搜档网
当前位置:搜档网 › 铝合金自呼吸fuel cells

铝合金自呼吸fuel cells

铝合金自呼吸fuel cells
铝合金自呼吸fuel cells

Planar self-breathing fuel cells

A.Schmitz a,*,M.Tranitz a,S.Wagner b,R.Hahn b,C.Hebling a

a Fraunhofer Institute for Solar Energy Systems,Heidenhofstrasse2,79110Freiburg,Germany

b Fraunhofer Institute for Reliability and Micro Integration,Gustav-Meyer-Allee25,13355Berlin,Germany

Abstract

A new type of planar fuel cell based on printed circuit board(PCB)technology has been developed.This planar design consists of an open cathode side which allows a completely passive,self-breathing operation of the fuel cell.Power densities of100mW/cm2at500mV with hydrogen were achieved.Long-term operation for more than1500h has been demonstrated.The operation behavior of planar hydrogen in free-breathing PEMFC concerning stability,water management and temperature distribution are examined.The effects of diffusion layer thickness and cathode opening ratios on the performance of this fuel cell type were characterized.Moreover,the amount of water removed from the anode and the temperature distribution of the cathode side were determined.

#2003Elsevier Science B.V.All rights reserved.

Keywords:Planar PEMFC;Self-breathing;Open cathode;Printed circuit board(PCB)

1.Planar design of PEMFC

Portable and remotely located off-grid electronic appli-ances are usually powered by primary and secondary bat-teries.The drawbacks,especially with secondary batteries, are in many cases the insuf?cient energy densities.Minia-turized fuel cells potentially present bene?cial opportunities for use as a supplement to or substitute for batteries[1,2]. The possibility of achieving higher energy densities with miniaturized fuel cell systems compared to conventional batteries is the driving force behind the current rapid devel-opment.State-of-the-art Li-ion batteries achieve energy densities of350Wh/l.The equivalent electrical energy density for hydrogen stored in metal-hydride is1050Wh/ l and for methanol is3000Wh/l(1:1molar ratio with water) [3].To calculate the overall energy density of a fuel cell system,the volume of the fuel cell itself has to be taken into account.This implies the need to build rather small fuel cells.

For a successful integration of fuel cells into electrical appliances,the dimension of the fuel cell must be in accordance with the existing geometries of the device. The possible cavities of most devices consist of a rather ?at geometry.Thus,in some cases,fuel cells with a con-ventional stack design might be dif?cult to be integrated.A ?at design of fuel cells accommodates these needs—fuel cells with a planar design can,for example,be integrated in the housing of a device.As the fuel cell in this packaging concept serves as part of the housing,the volume needed for the fuel cell as power source is optimized.

The ideal planar design consists of an open cathode side to allow passive,full self-breathing operation of the fuel cell. An important advantage of the open cathode is that addi-tional ventilation by fans is not needed.Thus,a planar fuel cell could be integrated into the back of a notebook com-puter or a cell phone.

2.Planar fuel cell in PCB design

The type of planar fuel cell presented in this paper is made of printed circuit boards(PCB).A standard printed circuit board consists of a?ber glass epoxy composite material (thickness1.5mm)and a thin copper layer(usually thick-ness35m m).In the fuel cell,the copper layer acts as a current collector.With this approach,a very small cell thickness can be achieved while maintaining a high mecha-nical strength.

This new approach is based on the manufacturing principles of PCB technology which is a well-known and low-cost process.Therefore,the main motivation to produce planar fuel cells in PCB technology is to achieve low costs.Quick upscaling and the ability to produce different cell types in the same process are other bene?ts for PCB technology.Additionally,electronic circuits can

be

Journal of Power Sources118(2003)162–171

*Corresponding author.

E-mail address:astz@ise.fhg.de(A.Schmitz).

0378-7753/03/$–see front matter#2003Elsevier Science B.V.All rights reserved.

doi:10.1016/S0378-7753(03)00080-6

integrated on the board,which might act as electrical con-sumer itself or as auxiliary units with,for example,dc/dc. In order to achieve higher voltages,a plurality of single fuel cells has to be serially connected.In a planar designed fuel cell,a serial connection is realized by electrical con-nection of the anode of one cell with the adjacent cathode side of the next cell.Thus,the serial connection is more challenging compared to the conventional stack design.In multilayer PCBs,several circuit layers,which are separated by insulating composite material,can overlap.Interlayer connections in the multilayer PCB technology are usually fabricated by the electroplating through holes.Thus,by using multilayer technology,the current collector layer of the anode side can be electrically connected with the current collector of the cathode side.Other options for interconnec-tion like rivets,local welding or soldering can alternatively be used.

Additional steps which can be integrated in the process are,for example,attaching the MEA with adhesives and attaching the anode and cathode plate with adhesives.There-fore,an adapted multilayer PCB technology is ideal to realize the serial connection of a fuel cell system consisting of several single cells in a mass production process.

3.Construction of test cell and operating characteristics

The planar fuel cells used in this paper are made of ordinary printed circuit boards(Fig.1).In the anode plate, a serpentine?ow-?eld is machined.The cathode plate con-sists of parallel,rectangular openings.The electrochemical active area of this geometry has a size of20mm?50mm. The membrane electrode assembly(MEA)is attached by adhesives on the anode plate.A PRIMEA15510from Gore Associates with a Pt loading of0.3mg/cm2and an ionomer thickness of35m m is used as MEA.Diffusion layers(Toray1 carbon papers)are located between the plates and the MEA. Additionally,a thin foil with a rectangular notch in the size of the active area is sandwiched between the plates to avoid short circuits between the metal layers.This assembly is pressed together by six screws.By adjusting the torque of these screws,the contact pressure is controlled.The assembled cell has a thickness of about3.5mm.

Fig.2shows a typical polarization curve of this open,self-breathing planar PEMFC.In the maximum power point,a power density of110mW/cm2is achieved corresponding to a current density of275mA/cm2at a cell potential of400mV. These characteristics are in the range of power densities reported for stacks operated at room temperature[4].

As the electrical conducting elements are made of copper, corrosion in the wet environment of a PEMFC is expected.In order to avoid corrosion,the copper current collectors can be coated.The coating has to assure an impermeable cover of the copper layer to prevent any contact of the less

noble Fig.1.Depiction of an assembled fuel cell in PCB design and

components. Fig.2.Typical I–V and power characteristics of an open,self-breathing PEMFC in PCB design operated with hydrogen.

A.Schmitz et al./Journal of Power Sources118(2003)162–171163

copper to the electrolyte and to prevent diffusion of the copper through the coating (diffusion barrier).Several coat-ings have been tested with corrosion measurements (poten-tiodynamic scans)and long-term tests [5].The two most promising coatings for application in fuel cells have been found to be a combination of electroplated Ni (10m m)/Au (1m m)and an electroplated Cr (1m m)coating.

In Fig.3,the behavior of cell voltage under a constant load of 1A (100mA/cm 2)is shown for a fuel cell with a Cr coating (1m m).Over more than 1500h,there has no sig-ni ?cant degradation been seen in the cell potential under load.Moreover,the ?uctuations of cell potential under load are in the range of ?15%over the whole operation.This

is a fairly stable result taking into account the open cathode.The operation time already achieved with the electroplated PCB cells would be adequate for the lifetime of a range of portable electronic appliances.The applied coatings are already used within the PCB industry and may be easily adapted to the serial production of planar fuel cells.

4.Influence of diffusion layer thickness

For a good performance of a fuel cell,it is necessary to achieve low contact https://www.sodocs.net/doc/b714266675.html,ually,this is realized by applying pressure between rigid and thick endplates.

Thus,

Fig.3.Long-term performance of a PCB cell electroplated with Cr (1m m)at a constant load of 1

A.

Fig.4.Polarization curves for a variation of diffusion layer thickness.

164 A.Schmitz et al./Journal of Power Sources 118(2003)162–171

for a planar designed cell with thin plates it is a critical issue to apply an adequate pressure.As the PCB plates consist of a composite material of?ber glass and epoxy,they offer adequate rigidness and are lightweight compared to metal plates.Nevertheless it is challenging to improve the contact resistance for a planar PCB cell.

Anode and cathode plate are not in even contact because the backing layers are sandwiched in-between.

Therefore, Fig.5.I–V characteristics by applying potential steps for a cell with:(a)0.17mm thick backing;(b)0.35mm thick backing;(c)1.05mm thick backing.

A.Schmitz et al./Journal of Power Sources118(2003)162–171165

the PCB plates tend to bow when the screws on the edge are tightened,potentially creating a slight gap between the backing layers and the current conducting layer in the middle of the plate.However,a thicker diffusion layer is able to compensate the gap and assures better electrical contact. The thickness of the backing layers has been varied in order to investigate the in?uence on the cell performance. The backing thickness on the cathode side was increased from0.17to about1.75mm.For the thickness of0.26and 0.35mm,Toray1carbon papers were used.The other thicknesses(0.52,0.75,1.05and1.75mm)were realized by piling up combinations of the above mentioned Toray1 carbon papers.

