搜档网
当前位置:搜档网 › 高一数学求函数解析式定义域与值域的常用方法含答案

高一数学求函数解析式定义域与值域的常用方法含答案

高一数学求函数解析式定义域与值域的常用方法含答案
高一数学求函数解析式定义域与值域的常用方法含答案

高一数学求函数的定义域与值域的常用方法

一. 求函数的定义域与值域的常用方法

求函数的解析式,求函数的定义域,求函数的值域,求函数的最值

二. 求函数的解析式

3、求函数解析式的一般方法有:

(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之; (4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式;

(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域

1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;

2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;

3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;

4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x )求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域;

5、分段函数的定义域是各个区间的并集;

6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;

7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;

一:求函数解析式

1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

例1. 已知2211()x x x f x x +++=

,试求()f x 。 解:设1x t x +=,则11x t =-,代入条件式可得:2()1f t t t =-+,t ≠1。故得:

2

()1,1f x x x x =-+≠。 说明:要注意转换后变量范围的变化,必须确保等价变形。

2、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。

例2. (1)已知21

()2()345

f x f x x x +=++,试求()f x ;

(2)已知

2

()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111

()2()345f f x x x x +=++,与条件式联立,消去

1f x ??

?

??,则得:

()222845

333x f x x x x =+--+

(2)由条件式,以-x 代x 则得:

2

()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:

()2543f x x x =-+

说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。

例4. 求下列函数的解析式:

(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ;

(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2

x f ;

(3)已知x x

x x x f 1

1)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。

【思路分析】

【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2

≠++=a c bx ax x f ,设法求出c b a ,,即可。 (2)若能将x x 2+适当变形,用1+x 的式子表示就容易解决了。

(3)设

x

x 1

+为一个整体,不妨设为t ,然后用t 表示x ,代入原表达式求解。 (4)x ,x -同时使得)(x f 有意义,用x -代替x 建立关于)(x f ,)(x f -的两个方程就行了。

【解题过程】⑴设)0()(2

≠++=a c bx ax x f ,由,2)0(=f 得2=c ,

由1)()1(-=-+x x f x f ,得恒等式12-=++x b a ax ,得2

3

,21-==b a 。

故所求函数的解析式为22

3

21)(2+-=x x x f 。

(2)1)1(112)(2)1(2

2-+=-++=+=+x x x x x x f Θ,

又)1(1)(,11,02≥-=∴≥+≥x x x f x x Θ

。 (3)设1,11

,1≠-==+t t x t x x 则,

则1)1()1(11

1111)1()(22222+-=-+-+=++=++=+=t t t t x x x x x x x f t f 所以)1(1)(2

≠+-=x x x x f 。

(4)因为3)(2)(3+=-+x x f x f ①

用x -代替x 得3)(2)(3+-=+-x x f x f ②

解①②式得5

3

)(+=x x f 。

【题后思考】求函数解析式常见的题型有:

(1)解析式类型已知的,如本例⑴,一般用待定系数法。对于二次函数问题要注意一般式

)0(2≠++=a c bx ax y ,顶点式k h x a y +-=2)(和标根式))((21x x x x a y --=的选择;

(2)已知)]([x g f 求)(x f 的问题,方法一是配凑法,方法二是换元法,如本例(2)(3);

(3)函数方程问题,需建立关于)(x f 的方程组,如本例(4)。若函数方程中同时出现)(x f ,)1

(x

f ,则一般将式中的x 用

x

1

代替,构造另一方程。 特别注意:求函数的解析式时均应严格考虑函数的定义域。

二:求函数定义域

1、由函数解析式求函数定义域:由于解析式中不同的位置决定了变量不同的范围,所以解题时要认真分析变量所在的位置;最后往往是通过解不等式组确定自变量的取值集合。

例3.

34

x y x +=-的定义域。

解:由题意知:204x x +>???

≠??

,从而解得:x>-2且x ≠±4.故所求定义域为:

{x|x>-2且x ≠±4}。 例2. 求下列函数的定义域: (1)3

5)(--=

x x

x f ; (2)x x x f -+-=11)( 【思路分析】 【题意分析】求函数的定义域就是求自变量的取值范围,应考虑使函数解析式有意义,这里需考虑分母不为零,开偶次方被开方数为非负数。

【解题过程】(1)要使函数有意义,则??

