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4

Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高 在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小。因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。一般情况下氧化镁的脱硫效率可达到95-98%以上,而石灰石/石膏法的脱硫效率仅达到90-95%左右。

螯合树脂定义

螯合树脂是能从含有金属离子的溶液中以离子键或配位键的形式,有选择地螯合特定的金属离子的含有配位基团的功能高分子化合物。它以交联聚合物为骨架,连接以特殊的功能基而构成。 (还有一种定义方法:螯合树脂是指带有具有螯合能力的基团,对特定离子具有特殊选择能力的树脂,因为它既有生成离子键又有形成配价键的能力,在整合物形成后,结构上有点象螃蟹,故形象地叫螯合树脂。) 由于高分子效应以及它的特定的物理结构,螯合树脂对金属离子的选择性比低分子有机螯合试剂更为优异,螯合树脂吸附性能主要是依赖于配位原子和基团的种类,其吸附选择性主要取决于配位原子与金属离子的属性,即符合“软硬酸碱原则”。由于树脂不溶于酸、碱、溶剂等,将树脂与溶液分离很方便,这在富集、分离、分析、回收等方面有突出的优点。 许多合成的和天然的高分子都有螯合性能。螯合树脂主要是指合成物,图中结构a~i 是具有代表性的螯合树脂,制备方法一般通过高分子化学反应,或将含有配位基的单体经聚合反应或共聚合反应变为在高分子主链或侧链中含有配位基的树脂。 树脂f是最常用的一种类似乙二胺四乙酸型的螯合树脂,它对二价金属离子有良好的选择性,在pH为6时,对金属离子的选择性按下列顺序递降:Cu2+>Hg2+>Ni2+>Zn2+>Cd2+≈Fe3+>Mn2+>Ca2+>Mg2+。水杨酸型树脂a可用于海水中Fe3+、Cu2+的定量分析。8-羟基喹啉型树脂g可用于除去工业污水中的Hg2+,也可用于铀的分离。天然高分子螯合剂有腐植酸、甲壳素等。 螯合树脂在湿法冶金、分析化学、海洋化学、抗菌素药物、环境保护、地球化学、放射化学和催化等领域有广泛的用途。除了作为金属离子的螯合剂外,也可用作氧化、还原、水解、烯类加成聚合、氧化偶合聚合等反应的催化剂,以及用于氨基酸、肽的外消旋体的拆分。例如含L-脯氨酸功能基的螯合树脂与Cu2+螯合后能拆分D,L-脯氨酸外消旋体(j)。螯合树脂与金属离子结合形成络合物后,其力学、热、光、电磁等性能都有所改变。利用这一性质,可将高分子螯合物制成耐高温材料、光敏高分子、耐紫外线剂、抗静电剂、导电材料、粘合剂及表面活性剂等。

相关主题