After a cell operation at a constant load of1A(100mA/ cm2)over a couple of hours the cell impedance was mea-sured.Subsequent to the resistance measurements polariza-tion curves were recorded.The I–V curves and the impedance values are depicted in Fig.4.The cell impedance was measured at a frequency of1kHz(HP Milliohmmeter 4388B),thereby measuring the sum of the protonic and electrical cell resistance.

In Fig.4,it can be seen that the cell resistance drops with increasing diffusion layer thickness from440m O cm2for 0.26mm thick backing layer to170m O cm2for a1.75mm thick backing layer.Because the operating conditions (constant load)assure equal water production and cell humidi?cation the decreased cell resistance can be attributed to reduced contact resistance.

As shown in Fig.4,a variation in diffusion layer thickness in?uences the cell performance.Steep declines of the I–V curve near short-circuit conditions imply mass transport limitations.For the thicker(1.05and1.75mm)backings, mass transport limitations are seen in Fig.4.Concerning the effects of contact resistance and mass transport limitations,a maximum in performance is achieved with diffusion layers of a thickness between0.7and1.05mm.

By measuring the potential and the current over a certain period of time,some conclusions about the stability in performance can be drawn.I–V characteristics were carried out by applying a constant potential for about1h and recording the behavior of the current.This was done in potential steps by starting at850mV and decreasing the potential in each step by100mV.Cells with backing layers of0.17,0.45and 1.05mm were characterized by this method.The results are depicted in Fig.5a–c.

Seen at?rst glance,the reaction of the current for all three I–V characteristics is quite stable in each potential step.In most potential steps,a stable operation is reached after approximately0.5h.

At potentials above650mV,the current slightly decreases in each I–V characteristics.This behavior is due to a drying out effect,as the cells were supplied with unhumidi?ed hydrogen.Below650mV,an increase of current behavior is seen,which is due to increased proton conductivity caused by increasing cell humidity.

Mass transfer limitations are seen at potentials of250mV and below,for the cell with0.17and1.05mm backing.The cell with0.17mm shows a decrease in cell current for potential https://www.sodocs.net/doc/b714266675.html,pared to thicker backing layers,in a thin diffusion layer the water produced can block the oxygen transport more ef?ciently.Thus,cell?ooding occurs more easily with thin diffusion layers.

5.Influence of openings

Besides the in?uence of the backing thickness,the size of the openings might affect the cell performance.Thus,

test Fig.6.I–V characteristics of a test cell with rectangular openings with widths of2and4mm are shown.

166 A.Schmitz et al./Journal of Power Sources118(2003)162–171

cells built according to the above described construction with different openings were characterized.

Cathode plates with varying opening widths were used. The cathode plates consisted of rectangular openings in the sizes of1:5mm?20mm,2mm?20mm and4mm?20mm.The width of the current collector rib between the openings was constant(1mm).Thus,the open area ratio of the cathodes was60,66and80%,respectively. For these test cells,backings with a thickness of0.35mm on anode and cathode side were used.Only a slight contact pressure was applied by a torque of0.5N m for the screws on the edge.

Cells with two different opening ratios were characterized by the potential step method.In Fig.6,the I–V character-istics of a test cell with rectangular openings with widths of2 and4mm are shown.The current behavior from V oc to a potential of500mV is nearly congruent.For lower poten-tials,the current for the cell with the larger openings is signi?cantly higher.

According to the open area ratio,the contact area of the ribs to the diffusion layer is lower for the cell with the larger openings.Thus,the contact resistance of the cell with the larger openings is supposed to be higher.However,the currents are higher for the cell with the larger

openings. Fig.7.Water balance for test cells with diverse cathode openings in:(a)horizontal position;(b)vertical position.

A.Schmitz et al./Journal of Power Sources118(2003)162–171167

Therefore,the effects of higher contact resistances are overcompensated by improved mass transport due to larger openings.

Water is produced at the cathode of the fuel cell according to Faraday’s law.Due to the open cathode,water in the gaseous phase is removed by diffusion.Moreover,water can be transported through the membrane.Water transport through the membrane can be described by back-diffusion and electro-osmotic drag[7].Water permeates through the membrane from the cathode side to the anode side due to diffusion caused by a concentration gradient.The water transport by electro-osmotic drag is caused by proton trans-port from the anode side to the cathode side.The overall water transport strongly depends on the cell conditions. The amount of water developed at the anode side can be determined by condensation of the water in the hydrogen at the cell’s outlet.The hydrogen?ow was passed through a glass bulb,which was plunged in cooling liquid.The liquid was cooled down toà58C by the use of a cryostat.

The relative humidity at the outlet of the bulb was measured by a sensor and found to be less than10%at a temperature around108C.Therefore,most of the water of the hydrogen?ow condenses in the glass bulb.The accu-mulated water in the bulb was determined by weighing. The determination of water removed from the anode was carried out for three cells with cathode opening widths of 1.5,2.0and4.0mm.As the orientation of the cell may have an effect on the performance,the cells were operated in two different positions:?rst the cells were mounted in a hor-izontal position with the open cathode side face up and second in a vertical position.

The cells were operated at three different constant loads of 1A(100mA/cm2),2A(200mA/cm2)and2.5A(250mA/ cm2).The constant load was realized with a Wenking HP88 potentiostat in galvanostatic mode.The cells were operated for a period of8h and subsequently,the amount of con-densed water of the anode gas?ow was determined.Over this period of time the total water produced in the cell at1,2 and2.5A accounts for2.7,5.4and6.7g,respectively.

In Fig.7a and b,the total water production and the water removed from the anode are depicted.The dependency of the anode water removal on opening size and cell current is shown in Fig.7a for the horizontal position(open cathode upside)and in Fig.7b for the vertical position.By compar-ison,no signi?cant differences could be seen between these alternative positions.For constant cell currents with smaller opening sizes,more water is removed from the anode.Thus, with larger openings slightly more water is removed by evaporation from the open cathode.

6.Temperature distribution

Due to the exothermic reaction heat is produced in the fuel cell.The amount of heat accounts to a reversible and an irreversible part caused by overpotentials[6].With declining cell potential the overpotential increases.Thus,increased cell temperatures are expected for decreasing cell potential. In Fig.8,the behavior of cell temperature for the cell with the large cathode openings(4mm?20mm)at different potential steps are shown.The temperatures were measured with a Pt(100)temperature sensor,which had a rather small size of3mm?5mm.At the open cathode side,the sensor was placed in the middle of the active area at an opening with contact to the diffusion layer.The sensor on the hydrogen side was placed with contact to the back of the anode plate in the middle of the hydrogen?ow-?eld.

As can be seen in Fig.8,the temperature increases with declining cell potentials from room temperature to a temperature of568C at the cathode side.For

increasing Fig.8.Behavior of cell temperature and current for a test cell with the large cathode openings(4mm?20mm).

168 A.Schmitz et al./Journal of Power Sources118(2003)162–171

currents,the temperature on the cathode is higher than on the anode side.For potentials from V oc to a cell potential of700mV,nearly identically temperatures are measured. For lower potentials,the temperature difference between cathode and anode side increases.

Overpotentials on the cathode of a hydrogen fuel cell are larger than on the anode.Therefore,a larger amount of heat is produced on the cathode.Moreover,the PCB composite material has a high heat transition resistance.Therefore,the sensor on the backside of the anode?ow-?eld measures

a Fig.9.Temperature distribution of the cathode side at:(a)600mV;(b)400mV;(c)200mV;(d)short-circuit conditions.

A.Schmitz et al./Journal of Power Sources118(2003)162–171169

slightly lower temperature than at the backing of the cath-ode.The maximum power point for this cell lies in the potential range of 400–500mV .Looking at the temperatures emerged at these potentials,only a moderate warming of the cell with 35–408C is seen.

By the use of an infrared camera,the temperature dis-tribution at the cathode has been measured.The utilized IR camera (Varioscan high resolution model 3021ST from Jenoptik)is equipped with a thermal sensor,which is spectrally sensitive in the wavelength area from 8to 12m m.The temperature distribution of the cathode side at four potentials (600,400,200mVand short circuit)is depicted in Fig.9a –d .The ribs (width 1mm)and the rectangular open-ings (4.20mm)can be recognized in the IR picture.

The temperature in the middle of the distributions is in good accordance with the values measured by the sensor in the middle of the cathode (Fig.8).For exact temperature determination with the IR camera,the emissivities of the surface have to be taken into account [8].

On the IR graph,temperature differences between the temperature of the rib and the diffusion layer can be seen.These differences are due to the insulating bulk composite material and different emissivities of the diffusion layer and the PCB composite material.