?±≠≤?

??≠-≥-35

,0305x x x x 即,在数轴上标出,即53,33,3≤<<<--

{}5x 3,33,3≤<<<--<或或x x x 。

(2)要使函数有意义,则1,11

,0101=?

??≤≥???≥-≥-x x x x x 所以即,从而函数的定义域为{}1x |x =。

【题后思考】求函数的定义域的问题可以归纳为解不等式的问题,如果一个函数有几个限制条件时,那么定义

域为解各限制条件所得的x 的范围的交集,利用数轴可便于解决问题。求函数的定义域时不应化简解析式;定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“Y ”连接。

2、求分段函数的定义域:对各个区间求并集。 例

解:{1,2,3,4,5,6}。

3、求与复合函数有关的定义域:由外函数

f (u )的定义域可以确定内函数

g (

x )的范围,从而解得x ∈I 1,又由g (x )定义域可以解得x ∈I 2.则I 1∩I 2即为该复合函数的定义域。也可先求出复合函数的表达式后再行求解。

()()(())f x g x y f g

x ==

=

例8 已知求

的定义域.

解:

()3()33f x x g x =≥?≥?

≥*

又由于x 2-4x +3>0 ** 联立*、**两式可解得:

991344

99|1344x x x x x -+≤<<≤?-+

?≤<<≤???

??或故所求定义域为或

例9. 若函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域。

解:由f (2x )的定义域是[-1,1]可知:2-1≤2x ≤2,所以f (x )的定义域为[2-1,2],故log 2x ∈[2-

1,2],

4x ≤≤,故定义域为?

?。

三:求函数的值域与最值

求函数的值域和最值的方法十分丰富,下面通过例题来探究一些常用的方法;随着高中学习的深入,我们将学习到更多的求函数值域与最值的方法。 1、分离变量法

例11. 求函数

23

1x y x +=

+的值域。

解:

()2112312111x x y x x x +++=

==++++,因为1

01x ≠+,故y ≠2,所以值域为{y|y ≠2}。

说明:这是一个分式函数,分子、分母均含有自变量x ,可通过等价变形,让变量只出现在分母中,再行求解。

2、配方法

例12. 求函数y =2x 2+4x 的值域。

解:y =2x 2+4x =2(x 2+2x +1)-2=2(x +1)2-2≥-2,故值域为{y|y ≥-2}。

说明:这是一个二次函数,可通过配方的方法来求得函数的值域。类似的,对于可以化为二次函数的函数的值域也可采用此方法求解,如y =af 2(x )+bf (x )+c 。

3、判别式法

例13. 求函数22

23

456x x y x x ++=++的值域。 解:22

23456x x y x x ++=++可变形为:(4y -1)x 2+(5y -2)x +6y -3=0,由Δ≥0

可解得:

26267171y ?-+∈???。

说明:对分子分母最高次数为二次的分式函数的值域求解,可以考虑采用此法。要注意两点:第一,其定义域

一般仅由函数式确定,题中条件不再另外给出;如果题中条件另外给出了定义域,那么一般情况下就不能用此法求解值域;第二,用判别式法求解函数值域的理论依据是函数的定义域为非空数集,所以将原函数变形为一个关于x 的一元二次方程后,该方程的解集就是原函数的定义域,故Δ≥0。

4、单调性法 例14. 求函数2

3y x

-=

+,x ∈[4,5]的值域。 解:由于函数23y x -=+为增函数,故当x =4时,y min =2

5;当x =5时,y max =5

13,所以函数的值域为513,25??????。

5、换元法 例15.

求函数

2y x =+

解:

令0t =≥,则y =-2t 2+4t +2=-(t -1)2+4,t ≥0,故所求值域为{y|y ≤4}。

例3. 求下列函数的值域:

(1){}5,4,3,2,1,12∈+=x x y (2)1+=

x y

(3)2

2

11x x y +-=

(4))25(,322

-≤≤-+--=x x x y

【思路分析】

【题意分析】求函数的值域问题首先必须明确两点:一是值域的概念,即对于定义域A 上的函数)(x f y =,其值域就是指集合{}A x ),x (f y y C ∈==;二是函数的定义域,对应关系是确定函数值的依据。

【解题过程】

(1)将,1x 2y 5,4,3,2,1x 中计算分别代入+==得出函数的值域为{}1,19,5,73,。 (2)11,0≥+∴≥x x Θ

,即所求函数的值域为),1[+∞或用换元法,令)0(1),0(≥+=≥=t t y t x t 的

值域为),1[+∞。

(3)<方法一>∴++-=+-=

,12

1112

22x x x y Θ函数的定义域为R 。 ]1,1(y ,2x

12

0,1x 12

2-∈∴≤+<

∴≥+∴。 <方法二>y x y x yx y x x y -=+?-=+?+-=1)1(1112

222

2 ]1,1(,0112-∈≥+-=?y y

y

x 得到。

故所求函数的值域为(-1,1]。

(4)<构造法>114,25,4)1(322

2

-≤+≤-∴-≤≤-++-=+--=x x x x x y Θ

.3)1(412,16)1(122≤+-≤-∴≤+≤∴x x 所以函数的值域为[-12,3]。

【题后思考】求函数的值域问题关键是将函数的解析式变形,通过观察或利用熟知的基本函数的值域,逐步推出所求函数的值域,有时还需要结合函数的图象进行分析。

【模拟试题】(答题时间:30分钟)

一. 选择题

1、函数y =f (x )的值域是[-2,2],则函数y =f (x +1)的值域是( ) A. [-1,3] B. [-3,1] C. [-2,2] D. [-1,1]

2、已知函数f (x )=x 2-2x ,则函数f (x )在区间[-2,2]上的最大值为( )

A. 2

B. 4

C. 6

D. 8

3、一等腰三角形的周长为20,底边长y 是关于腰长x 的函数,那么其解析式和定义域是( ) A. y =20-2x (x ≤10) B. y =20-2x (x<10) C. y =20-2x (4≤x<10) D. y =20-2x (5

4、二次函数y =x 2-4x +4的定义域为[a ,b ](a

5、函数y =f (x +2)的定义域是[3,4],则函数y =f (x +5)的定义域是( ) A. [0,1] B. [3,4] C. [5,6] D. [6,7]

6、函数

22

234x y x x +=+的值域是( )

..().()A B C D ??

-∞?+∞-∞?+∞

7、(2007安徽)图中的图像所表示的函数的解析式是( )

333

.1(02).1(02)2223

.1(02).11(02)

2A y x x B y x x C y x x D y x x =

-≤≤=--≤≤=--≤≤=--≤≤

二. 填空题

8、若f (x )=(x +a )3对任意x ∈R 都有f (1+x )=-f (1-x ),则f (2)+f (-2)= ;

9、若函数2()2f x x =-的值域为1,3??-∞-

??

?,则其定义域为 ;

三. 解答题

10、求函数

534x x y -++=

的定义域。

11、已知221,2(),2x x x f x x x ?-+≤?=?

->??,若f (a )=3,求a 的值。

12、已知函数f (x )满足2f (x )-f (-x )=-x 2+4x ,试求f (x )的表达式。

习题讲解:

1.定义在R 上的函数f(x )满足f(x)= ??

?>---≤-0

),2()1(0

),1(log 2x x f x f x x ,则f (2009)的值为( )

A.-1

B. 0

C.1

D. 2 答案:C.

【解析】:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,

(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,

(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=,

所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1,故选C. 【命题立意】:本题考查归纳推理以及函数的周期性和对数的运算.

2.设函数???<+≥+-=0

,60

,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )

A ),3()1,3(+∞?-

B ),2()1,3(+∞?-

C ),3()1,1(+∞?-

D )3,1()3,(?--∞ 答案:A

【解析】由已知,函数先增后减再增 当0≥x ,2)(≥x f 3)1(=f 令,3)(=x f 解得3,1==x x 。

当0

故3)1()(=>f x f ,解得313><<-x x 或

【考点定位】本试题考查分段函数的单调性问题的运用。以及一元二次不等式的求解。

3.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)2

5

(f 的值是

A. 0

B. 21

C. 1

D. 25

答案:A

【解析】若x ≠0,则有)(1)1(x f x x x f +=

+,取2

1

-=x ,则有: )21()21()21(2

121

1)121()21(f f f f f -=--=---

=

+-=(∵)(x f 是偶函数,则)21()21(f f =- )由此得0)2

1

(=f 于是,0)21(5)21(]2

1211[35)121(35)23(35)23(23231)123()25(==+

=+==+=

+=f f f f f f f 4.若1

()21x f x a =+-是奇函数,则a = .