At a potential of 600mV ,the temperature distribution over the whole cathode surface is rather homogenous.For poten-tials of 400,200mV and short circuit,the temperature distri-bution is more inhomogeneous.In these distributions,cooler areas on the left edge and the right lower corner are seen.As the gas inlet is located on the right edge and the cells are supplied with dry hydrogen,the MEA is not as humi-di ?ed as in the other parts of the cell.Therefore,the inhomogeneities on the right can be explained by decreased performance due to lower proton conductivity of the MEA.As the composite material of the anode plate is semi-transparent,water droplets in the serpentine ?ow-?eld could be seen.Some water droplets in the left edge have evolved

during cell operation at 400,200and 0mV .Thus,a sig-ni ?cantly lower temperature on the left can be explained by decreased current densities due to mass transport limitations.

7.Conclusion

Due to their ?at geometry,planar fuel cells show promis-ing perspectives for integration in housings of devices (e.g.backside of a notebook screen).The planar design offers the opportunity to design a fuel cell with an open cathode to allow fully passive,self-breathing operation.Therefore,an active air feed supplied by fans or pumps is not required.A new type of planar fuel cell realized in printed circuit board (PCB)technology was introduced.The main motiva-tion to manufacture fuel cells in PCB design is to achieve low costs by using a mass production process.A serial interconnection of planar arranged cells by connecting over-lapping copper layers within the board can be easily realized with the multilayer technology.In addition,electronic cir-cuits can be integrated onto the PCBs which might act as an electrical consumer itself or as an auxiliary unit.

As pure copper PCB boards would corrode in the fuel cell environment,the plates have to coated.Successfully long-term tests under a constant load with coated PCBs were demonstrated for more than 1500h of operation without degradation.

The use of thicker diffusion layers leads to improved contact resistances.As the PCB plates of an assembled cell tend to bow in the middle,thicker diffusion layers are more able to compensate possible gaps between backing and current collector and assure an homogenous contact.Thus,the cell performance can be improved by using relative thick diffusion layers.Best results were achieved with 1.05mm thick backing layers on the cathode.A stationary behavior for cell potentials between V oc and short circuit were demon-strated by using diffusion layers thicker than 0.35

mm.

Fig.9.(Continued ).

170 A.Schmitz et al./Journal of Power Sources 118(2003)162–171

By increasing the opening ratios from66to80%a signi?cant increase in current for potentials lower than 500mV was found.Water removed from the anode was determined by complete condensation of water in the hydro-gen?ow.

For several opening ratios,cell currents and cell positions, the water removed from the anode was found to be less than 30%of the total water produced.A slight decrease in removal of water from the anode was found by increasing the opening ratio from60to80%.

The cell temperature in the middle of the cathode and anode side were monitored.Additionally,the temperature distribution of the cathode side was depicted by the use of an IR camera.Near short-circuit conditions,temperatures of approximately558C have been measured at the cathode side.The temperature distribution at the cathode revealed inhomogeneities in the area of the gas inlet and outlet.Moderate cell temperatures(35–408C)have been found for maximum power point operation conditions. References

[1] C.K.Dyer,J.Power Sources106(2002)31–34.

[2] A.Heinzel et al.,J.Power Sources105(2002)250–255.

[3] C.Hebling,A.Heinzel,Portable fuel cell systems,Fuel Cells Bulletin

(July)(2002)8–10.

[4]M.S.Wilson,in:Proceedings of the Fuel Cell Seminar,Washington,

DC,USA,17–20November1996.

[5] A.Schmitz,S.Wagner,et al.,Stability of planar PEMFC in printed

circuit board technology,in:Proceedings of the Poster Presentation at the Ulm Eighth Electrochemical Talks,Ulm,Germany,19–20June 2002.

[6]https://www.sodocs.net/doc/b714266675.html,rminie,A.Dicks,Fuel Cell Systems,Wiley,New York,2000.

[7]J.S.Yi,T.V.Nguyen,J.Electrochem.Soc.145(4)(1998)1149–1159.

[8]J.P.Holman,Heat Transfer,McGraw-Hill,New York,1986.

A.Schmitz et al./Journal of Power Sources118(2003)162–171171

伟康(Respironics)呼吸机使用说明书资料

湿化器的组成部件: 图1:湿化器组件

注意:使用湿化器前请仔细阅读完整的使用手册。本湿化器仅适用于伟康指定型号的呼吸机。 二湿化器的安装 提示:将湿化器与呼吸机连接使用前请仔细阅读呼吸机使用手册。1.如何将湿化器与呼吸机连接 当使用湿化器的时候,请将呼吸管路连接到湿化器的气流输出口。如果呼吸机上安装了“气流输出口附件”,请务必将其取下,然后再把呼吸机与湿化器连接在一起。 如何取下气流输出口附件: 1,将拇指置于气流输出口附件底部,食指置于气流输出孔。拇指轻轻按下附件底部的卡口,然后小心地将其取下。请参见下图: 图2:移除“气流输出口附件”

2.将呼吸机置于湿化器底座,将主机的气流输出口与湿化器的气流输入口良好对接,同时把湿化器底座上的卡锁嵌入主机底部的卡孔,确保湿化器和呼吸机稳固的连接。 图3:连接呼吸机和湿化器 日常使用注意事项: 1.放置湿化器的注意事项 将湿化器水平放置在低于病人头部,稳固平坦的窗头柜或其他防滑平面上。提示:请不要把湿化器置于电器或者其他需要防水的设备上。 警告!将注入水的储水仓安装入湿化器之前,请不要打开湿化器的电源! 湿化器使用后请关掉电源,冷却大约15分钟后再取出储水仓。湿化器使用后未经冷却直接接触储水仓或者加热板可能引起皮肤灼伤。 2.如何取出储水仓 掀开湿化器仓门,将储水仓从湿化器中拉出。 图4:取出储水仓 3.如何给储水仓注水 用清水冲洗储水仓后,将纯净水加入储水仓至水量标志线处,此时的水量大约是325ml。

注意:湿化器必须使用纯净水,以防止水垢形成。 图5:给储水仓注水 注意! 1.湿化器只能使用室温温度的水,太热与太冷的水容易导致湿化器故障,使蓝色指示灯闪烁。 2.注入水量不要超过水量标志线,否则容易损坏湿化器和呼吸机。 3.向湿化器中安装已经注入水的储水仓时务必要动作小心平稳,千万避免把水溅入湿化器和呼吸机内部。 4.已经注入水的储水仓装入湿化器后,禁止移动湿化器。 4. 图6:安装储水仓 5,电源连接示意图 将电源线与湿化器电源接口相连接,然后与电源适配器连接。 图7:电源连接示意图 电源线

正压式呼吸器使用方法

正压式消防空气呼吸器的使用 RHZK-6/30-Ⅱ东台市东方船舶装配有限公司 一、空气呼吸器使用前的检查 1、检查全面罩的镜片、系带、环状密封、呼气阀、吸气阀是否完好,与供给阀的连接是否牢固。全面罩的部位要清洁、不能有灰尘或被酸、碱、油及有害物质污染,镜片要擦拭干净。 2、供给阀的动作是否灵活,与中压导管的连接是否牢固。 3、气源压力表能否正常指示压力。 4、检查背具是否完好无损,左右肩带、左右腰带缝合线是否有断裂。 5、气瓶组件的固定是否牢固,气瓶与减压阀的连接是否牢固、气密。 6、打开瓶头阀,随着管路、减压系统中压力的上升,会听到气源余压报警器发出的短促声音;瓶头阀完全打开后,检查气瓶内的压力应在28MPa~30MPa范围内。 7、检查整机的气密性,打开瓶头阀2分钟后关闭瓶头阀,观察压力表的示值1分钟内的压力下降不超过2 MPa。 8、检查全面罩和供给阀的匹配情况,关闭供给阀的进气阀门,佩带好全面罩吸气,供给阀的进气阀门应自动开启。 9、根据使用情况定期进行上述项目的检查。空气呼吸器在不使用时,每月应对上述项目检查一次。 二、空气呼吸器的佩戴方法 1、佩戴空气呼吸器时,先将快速接头拔开(以防在佩戴空气呼吸器时损伤全面罩),然后将空气呼吸器背在人身体后(瓶头阀在下方),

根据身材调节好肩带、腰带,以合身牢靠、舒适为宜。 2、连接好快速接头并锁紧,将全面罩置于胸前,以便随时佩戴。 3、将供给阀的进气阀门置于关闭状态,打开瓶头阀,观察压力表示值,以估计使用时间。 4、佩戴好全面罩(可不用系带)进行2~3次的深呼吸,感觉舒畅,屏气或呼气时供给阀应停止供气,无“咝咝”的响声。一切正常后,将全面罩系带收紧,使全面罩和人的额头、面部贴合良好并气密。 在佩戴全面罩时,系带不要收得过紧,面部感觉舒适,无明显的压痛。全面罩和人的额头、面部贴合良好并气密后,此时深吸一口气,供给阀的进气阀门应自动开启。 5、空气呼吸器使用后将全面罩的系带解开,将消防头盔和全面罩分离,从头上摘下全面罩,同时关闭供给阀的进气阀门。将空气呼吸器从身体卸下,关闭瓶头阀。 注意: A、一旦听到报警声,应准备结束在危险区工作,并尽快离开危险 区。 B、压力表固定在空气呼吸器的肩带处,随时可以观察压力表示值 来判断气瓶内的剩余空气。 C、拔开快速接头要等瓶头阀关闭后,管路的剩余空气释放完,再 拔开快速接头。 三、使用后的处理 空气呼吸器使用完后应及时恢复使用前战斗准备状态,并做以下