答案12

【解析】解法112(),()()2112x

x

x

f x a a f x f x --=+=+-=--- 21121

()21122112122

x x x x x x

a a a a ?+=-+?=-==----故 5.已知函数3,1,

(),1,

x x f x x x ?≤=?->?若()2f x =,则x = .

答案3log 2

.w 【解析】5.u.c 本题主要考查分段函数和简单的已知函数值求x 的值. 属于基础知识、基本运算的考查. 由31

log 232

x

x x ≤??=?

=?,1

22x x x >??-=?=-?无解,故应填3log 2.

6.记3()log (1)f x x =+的反函数为1

()y f x -=,则方程1()8f x -=的解x = .

答案2

【解法1】由3()log (1)y f x x ==+,得1

3y x -=,即1

()31f

x x -=-,于是由318x -=,解得2x =

【解法2】因为1()8f x -=,所以3(8)log (81)2x f ==+=

三、知识要点

1、奇偶函数定义: (1)偶函数

一般地,对于函数f (x )的定义域内的任意一个x ,都有f (-x )=f (x ),那么f (x )就叫做偶函数. (2)奇函数

一般地,对于函数f (x )的定义域内的任意一个x ,都有f (-x )=-f (x ),那么f (x )就叫做奇函数. 注意:

①函数是奇函数或偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ②奇偶函数的定义域的特征:关于原点对称。

③由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称). ④奇函数若在0x =时有定义,则(0)0f =

2、根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

3、具有奇偶性的函数的图象的特征 偶函数的图象关于y 轴对称; 奇函数的图象关于原点对称.

说明:一般地,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数。偶函数的图象关于y 轴对称,反过来,如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。 4、判断函数奇偶性的格式步骤:

首先确定函数的定义域,并判断其定义域是否关于原点对称; 确定f (-x )与f (x )的关系; 作出相应结论:

若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数. 5、判断函数的奇偶性也可以用下列性质 在公共定义域内,

(1)两个奇函数的和为奇函数;两个奇函数的积为偶函数. (2)两个偶函数的和为偶函数;两个偶函数的积为偶函数. (3)一个奇函数与一个偶函数的积为奇函数.

(4) 函数f (x )与()x f 1

同奇或同偶. 【典型例题】

一、判断函数的奇偶性

例1、判断函数的奇偶性时易犯的错误 (1)因忽视定义域的特征致错

1、①

()()

11--=

x x x x f ;②f (x )=x 2+(x +1)0 错解:①()()x x x x x f =--=11,∴ f (x )是奇函数

②∵ f (-x )=(-x )2+(-x +1)0=x 2+(x +1)0=f (x )

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

高一数学《指数函数及其性质》教案

高一数学《指数函数及其性质》教案 教学目标: 1、知识目标: 明白得指数函数的的概念和意义,能画岀具体指数函数的图象,把握指数函数的性质 2、能力目标: 在学习过程中,体会研究具体函数及其性质的过程与方法,如具体到一样的过程、数形结合的方法等; 3、情感目标: 使学生了解指数函数模型的实际背景,认识数学与现实生活及英他学科的联系;感受探究未知世界的乐趣,从而培养学生对数学的热爱情感。 教学重点:把握指数函数的槪念和性质. 教学难点:用数形结合的方法从具体到一样地探究、概括指数函数的性质. 教学过程: 一、引入[师生共同探究三个实例] (1)一张白纸对折一次得两层,对折两次得4层,对折3次得8层,咨询假设对折x次所得层数为y,那么y与x的函数关系是:y = 2x (2)一根1米长的绳子从中间剪一次剩下丄米,再从中间剪一次剩下丄米,假设这条绳子剪x次剩下y米,那么y与x的函数关系是:y = (-)v (3)书本P48咨询题2人们研究发觉,当生物死亡后,它机体内原有的碳14会按确立的规律衰减,大约每通过5730年衰减为原先的一半,那个时刻称为’'半衰期〃 o 当生物死亡了 5730, 2X5730, 3X5730,……年后,它体内碳14的含量y分不为2 , 当生物死亡了 1年,它体内碳14的含量为y = (—)573。 那么当生物死亡了 x年后,它体内碳14的含量为y = (|)5730 咨询題一:上面三个关系式上面三个关系式是之前我们差不多学过的某一个函数吗? 咨询题二那它们是函数吗? 咨询题三:它们有什么共同特点呢? 二.指数函数的定义 一样地,函数y = /(“>0,山心1)叫做指数函数,其中x是自变崑函数的怎义域为& 咨询题三:什么缘故规定"0且心\呢?

人教版高一数学必修一基本初等函数解析

基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 。 (2).幂的有关概念 ①规定:1)∈???=n a a a a n ( N * ;2))0(10≠=a a ; n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ) ; 2)r a a a s r s r ,0()(>=?、∈s Q ); 3)∈>>?=?r b a b a b a r r r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。 (3).对数的概念 ①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的 对数,记作,log b N a =其中a 称对数的底,N 称真数 1)以10为底的对数称常用对数,N 10log 记作N lg ; 2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质: 1)真数N 为正数(负数和零无对数);2)01log =a ;

高一初等函数定义域值域

函数 例1、 已知函数f (x )=3+x + 21+x , (1) 求函数的定义域; (2) 求f (-3),f (32)的值; (3) 当a>0时,求f (a ),f (a-1)的值。 例2、中哪个与函数y=x 相等( )x 3 A 、y=(x )2 B 、y=33 x C 、y=2x D 、y=x x 2 例3、求下列函数的定义域 (1)f (x )= 741+x (2)f(x)=x -1+ 3+x -1 例4、已知函数f (x )=x 2+2x (1) 求f (2),f (-2),f (2)+f (-2)的值 (2) 求f (a ),f (-a ),f (a )+f (-a )的值 例5、某种笔记本的单价是5元,买x (x ∈{1,2,3,4,5})个笔记

本需要y元,试用函数的三种表示法表示函数y=f(x)。 例6、画出函数y=|x|的函数图象。 例7、如图,把截面半径为25cm的圆形木头锯成矩形木材,如果矩形木材的一边长为xcm,面积为ycm2,把y表示为x的函数。

1、求下列函数的定义域 (1)f (x )= 43-x x (2)f (x )=2x (3)f (x )= 2 362+-x x (4)f (x )=14--x x 2、下列那组中的函数f (x )与g (x )相等 (1)f (x )=x-1,g (x )=x x 2 -1; (2)f (x )=x 2,,g (x )=(x )4 (3)f (x )=x 2,g (x )=36x 3、已知函数f (x )=3x 2-5x+2,求f (-2),f (-a ),f (a+3),f (a )+f (3)的值. 4、已知函数f (x )=6 2-+x x (1)点(3,14)在f (x )的图象上吗 (2)当x=4时,求f (x )的值; (3)当f (x )=2,求x 的值。

高一数学必修1《指数函数》教案

高一数学必修1《指数函数》教案 教学目标: 1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。 2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。 3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 教学重点、难点: 1、重点:指数函数的图像和性质 2、难点:底数a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。 教学方法:引导发现教学法、比较法、讨论法 教学过程: 一、事例引入 T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数? S:-------- T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对非典应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程: C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是:y = 2 x ) S,T:(讨论) 这是球菌个数y 关于分裂次数x 的函数,该函数是什么样的形式(指数形式), 从函数特征分析:底数2 是一个不等于1 的正数,是常量,而指数x 却是变量,我们称这种函数为指数函数点题。 二、指数函数的定义

C:定义:函数y = a x (a 0且a 1)叫做指数函数,x R.。 问题1:为何要规定a 0 且a 1? S:(讨论) C:(1)当a 0 时,a x 有时会没有意义,如a=﹣3 时,当x= 就没有意义; (2)当a=0时,a x 有时会没有意义,如x= - 2时, (3)当a = 1 时,函数值y 恒等于1,没有研究的必要。 巩固练习1: 下列函数哪一项是指数函数( ) A、y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x

高中数学必修1第二章基本初等函数测试题(含答案)人教版

《基本初等函数》检测题 一.选择题.(每小题5分,共50分) 1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m n m n a a += B .1 1m m a a = C .log log log ()a a a m n m n ÷=- D 43 ()mn = 2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2 (,2)3 3.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12 D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .12 2lg x x x >> B .12 2lg x x x >> C .12 2lg x x x >> D .12 lg 2x x x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A . (3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞ 6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年 后的价格与原来价格比较,变化的情况是 ( )