家用呼吸机使用方法和步骤

家用呼吸机使用方法和步骤 呼吸机是辅助睡眠的工具,可帮助人们改善呼吸功能,增加肺通气量,改善呼吸功能,减轻呼吸功消耗,节约心脏储备能力的装置。不过呼吸机在使用的时候还是要注意一些常见问题,也是很重要的问题哦~首先,呼吸机的组成主要分为三部分:主机,加温加湿器,鼻罩(面罩或者口鼻罩)。下面是详细使用方法介绍。 首次使用 第一次使用呼吸机时可能会感觉不适,不过这属正常现象。可以做几次深呼吸,经过一段时间的自我调整,患者会逐渐适应这种新的感觉。 起床:如果夜间需要起床,请取下面罩并关掉呼吸机。继续睡眠时,请重新戴好面罩并打开呼吸机。

口部漏气: 如果使用鼻面罩,治疗期间尽量保持嘴部闭合。口部漏气会导致疗效降低。如果口部漏气问题不能解决,则可以使用口鼻面罩或使用下颚带。 面罩佩戴 面罩佩戴良好且舒适时,呼吸机的疗效最好。漏气会影响疗效,因此消除漏气非常重要。戴上面罩之前,请清洗面部,除去面部过多的油脂,这有助于更好地佩戴面罩且能延长面罩垫的寿命。5 干燥问题 在使用过程中,可能会出现鼻部、口部和咽部干燥现象,这一点在冬季更为明显。通常,加上一个湿化器即可消除以上不适。6 鼻部刺激 在治疗的前几周,可能会出现打喷嚏、流鼻涕、鼻塞等现象。通常,加上一个湿化器即可解决以上问题。 国际旅行8 大部分的呼吸机都有一个内置电源转换器,适用电压为100-240V,50-60Hz,使呼吸机能在全球通用。国际旅行时,无需特殊调节,但可能会需要一个电源插头转换器。 各种呼吸机价格详情 瑞思迈S9 AutoSet单水平全自动呼吸机,市场价:11250元北京康迈思商城售价:¥7500元

2018自救呼吸器使用方法

2018自救呼吸器使用方法 【宏晟消防】什么是自救呼吸器呢?自救呼吸器有何用途?近期小编收到很多读者朋友的咨询,经过一番查阅资料得知自救呼吸器是电信、电力、商场、银行、娱乐场所、高层住宅、邮政、机械、地铁、宾馆、酒家、水运、森林、炼油、化工等企事业单位发生火灾事故时,个人的自救、互救、逃生器具。接下来我们就请专业批发销售自救呼吸器厂家山东宏晟消防科技有限公司技术人员为大家分享2018自救呼吸器使用方法,一起来看下文吧。 【2018自救呼吸器优点及特点】 ①自救吸器的防护性能在国内同类产品中防护时间长,佩带舒适,吸气阻力〈700Pa,头罩由阻燃、防辐射热铝成,颈圈由弹性很好的宽松筋带组成。 ②特制镜片可以耐热、耐寒、阻燃、、防雾,视野清晰。

③口鼻罩按不同人脸型综合设计可与不同类型的脸型吻合,泄漏极小。 ④排气阀塑料级材料强度大且阻燃,阀片由硅橡胶制成,气密性好,安全可靠。 ⑤药罐由不锈钢制成,滤烟效果超过99。 ⑥性价比高,使用期限超过3年的应进行更新。 ⑦自救呼吸器的试制成功在国内处于水平,可换药的60型头罩为国内。 【2018自救呼吸器使用方法】 1、当发生火灾时,立即沿包装盒开启标志方向打开盒盖,撕开包装袋取出呼吸装置。 2、沿着提醒带绳拔掉前后两个红色的密封塞。 3、将呼吸器套入头部,拉紧头带,迅速逃离火场。

4不必惊慌保持冷静,打开包装盒,取出呼吸器。 5.拨掉滤毒罐前孔和后孔的两个红色橡胶塞,将头罩戴进头部,向下拉至颈部,滤毒罐应置于鼻子的前面。 【2018自救呼吸器使用注意事项】 1、备用状态时,不准随意搬动、敲击、拆装等。 2、产品仅供一次性使用,不能用于工作保护。 3、使用火灾场所中氧浓度不低于17。 4、应存放于显目、易取、通风、干燥、温度适宜的位置。 5、有效使用期为5年。 【2018自救呼吸器产品用途】

savina呼吸机介绍与使用说明

savina呼吸机介绍及使用说明 適用成人及小孩。 具LCD螢幕,可觀察即時波形及方便操作。 高機動性:內建空壓機及電池,可移動使用。 多種呼吸模式。(可搭配 BIPAP、Autoflow、NIV) 從普通病房到加護病房都適用。 具儲存完整波形及資料的功能。 Savina 呼吸机性能 通气模式 IPPV (CMV) IPPVAssist (A/C) SIMV SIMV ASB (SIMVPS) CPAP CPAPASB (CPAPPS) BIPAP (PCV+) (可选) BIPAPASB (PCV+PS) (可选) 增强作用 AutoFlow –容量控制模式中自动调节吸气流速(可选) 病人类型 成人 小儿 呼吸频率 2 - 80/min 吸气时间 0.2 -10 s 潮气量(BTPS) 0.05 - 2.0 L 吸气流速 0 -180 L/min 吸气压力 0 - 100 mbar PEEP/间歇性 PEEP 0 - 35 mbar 压力支持/ASB 0 - 35 mbar(相对于PEEP) 流量加速 5 - 200 mbar/s O2浓度 21 -100 Vol.% 触发灵敏度 1 -15 L/min BTPS –Body Temperature Pressure Saturated.Measured values relating to the conditions of the patient lung,Body temperature 37 °C, steam-saturated gas,ambient pressure. 1mbar = 100 Pa 监测 气道压力峰压, 平台压, 平均压, PEEP,(0 - 100 mbar) 分钟通气量 (MV) 总MV, MVspon,(0 - 100 L/min) , BTPS

氧气呼吸器的使用方法

氧气呼吸器的使用方法 使用方法: (1)打开气瓶阀,检查气瓶气压(压力应大24MPa),然后关闭阀门,放尽余气。 (2)气瓶阀门和背托朝上,利用过肩式或交叉穿衣式背上呼吸器,适当调整肩带的上下位置和松紧,直到感觉舒适为止。 (3)插入腰带插头,然后将腰带一侧的伸缩带向后拉紧扣牢。 (4)撑开面罩头网,由上向下将面罩戴在头上,调整面罩位置。用手按住面罩进气口,通过吸气检查面罩密封是否良好,否则再收紧面罩紧固带,或重新戴面罩。 (5)打开气瓶开关及供给阀。 (6)将供气阀接口与面罩接口吻合,然后握住面罩吸气根部,左手把供气阀向里按,当听到"咔嚓"声即安装完毕。 (7)应呼吸若干次检查供气阀性能。吸气和呼气都应舒畅,无不适感觉。 注意事项: (1)正确佩戴面具,检查合格即可使用,面罩必须保证密封,面罩与皮肤之间无头发或胡须等,确保面罩密封。 (2)供气阀要与面罩按口粘合牢固。 (3)使用过程中要注意报警器发出的报警信号,听到报警信号后应立即撤离现场。

附参考 1.1佩戴步骤 1. 1. 1检查气瓶的压力表指针应在绿色格之内,呼吸器各部件完好,按要求佩戴好呼吸器,半面具完全贴和在面部,调整好头带。 1.2面具测漏 1.2.1将手掌贴在面具的接气口机构上 1.2.2吸气然后屏住呼吸几秒钟,面具应该贴在脸上不动并保持一段时间,证明没有泄漏 1.2.3如果面罩滑动说明有泄漏,调整面具头带后,重新测漏直至不漏为止。 1.3呼吸测压 1.3.1打开气瓶的阀门,确定胸前压力表指针在绿色格子之内。1.3.2将需供阀从腰部固定器中取出塞入面具上的机构内听到“喀哒”声表示需供阀连接面具到位。 1.3.3作一急促的深呼吸去起动打开呼吸阀。 1.3.4反复呼吸12次检查空气流量。 1.3.5快速转动红色圆钮打开时你会感觉空气的气流有所增加。以上检测完全通过,你可放心使用了。