A .减少1.99% B .增加1.99% C .减少4% D .不增不减 7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2 x x f x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞ 10.若2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是 ( ) A .(0,1) B .(0,2) C .(1,2) D .[2,)+∞ 二.填空题.(每小题5分,共25分) 11.计算:459log 27log 8log 625??= . 12.已知函数3log (0)()2(0) x x x >f x x ?=?≤?, , ,则1[()]3 f f = . 13. 若 3())2 f x a x bx =++,且 (2) f =,则 (2f - = . 14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

高一数学试讲教案

指数函数及其性质教案 一、教学目标: 知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。 过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。 情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 二、教学重点、难点: 教学重点:指数函数的概念、图象和性质。 教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。 三、教学过程: (一)创设情景 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 x 次后,得到的细胞分裂的个数 y 与 x 之间,构成一个函数关系,能写出 x 与 y 之间的函数关系式吗? 学生回答: y 与 x 之间的关系式,可以表示为y =2x 。 问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x 表示,剩留量用y 表示。 学生回答: y 与 x 之间的关系式,可以表示为y =0.84x 。 引导学生观察,两个函数中,底数是常数,指数是自变量。 1.指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如21,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a .

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

高一数学函数经典习题及答案

函 数 练 习 题 班级 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,数m 的取值围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y =⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y =⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;

高一数学《指数函数》优秀教案

高一数学《指数函数》优秀教案 导语:指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。下面是为您收集的教案,希望对您有所帮助。 一.教学目标: 1.知识与技能 (1)理解指数函数的概念和意义; (2)与的图象和性质; (3)理解和掌握指数函数的图象和性质; (4)指数函数底数a对图象的影响; (5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小 (6)体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观 (1)让学生了解数学生活,数学又服务于生活的哲理. (2)培养学生观察问题,分析问题的能力. 二.重、难点 重点: (1)指数函数的概念和性质及其应用. (2)指数函数底数a对图象的影响; (3)利用指数函数单调性熟练比较几个指数幂的大小

难点: (1)利用函数单调性比较指数幂的大小 (2)指数函数性质的归纳,概括及其应用. 三、教法与教具: ①学法:观察法、讲授法及讨论法. ②教具:多媒体. 四、教学过程 第一课时 讲授新课 指数函数的定义 一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为R. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)(2)(3) (4)(5)(6) (7)(8)(>1,且) 小结:根据指数函数的定义来判断说明:因为>0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R. 若<0,如在实数范围内的函数值不存在. 若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合

高中数学基本初等函数知识点梳理

第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数 【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根. ②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:()n n a a =;当 n 为奇数时,n n a a =;当n 为偶数时, (0) || (0) n n a a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. ②正数的负分数指数幂的意义是: 11 ()()(0,,,m m m n n n a a m n N a a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈

【2.1.2】指数函数及其性质 (4)指数函数 函数名称 指数函数 定义 函数(0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =

高一函数值域定义域方法总结

函数定义域、值域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆 求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式21 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3 2 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式 x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ?? ?≠-≥+0 201x x ? ???≠-≥21 x x 例2 求下列函数的定义域:

高中数学必修1 指数函数教案1(高一数学)

指数函数教案1(高一数学) 教学目标 1. 理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用. 2. 通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法. 3. 通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣. 教学重点和难点 重点是理解指数函数的定义,把握图象和性质. 难点是认识底数对函数值影响的认识. 教学过程 一、复习回顾,新课引入 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出 细胞分裂 之间的函数关系式吗? 与 与之间的关系式,可以表示为. 由学生回答: 问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子 次后绳子剩余的长度为米,试写出与之间的函数关系. 的一半,……剪了 由学生回答:. 在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数. 二、师生互动,新课讲解: 1.定义:形如的函数称为指数函数. 2.几点说明 (1) 关于对的规定: 教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有 会有什么问题?如,此时,等在实 困难,可将问题分解为若 数范围内相应的函数值不存在. 若 x a对于都无意义,若则无论取何值,它总是1,对它没有 且. 研究的必要.为了避免上述各种情况的发生,所以规定 (2)关于指数函数的定义域 教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实 当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值. (3)关于是否是指数函数的判断