呼吸机简明使用说明

呼吸机简明使用说明集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

呼吸机简明使用说明 缩写和技术术语

技术参数 环境条件 使用:温度:10 –40 °C 相对湿度:10 – 95 % 大气压:500 – 1060 hPa 使用仪器前,须使仪器的温度达到室温 存储:温度:5 –45 °C 相对湿度:10 – 95 % 大气压:500 – 1060 hPa 防潮,防尘,防霜冻 常规条件 安全防护分级:II B 测试/保养间隔:6个月 规格 (高 x 宽 x 长) 主机:363 x 305 x 358 带移动支架:560 x 1165 x 660 重量:主机:千克使用位置:水平位置

工作参数 电源 电源供给:防电击插头及插座 电源电压:90 – 240伏交流,50 – 60赫兹 功率消耗:180伏安 电流消耗:3安 保险: 2 x 安,慢熔 充电电池 类型:铅-胶可充电电池 重量:千克 额定电压:12伏 额定功率:17安时 保险:10安 充电时间:18小时 工作时间:约1小时,加热 约小时,不加热 车载电源要求 电压:12伏直流 电流消耗:10安 显示屏幕:液晶,128 x 240像素 气源 氧气:工作压力:– 6巴,±巴 呼吸机进气螺纹接口:M 12 x 1/ NIST,内螺纹 气源接口:直角接口(DIN 13260),或用户自备通气模式 Standby 待命状态 CMV 控制指令通气 SIMV 同步间歇指令通气 A/CV 辅助控制和指令通气 C / BKUP 有后备通气的持续气道内正压通气模式 ASB 辅助自主呼吸 N / CPAP 经鼻持续气道内正压通气模式 仪器设置 工作方式:开放系统恒流通气 半开放系统恒容通气 流量传感器:D,C 后备时间:2,4,8,16,60秒 参数设置 测量接口 (标准条件温度23°C和大气压巴) 氧气范围:0 – 30 单位:升/分 空气范围:0 – 30 单位:升/分 参数单位范围增量 Inspiration time吸气时秒– 2

正压式呼吸器正确使用方法

空气呼吸器在使用前应做好以下准备: 1、检查空气呼吸器各组部件是否齐全,无缺损,接头、管路、阀体连接是否完好。 2、检查空气呼吸器供气系统气密性和气源压力数值。 3、关闭供气阀的旁路阀和供气阀门,然后打开瓶阀开关,将全面罩正确地戴在头部深吸一口气,供气阀的阀门应能自动开启并供气。 4、检查气瓶是否固定牢固。 1.佩戴呼吸器 1.1从包装箱中取出呼吸器,检查系统的完整性; 1.2检查气瓶压力,观察瓶阀上压力表的读数。如果配备的是不带表瓶阀或自锁瓶阀,打开瓶阀,观察呼吸器具上高压表的读数; 1.3使气瓶的平地靠近自己,气瓶有压力表的一端向外,让背带的左右肩带套在两手之间,两手握住背板的左右把手,将呼吸器举过头顶,两手向后向下弯曲,将呼吸器落下,使左右肩带落在肩膀上。 1.4拉下肩带使呼吸器处于合适的高度,也不需要调得过高,感觉舒服即可; 1.5插好胸带。插好腰带,向前收紧调整松紧至合适。 2.12.检查报警哨的报警性能 2.1确保供气阀是关闭的; 2.2打开气瓶阀约半圈,观察压力表,待压力稳定后关闭气瓶阀(图8); 2.3报警性能检查:用左手的手心将供气阀的出口堵住,留一小缝,右手轻压供气阀的排气按钮慢慢排气,观察压力表的变化,当压力下降到约6.5MP时,应减小排气量,注意观察压力表,同时注意报警哨声响,报警哨应在5.5±0.5MP 之间发出声响; 2.4检查好报警性能后,打开气瓶阀至少两圈。 3.佩戴面罩并检查佩戴气密性 3.1拿出面罩,将面罩的头带放松; 3.2将面罩的颈带挂在脖子上; 3.3套上面罩,使下颌放入面罩的下颌承口中; 3.4拉上头带,使头带的中心处于头顶中心位置; 3.5拉紧下面两根头带至合适松紧,注意拉紧方向应向后; 3.6拉紧中间两根头带至合适松紧; 3.7拉紧上部一根头带至合适松紧; 3.8检查佩戴的气密性:用手心将面罩的进气口堵住,深吸一口气,如感到面罩有向脸部吸紧的现象,且面罩内无任何气流流动,说明面罩和脸部是密封的。 4.连接供气阀,进入工作现场 4.1将供气阀的出气口对准面罩的进气口插入面罩中,听到轻轻一声卡响表示供气阀和面罩已连接好; 4.2深吸一口气将供气阀打开; 4.3呼吸几次,无感觉不适,就可以进入工作场所; 4.4工作时注意压力表的变化,如压力下降至报警哨发出声响,必须立即撤回到安全场所。 5.脱卸呼吸器 5.1工作完后,回到安全场所;

正压式空气呼吸器使用方法

正压式空气呼吸器的使用方法 1.佩戴呼吸器 1.1从包装箱中取出呼吸器,检查系统的完整性; 1.2检查气瓶压力,观察瓶阀上压力表的读数。如果配备的是不带表瓶阀或自锁瓶阀,打开瓶阀,观察呼吸器具上高压表的读数; 注意:气瓶中压力不得低于27MPa,如果低于27MPa ,会影响使用时间,因此,每次使用完后,应立即将气瓶充满气。而且,如果气瓶充满气后,一个月后气如果压力低于27MPa ,必须检查气瓶阀的泄漏情况,方法是将气瓶充气后使气瓶阀浸在水中,观察有无气泡产生。 1.3使气瓶的平地靠近自己,气瓶有压力表的一端向外,让背带的左右肩带套在两手之间,两手握住背板的左右把手,将呼吸器举过头顶,两手向后向下弯曲,将呼吸器落下,使左右肩带落在肩膀上。(也可使用类似学生背书包的方法佩戴呼吸器;) 1.4拉下肩带使呼吸器处于合适的高度,也不需要调得过高,只要感觉舒服即可(图6); 1.5插好胸带(如有的话)。插好腰带,向前收紧调整松紧至合适(图7)。 图6 图7 2.检查报警哨的报警性能 2.1确保供气阀是关闭的; 2.2打开气瓶阀约半圈,观察压力表,待压力稳定后关闭气瓶阀(图8); 2.3报警性能检查:用左手的手心将供气阀的出口堵住,留一小缝,右手轻压供气阀的排气按钮慢慢排气,观察压力表的变化,当压力下降到约6.5MP 时,应减小排气量,注意观察压力表,同时注意报警哨声响,报警哨应在5.5±0.5MP 之间发出声响(图9); 2.4检查好报警性能后,打开气瓶阀至少两圈。

图8 图9 3.佩戴面罩并检查佩戴气密性 3.1拿出面罩,将面罩的头带放松; 3.2将面罩的颈带挂在脖子上; 3.3套上面罩,使下颌放入面罩的下颌承口中; 3.4拉上头带,使头带的中心处于头顶中心位置(图10); 3.5拉紧下面两根头带至合适松紧,注意拉紧方向应向后; 3.6拉紧中间两根头带至合适松紧(图11); 3.7拉紧上部一根头带至合适松紧; 3.8检查佩戴的气密性:用手心将面罩的进气口堵住,深吸一口气,如感到面罩有向脸部吸紧的现象,且面罩内无任何气流流动,说明面罩和脸部是密封的(图12)。 图10 图11

正压式空气呼吸器的使用方法

正压式空气呼吸器的使用方法 空气呼吸器在使用前应做好以下准备: 1、检查空气呼吸器各组部件是否齐全,无缺损,接头、管路、阀体连接是否完好。 2、检查空气呼吸器供气系统气密性和气源压力数值。 3、关闭供气阀的旁路阀和供气阀门,然后打开瓶阀开关,将全面罩正确地戴在头部深吸一口气,供气阀的阀门应能自动开启并供气。 4、检查气瓶是否固定牢固。 方法/步骤1 1.佩戴呼吸器 1.1从包装箱中取出呼吸器,检查系统的完整性; 1.2检查气瓶压力,观察瓶阀上压力表的读数。如果配备的是不带表瓶阀或自锁瓶阀,打开瓶阀,观察呼吸器具上高压表的读数; 1.3使气瓶的平地靠近自己,气瓶有压力表的一端向外,让背带的左右肩带套在两手之间,两手握住背板的左右把手,将呼吸器举过头顶,两手向后向下弯曲,将呼吸器落下,使左右肩带落在肩膀上。 1.4拉下肩带使呼吸器处于合适的高度,也不需要调得过高,只要感觉舒服即可; 1.5插好胸带。插好腰带,向前收紧调整松紧至合适。 2.检查报警哨的报警性能 2.1确保供气阀是关闭的; 2.2打开气瓶阀约半圈,观察压力表,待压力稳定后关闭气瓶阀(图8); 2.3报警性能检查:用左手的手心将供气阀的出口堵住,留一小缝,右手轻压供气阀的排气按钮慢慢排气,观察压力表的变化,当压力下降到约6.5MP时,应减小排气量,注意观察压力表,同时注意报警哨声响,报警哨应在5.5±0.5MP之间发出声响; 2.4检查好报警性能后,打开气瓶阀至少两圈。 3.佩戴面罩并检查佩戴气密性 3.1拿出面罩,将面罩的头带放松; 3.2将面罩的颈带挂在脖子上; 3.3套上面罩,使下颌放入面罩的下颌承口中; 3.4拉上头带,使头带的中心处于头顶中心位置; 3.5拉紧下面两根头带至合适松紧,注意拉紧方向应向后; 3.6拉紧中间两根头带至合适松紧;

简易呼吸机的使用方法

简易呼吸机的使用方法 呼吸机使用是为了:1、维持和增加机体通气量 2、纠正威胁生命的低氧血症 工具/原料 简易呼吸机 呼吸机操作步骤: 抢救者站在患者头顶部,是病人的头后仰,托起病人下颌 将简易呼吸机连接氧气,氧流量为8--10L每分钟,扣紧面罩 一手以EC法固定面罩,另一手有规律地挤压呼吸囊,使气体通过吸气瓣膜进入病人肺部,放松时肺内气体随呼气瓣膜排出,每次送气量为400---600ml,挤压频率为每分钟成人12---20次,小儿酌情增加。

注意事项 面罩要扣紧鼻部 若病人有自助呼吸,应于之同步,即病人吸气初顺势挤压呼气囊,达到一定潮气量时便完全松开气囊,让病人自主完成呼气动作 简易呼吸器的清洁维护 1、保持呼吸机清洁干燥,固定放置的急救柜最下层抽屉内。 2、定时检查各部件功能,确保处于备用状态。 3、使用前,应按操作流程要求再次检查简易呼吸器是否处于备用状态。 4、使用后,面罩及球体用1:500含氯消毒剂浸泡消毒后备用。 5、如遇单向阀被呕吐物、分泌物污染物污染时,快速用力压缩球体数次,将污 物吹出。在用清水冲洗干净,然后送供应室消毒。

开口器的用途的维护 开口器,又称张口器,是用于呼吸困难或者神志不清需洗胃等时用的撑开口腔的器械。开口器本体呈“U”形,开口器本体的两个端部分别固接有一个手柄。开口器本体具有弹性,开口器本体的两个侧臂在受到由外界压力的压迫时可以向开口器本体的内部或外部中弯曲,当外部压力消失时,开口器本体的两个侧臂再恢复到原来的位置。为了防止医生在把持手柄时手部打滑,手柄的外侧面上设有麻纹。 采用这种结构的一次性口腔开口器,结构简单、操作简便,且成本低廉,适用于各种口腔医疗院所使用,特别适合在口腔医疗手术中使用。

呼吸机简明使用说明书1

呼吸机简明使用说明 缩写和技术术语

技术参数 环境条件 使用:温度:10 –40 °C 相对湿度:10 – 95 % 大气压:500 – 1060 hPa

使用仪器前,须使仪器的温度达到室温 存储:温度:5 –45 °C 相对湿度:10 – 95 % 大气压:500 – 1060 hPa 防潮,防尘,防霜冻 常规条件 安全防护分级:II B 测试/保养间隔:6个月 规格 (高 x 宽 x 长) 主机:363 x 305 x 358 带移动支架:560 x 1165 x 660 重量:主机:23.5 千克 使用位置:水平位置 工作参数 电源 电源供给:防电击插头及插座 电源电压:90 – 240伏交流,50 – 60赫兹 功率消耗:180伏安 电流消耗:3安 保险: 2 x 3.15安,慢熔 充电电池 类型:铅-胶可充电电池 重量: 6.2千克 额定电压:12伏 额定功率:17安时 保险:10安 充电时间:18小时 工作时间:约1小时,加热 约3.5小时,不加热 车载电源要求 电压:12伏直流 电流消耗:10安 显示屏幕:液晶,128 x 240像素 气源 氧气:工作压力: 1.5 – 6巴,± 0.5巴 呼吸机进气螺纹接口:M 12 x 1/ NIST,螺纹 气源接口:直角接口(DIN 13260),或用户自备通气模式 Standby 待命状态 CMV 控制指令通气 SIMV 同步间歇指令通气 A/CV 辅助控制和指令通气 C / BKUP 有后备通气的持续气道正压通气模式 ASB 辅助自主呼吸 N / CPAP 经鼻持续气道正压通气模式

仪器设置 工作方式:开放系统恒流通气 半开放系统恒容通气 流量传感器:D,C 后备时间:2,4,8,16,60秒 参数设置 测量接口 (标准条件温度23°C和大气压1.013巴) 氧气围:0 – 30 单位:升/分 空气围:0 – 30 单位:升/分 参数单位围增量Inspiration time吸气时 秒0.35 – 2 0.05 间 秒0.5 – 2 0.05 Expiration time呼气时 间 2 – 60 0.5 Trigger触发升/分0.8 – 8.0 0.1 Temperature温度°C30 – 40 0.2 病人单元 PEEP呼气末正压:0 – 10毫巴 PLATEAU吸气平台压:15 – 60毫巴 紧急放气阀:–2至–4毫巴时打开 湿化瓶容积:850毫升 加温湿化器:12伏 / 35瓦 加热管路:12伏/ 20瓦 测量参数显示 曲线/波形显示:类型:压力波形(P – t曲线) 流速波形(V’ – t曲线) 显示比例:Y轴:12,30,60,90 X轴:4,8,16秒 报警界限

简易呼吸器的使用方法

简易呼吸器的使用方法 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

简易呼吸器的使用方法 一、目的 1、增加或辅助病人的自主呼吸。 2、改善病人的气体交换功能。 3、纠正病人的低氧血症,缓解组织缺氧状态。 4、为临床抢救治疗争取时间。 二、适应症 1、心肺复苏。 2、各种中毒所致的呼吸抑制。 3、神经肌肉疾病所致的呼吸麻痹。 4、呼吸系统疾病所致的呼吸抑制。 5、各种大型手术。 6、呼吸机使用前或停用呼吸机时。 三、操作流程 (一)、评估 1、病人的病情、年龄、体症、呼吸道是否通畅,呼吸状况(频率、节律、深浅度、有无自主呼吸),意识状态,脉搏,皮肤黏膜颜色等。 2、环境温度、湿度、空气流通性是否良好。 3、物品性能良好。 4、医护人员做好安全防护。 (二)、准备

1、操作者:有急救意识,做好自我保护,动作迅速。 2、物品:简易人工呼吸器(面罩、呼吸囊、接管)、弯盘、氧气装置、口咽通气管、开口器、舌钳、压舌板。 3、病人:仰卧位,头后仰,气道开放。 4、环境:通风良好,有足够操作的空间。 (三)操作程序 1、意识判断 要求声音响亮有效的对着左右耳朵重复呼唤两遍,同时拍打患者双肩,然后用大拇指掐压患者人中2次。若确定患者无反应时应高声呼救:“快来人,准备抢救!” 2、摆放好抢救体位 去枕、解衣、摆放、仰卧 3、清理患者口腔 打开患者口腔,检查口腔内有无异物,若口腔内有异物时必须将病人头偏一侧,用手打开病人口腔,掏出异物。 4、徒手开放气道 用压头抬颌法开放气道,左手立掌法压住患者前额,右手中食指托着下巴一侧,打开气道。若病人深度昏迷,无法打开口腔时则要用开口器打开口腔。 5、呼吸、脉搏的判断 判断患者呼吸时要做到“一看二听三感觉”即眼看胸廓起伏,耳听呼吸声,面感气息,并触摸是否有颈动脉搏动。判断时,用耳贴近病人口鼻,

呼吸机使用技术操作规范

呼吸机使用技术操作规范 一、操作目的 1、改善通气。 2、改善换气。 3、改善呼吸功能。 二、评估要点 1、评估患者病情、意识、生命体征及体重。 2、评估患者人工气道状况。 3、评估患者合作程度,对清醒患者进行解释,取得患者配合。 三、物品准备 呼吸机、已消毒呼吸机管道及湿化罐、无菌蒸馏水、模拟肺、听诊器、呼吸气囊。 四、操作要点 1、核对医嘱,准备用物。 2、洗手,戴口罩。 3、正确连接呼吸机各管道,湿化罐内备无菌蒸馏水至相应标识处。 4、核对患者床号、姓名、住院号,评估患者。再次洗手。 5、携用物至患者床旁,再次核对,协助患者取合适体位。 6、接通电源和氧源,开压缩机开关、面板开关及湿化罐开关。设置湿化罐温度 32-36℃。 7、呼吸机自检后根据病情选择适宜的通气模式;A/C(VCV、PCV)、SIMV、PSV 等。 8、根据患者病情遵医嘱设定相应的参数(潮气量、呼吸频率、