高中数学求函数解析式的各种方法

函数解析式 1、已知2(21)42f x x x +=-,求()f x 表达式。 2、已知1()2()23f x f x x +=+,求()f x 表达式。 3、已知2(1)21f x x +=+,求(1)f x -,()f x 。 4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。 5、已知2 211()11x x f x x --=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。 7、若函数2 2()1x f x x =+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b =+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。 10、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 13、设,)1(2)()(x x f x f x f =-满足求)(x f 。 14、设)(x f 为偶函数,)(x g 为奇函数,又,1 1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。 16、已知f (x +1)=x +2x ,求()f x 的解析式。 17、已知f (x + x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。 19、已知2(1)lg f x x +=,求()f x 。 20、已知()f x 满足1 2()()3f x f x x +=,求()f x 。

高一数学教案:《指数函数》人教A版必修

教学目标: 知识与技能: 理解指数函数的概念,并能正确作出其图象,掌握指数函数的性质; 过程与方法:由实际问题引入,培养学生发现问题和提出问题的能力. 情感态度价值观:于独立思考的习惯,体会事物之间普遍联系的辩证观点. 教学重点:指数函数和性质的概念; 教学过程 一、激趣导学 引例1 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……,1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系是什么? 分裂次数:1,2,3, 4,…,x 细胞个数:2,4,8,16,…,y 由上面的对应关系可知,函数关系是 y =2x . 引例2 某种商品的价格从今年起每年降低15%,设原来的价格为1,x 年后的价格为y ,则y 与x 的函数关系式为 y =0.85x . 在y =2x , y =0.85x 中指数x 是自变量,底数是一个大于0且不等于1的常量. 我们把这种自变量在指数位置上而底数是一个大于0且不等于1的常量的函数叫做指数函数,引入课题.. 二、质疑讨论: 1.指数函数的定义 函数y =a x (a >0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R . 探究1:为什么要规定a >0,且a ≠1呢? ①若a =0,则当x >0时,a x =0;当x ≤0时,a x 无意义. ②若a <0,则对于x 的某些数值,可使a x 无意义. 如y =(-2)x ,这时对于x =14 ,x =12 ,… 等等,在实数范围内函数值不存在. ③若a =1,则对于任何x ∈R ,a x =1,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定a >0且a ≠1.在规定以后,对于任何x ∈R ,a x 都有意义, 且a x >0. 因此指数函数的定义域是R ,值域是(0,+∞). 探究2:函数 y =2·3x 是指数函数吗? 答案:不是,指数函数的解析式 y =a x 中,a x 的系数是1. 有些函数貌似指数函数,实际上却不是,如 y =a x+k (a >0且a ≠1,k ∈Z);有些函数看起 来不像指数函数,实际上却是,如y=a -x (a >0,且a ≠1),因为它可以化为 y =(a -1)x ,其中 a -1>0,且a -1≠1. 【思考】下列函数是为指数函数有 ② ③ ⑤ .

高中数学必修一《基本初等函数测试题》

《第一次测试:函数》 1 下列函数与x y =有相同图象的一个函数是( ) A 2x y = B x x y 2 = C )10(log ≠>=a a a y x a 且 D x a a y log = 2.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 ( ) A .2-≥b B .2-≤b C .2->b D . 2-k B .21 -b D .0>b 6.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则 ( )A .)2()2()3(f f f << B .)2()3()2(f f f << C .)2()2()3(f f f << D .)3()2()2(f f f << 7 三个数60.70.70.76log 6,,的大小关系为( ) A 60.70.70.7log 66<< B 60.7 0.70.76log 6<< C 0.760.7log 660.7<< D 6 0.70.7log 60.76<< 8.函数2log 2-=x y 的定义域是 A .),3(+∞ B .),3[+∞ C .),4(+∞ D .),4[+∞ 9.与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为 A .ln(1y =+ B .ln(1y = C .ln(1y =-+ D .ln(1y =-- 10.已知(3)4,1()log ,1a a x a x f x x x --?=?≥?<, 是(-∞,+∞)上的增函数,那么a 的取值范围是 A .(1,+∞) B .(-∞,3) C .3,35?? ???? D .(1,3) 11.设函数()log ()(0,1)a f x x b a a =+>≠的图象过点(2,1),其反函数的图像过点(2,8) ,则a b +等于 A. 6 B. 5 C. 4 D. 3 :