吸气时间、触发灵敏度、氧浓度等)。 9、根据医嘱设定报警参数(分钟通气量、气道压力、呼气潮气量、窒息时间等)。 10、模拟肺试机后,连接患者。听诊双肺呼吸音是否一致,观察患者两侧胸壁运动,通气、换气功能改善情况及呼吸机工作情况,根据病情及动脉血气分析结果及时调整呼吸机通气模式和参数。 11、及时、准确、有效处理呼吸机报警。 12、洗手,取口罩。 13、密切观察患者病情变化。 14、记录患者生命体征和呼吸机各参数。 15、操作速度;完成时间限 10 分钟以内。 五、操作要点 1、对清醒患者告知操作目的,指导患者进行有效呼吸。 2、指导患者通过手势或纸笔表达自己的需要。 六、注意事项 1、连续使用状态下呼吸机管道、湿化器等按消毒标准要求定期更换。 2、严禁向呼吸机湿化罐内加入生理盐水,以免产生结晶。 3、使积水杯处于呼吸机管道最低处,及时倾倒积水杯内的冷凝水,严禁将管道内的冷凝水倒入患者气道内和湿化罐内。 4、吸痰时,应严格无菌操作,吸痰前后予100%氧气吸入 2 分钟。 5、使用呼吸机的患者床边备呼吸气囊。

正压式空气呼吸器的用途及使用方法(最新版)

正压式空气呼吸器的用途及使用方法(最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0105

正压式空气呼吸器的用途及使用方法(最 新版) 第一节概述 1.主要用途及适用范围 1.1主要用途 RHZK系列正压式消防空气呼吸器(以下简称空气呼吸器)是一种自给正压式空气呼吸器,广泛应用于消防、化工、船舶、石油、冶金、矿山、交通等部门,是消防员或受过专业培训人员在浓烟毒气、蒸气或缺氧等环境中,从事灭火、抢险救灾和救护工作时对其呼吸器官进行保护的高性能个人防护装备。 1.2适用范围 a.浓烟缺氧及任何有受毒气、烟气、蒸气污染的大气环境中; b.-30°C~+60°C、相对湿度0~100%、大气压力70KPa~125KPa

的大气环境中。 2.主要性能指标 型号 气瓶工作压力 (MPa) 气瓶容积 (L) 储气量 (L) 使用时间 (min) 报警压力 (MPa) 重量 (Kg) RHZK5/30

30 5 1500 40~50 5.5±0.5 --------12 RHZK6/30 30 6 1800 50~60 5.5±0.5 14 RHZK6.8/30 30 6.8

空气呼吸器使用方法

空气呼吸器使用方法 正压式消防空气呼吸器主要适用于消防、化工、船舶、仓库、实验室、自来水厂、油气田等部门。在火灾、有毒有害气体及窒息等恶劣环境中,工作人员佩戴该呼吸器可以自救逃生、进行事故处理及工业性作业等工作。 一、特点 1、供气阀供气流量大,性能稳定,呼气阻力小,使佩戴使用者在任何环境下作业都感到呼吸轻松自如。 2、面罩视野宽,透明清晰:胶体柔软,密封效果好。 3、面罩与供气阀的连接采用插口式,使装卸速度快,操作十分简便。 4、面罩上设有传声膜片,使佩戴者清晰的通讯效果。 5、所有的连接都采用快速插接,操作十分简便、快捷。 主要技术参数 1、气瓶公称工作压力30MPa 2、气瓶水容积 6.8L 3、呼吸时面罩内压力 (1)流量为零时100Pa~600Pa (2)流量从零增加到200L/min > 0Pa 4、呼吸阻力(流量为30L/min)< 680Pa 5、报警起始压力4MPa~6MPa 6、重量(不包括空气)<8.0kg 7、气瓶材料碳纤维复合气瓶 8、主要外形尺寸(不包括面具)550mm×140mm×185mm 结构及工作原理 1、工作原理本呼吸器是以压缩空气为供气源的隔绝开路式呼吸器。当打开气瓶阀时,贮存在气瓶内的高压空气通过气瓶阀进入减压器组件,同时,压力显示组件气瓶空气压力。高压空气被减压为中压,中压空气经中压管进入安装在面罩上供气阀,供气阀根据使用者的呼吸要求,能提供大于200L/min 的空气。同时,面罩内保持高于环境大气的压力。当人吸气时,供气阀膜片根据使用者的吸气而移动,使阀门开启,提供气流;当人呼气时,供气阀膜

片向上移动,使阀门关闭,呼出的气体经面罩上的呼气阀排出,当停止呼气时,呼气阀关闭,准备下一次吸气。这样就完成了一个呼吸循环过程。供气阀上还没有节省气源的装置:即防止在系统接通(气瓶阀开启)戴上面罩之前气源的过量损失。使用者转动开关,把膜片抬起,使供气阀关闭;使用者戴上面罩吸气产生足够的负压,使膜片向下移动,将供气阀阀门打开,向使用者供气。 2、结构 型号RHZK6/30含义如下:R为消防员个人装备代号,H为产品类别代号(H为呼吸器),ZK为特征代号(Z为正压式,K为空气),6为气瓶容积参数,30为气瓶公称工作压力参数(MPa)。 1)气瓶和瓶阀组 气瓶材料为碳纤维复合材料,额定储气压力为30MPa,容积为6.8L。气瓶阀上装有过压保护膜片,当空气瓶内压力超过额定储气压力的1.5倍时,保护膜片自动卸压;气瓶阀上还设有开启后的止退装置,使气瓶开启后不会被无意地关闭。 注意: (1)不准在有标记的高压空气瓶内充装任何其他种类的气体,否则,可能发生爆炸。 (2)避免将高压空气瓶暴露在高温下,尤其是太阳直接照射下。 (3)禁止沾染任何油脂。 (4)每个高压空气气瓶附有高压空气瓶合格证,必须妥善保管,不得丢失。 (5)高压空气瓶和瓶阀每三年须进行复检,复检可以委托制造厂进行。(6)不得改变气瓶表面颜色。 (7)避免气瓶碰撞。 (8)严禁混装、超装压缩空气。 (9)如无充气设备,可到国家认可的充气站充气。 减压器组件安装于背板上,通过一根高压管与气阀相连接减压器的主要作用是将空气瓶内的高压空气降压为低而稳定的中压,供给供气阀使用。本减压

正压式空气呼吸器使用方法及注意事项

正压式空气呼吸器使用方法及注意事项 一、使用前检查 1、检查气源压力:打开气瓶阀开关,观察高压表,要求气瓶内空气压力为27~30MPa。如气瓶内气压不足,应到专业充气站充至规定的压力。 2、检查整机系统气密性:打开气瓶阀开关,观察压力表的读数,稍后关闭。 1min内表示压力下降不大于2MPa,表明系统气密良好。此过程中供气阀和旁通阀均应处于关闭状态。 3、检查残气报警装置:打开气瓶阀开关,稍后关闭。按下供气阀旁通阀缓慢 排气,观察压力表指针的下降,当压力降至5~6MPa时,报警器应发出哨笛报警信号。 4、检查全面罩的密封性:佩戴好全面罩,用手掌心无助面罩接口处,或在不 打开瓶头阀的情况下深呼吸数次,感到吸气困难,证明全面罩气密性良好。 5、检查供气阀的供气情况:打开气瓶阀开关,佩戴好面罩-供气阀,深吸一口气,供气阀“啪”的一声即打开供气。深呼吸几次检查供气阀性能,吸气和呼气都应舒畅无不舒适感觉。在这个过程中,供气阀应随佩戴人员的呼吸自由地供气和停气,即在吸气时供气,在呼气和屏住呼吸时停止供气,以保证压缩空气的有效利用。关闭供气阀开关,按下旁通阀开关,面罩内有股气流持续供气,供气阀开关关闭后持续气流终止,证明供气阀和放气阀工作正常。 6、旁通阀的检查:关闭供气阀手动开关。按下供气阀上放气开关,检查应有 连续的气流流出,然后关闭。 7、检查完好状态: ①背带和全面罩头带完全放松, ②气瓶正确定位并牢靠地固定在背托上,③高压管路和中压管路无扭结或其他损坏,④全面罩的面窗应清洁明亮。⑤接通快速接头,打开气阀开关。 二、使用方法

1、将空气呼吸器气瓶瓶底向上背在肩上。 2、将大拇指插入肩带调节带的扣中向下拉,调节到背负舒服为宜。 3、插上塑料快速插口,腰带系紧度以舒适和背托不摆动为佳(首次佩戴前预先调节腰带两侧的三档口)。 4、把下巴放入面罩,由下向上拉上头网罩,将网罩两边的松紧带拉紧,使全面罩双层密封环紧贴面部。 5、深吸一口气将供气阀打开。呼吸几次,感觉舒适、呼吸正常后即可进入操作区作业。 6、使用结束后的卸装方法: ①将面罩两边的松紧带扣向外扒开,松开松紧带,将面罩从下向上脱下。②将供气阀上带有指示箭头的手动开关按下,关闭供气阀。③将腰带插头从插座中退出。 ④放松肩带,将呼吸器从肩上卸下。 ⑤关闭气瓶阀开关,打开旁通阀,放空系统管内余气,再关闭旁通阀。三、使用中应 三、注意事项 1、使用前应经过专业培训,合格后方可佩戴使用。 2、使用过程中必须确保气瓶阀处于完全打开状态。 3、必须经常查看气瓶气源压力表,一旦发现高压表指针快速下降或发现不能排除的漏气时,应立即撤离现场。 4、使用中感觉呼吸阻力增大、呼吸困难、出现头晕等不适现象,以及其他不明原因时应及时撤离现场。 5、使用中听到残气报警器哨声后,应尽快撤离现场(到达安全区域时,迅速卸下面罩)。 6、在作业过程中供气阀发生故障不能正常供气时,应立即打开旁通阀作人工供气,并迅速撤出作业现场。

呼吸机说明书

NPPV Workshop 理论 一、无创通气的呼吸机要求 二、无创通气的病人要求 三、鼻/面罩的选择和使用 四、附件的选择和使用 五、对病人及家属的交代工作 六、常见问题的解决 七、使用呼吸机后的监测和调整

无创通气的呼吸机要求 ●反应灵敏、供气稳定、减少病人的呼吸做功、满足各种不同的通气需求 ●介绍Auto-Trak ?全自动的触发机制 ?全自动的切换机制 ?全自动的漏气补偿机制

无创通气的病人要求 ●应用指征 ?临床表现:呼吸困难、动用辅助呼吸肌肉、胸腹矛盾运动 ?血气表现:pH<7.35;PaCO2>45mmHg;PaO2<60mmHg或SpO2<90% ●适应症 ?COPD急性加重期和稳定期 ?有创通气提前拔管之序惯治疗 ?有创通气拔管失败 ?急、慢性心功能不全 ?睡眠呼吸暂停综合症 ?低通气 ?ALI-ARDS ?高龄患者围手术期的通气支持 ?神经肌肉疾病导致的呼吸功能不全 ?器官移植后的通气支持 ?宫内窘迫 ?肺间质纤维化 ?胸廓畸形 ?肺减容手术后的通气支持 ?矽肺等 ●禁忌症 ?绝对禁忌症 ◆心跳呼吸停止 ◆自主呼吸微弱、昏迷 ◆误吸可能性高 ◆合并其他器官功能衰竭 ◆面部创伤/手术/畸形 ◆不合作 ?相对禁忌症 ◆气道分泌物多/排痰障碍 ◆严重感染 ◆极度紧张 ◆严重低氧血症,PaO2<45mmHg ◆严重酸中毒,pH<7.20 ◆近期上腹部手术后 ◆严重肥胖 ◆上呼吸道机械性梗阻 ●采集详细的病史 ?病史:原发病、现病史 ?体格检查 ◆神志、血压、脉搏、心率、呼吸频率、呼吸节律、SpO2 ◆皮肤颜色,末梢循环情况 ◆呼吸运动:有无三凹征、胸腹矛盾运动

简易呼吸器的使用方法

简易呼吸器的使用方法 一、简易呼吸器的组成 (1)单向阀(2)球体(3)氧气储气阀(4)氧气储气袋(5)氧气导管(6)面罩 其中氧气储气阀及氧气储气袋必须与外接氧气组合,如未接氧气时应将两组组件取下。 二、操作方法 1.将病人仰卧,去枕、头后仰。 2.清除口腔与喉中假牙等任何可见的异物。 3.插入口咽通气道,防止舌咬伤和舌后坠。 4.抢救者应位于患者头部的后方,将头部向后仰,并托牢下额使其朝上,使气道保持通畅。 5将面罩紧扣口鼻,并用拇指和食指紧紧按住,其它的手指则紧按住下额。 6.用另外一只手挤压球体,将气体送入肺中,规律性的挤压球体提供足够的吸气/呼气时间(成人:12~15次/分,小孩:14~20次/分) 7.抢救者应注意患者是否有如下情形已确认患者处于正常的换气。 (1)注视患者胸部上升与下降(是否随着挤压球体而起伏) (2)经由面罩透明部分观察患者嘴唇与面部颜色的变化。 (3)经由透明盖,观察单向阀工作是否正常。 (4)在呼气当中,观察面罩内是否呈雾气状。 三、操作中的注意事项 1.有无紫绀的情况 2.适当的呼吸频率 3.鸭嘴阀是否正常工作 4.连接氧气时,注意氧气是否接实 四、清洁与消毒 1.将简易呼吸器各配件依顺序拆开,置入2%戊二醛碱性溶液中浸泡4~6小时。 2.取出后使用灭菌蒸馏水冲洗所有配件,去除残留的消毒剂。 3.储气袋只需擦拭消毒即可,禁用消毒剂浸泡,因易损坏。 4.如遇特殊感染患者,可使用环氧乙烷熏蒸消毒。 5.消毒后的部件应完全干燥,并检查是否有损坏,将部件依顺序组装。 6.做好测试工作,备用。 五、测试 1.取下单向阀和储气阀时,挤压球体,将手松开,球体应很快的自动弹回原状。 2.将出气口用手堵住,挤压球体时,将会发觉球体不易被压下。如果发觉球体慢慢地向下漏气,请检查进气阀是否组装正确。 3.将单向阀接上球体,并在患者接头处接上储气袋,挤压球体,单向阀会张开,使得储气袋膨胀,如储气袋没有膨胀,请检查单向阀、单向阀、储气袋是否组装正确。 4.将储气阀和储气袋接在一起,将气体挤入储气阀,使储气袋膨胀,将接头堵住,挤压储气袋气体自储气阀溢出。如未能察觉溢出时,请检查安装是否正确。

正压式空气呼吸器使用步骤

正压式空气呼吸器使用 步骤 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

正压式空气呼吸器使用步骤 1、打开箱子(1分) 2、检查正压式空气呼吸器的状态(共8分) 打开空气瓶开关,检查气瓶压力。气瓶内的储存压力为28- 30MPa,随着管路、减压系统中压力的上升,会听到余压报警器报警。 关闭气瓶阀,观察压力表的读数变化。(在30s内,压力表读数下应无下降,表明供气管系高压气密性好。否则,应检查各接头部位的气密性。) 检查完毕后,释放管路中压缩空气,当压力下降至4-6MPa时,余压报警器应发出报警声音,并且连续响到压力表指示值接近零时。压力表有无损坏,它的连接是否牢固。 中压导管是否老化,有无裂痕,有无漏气处,它和供给阀、快速接头、减压器的连接是否牢固,有无损坏。 供给阀的动作是否灵活,是否缺件,它和中压导管的连接是否牢固,是否损坏。供给阀和呼气阀是否匹配。(带上呼气器,打开气瓶开关,按压供给阀杠杆使其处于工作状态。在吸气时,供给阀应供气,有明显的“咝咝”响声。在呼气或屏气时,供给阀停止供气,没有“咝咝”响声,说明匹配良好。如果在呼气或屏气时供给阀仍然供气,可以听到“咝咝”声,说明不匹配,应校验正型式空气呼气阀的通气阻力,或调换全面罩,使其达到匹配要求。)

检查全面罩的镜片、系带、环状密封、呼气阀、吸气阀是否完好,有无缺件和供给阀的连接位置是否正确,连接是否牢固。(全面罩的镜片及其他部分要清洁、明亮和无污物。检查全面罩与面部贴合是否良好并气密,方法是:关闭空气瓶开关,深吸数次,将空气呼吸器管路系统的余留气体吸尽。全面罩内保持负压,在大气压作用下全面罩应向人体面部移动,感觉呼吸困难,证明全面罩和呼气阀有良好的气密性) 空气瓶的固定是否牢固,它和减压器连接是否牢固、气密。背带、腰带是否完好,有无断裂处等。 3、佩戴与使用(共5分) 佩戴时,先将快速接头断开(以防在佩戴时损坏全面罩),然后将背托在人体背部(空气瓶开关在下方),根据身材调节好肩带、腰带并系紧,以合身、牢靠、舒适为宜。 把全面罩上的长系带套在脖子上,使用前全面罩置于胸前,以便随时佩戴,然后将快速接头接好。 将供给阀的转换开关置于关闭位置,打开空气瓶开关。 戴好全面罩进行2-3次深呼吸,应感觉舒畅。屏气或呼气时,供给阀应停止供气,无“咝咝”的响声。用手按压供给阀,检查其开启或关闭是否灵活。一切正常时,将全面罩系带收紧,收紧程度以既要保证气密又感觉舒适、无明显的压痛为宜。 4、来回跑40米。(2分) 5、拆除(共5分)

相关主题