搜档网
当前位置:搜档网 › RF测试原理小结

RF测试原理小结

RF测试原理小结
RF测试原理小结

RF 测试原理小结

本文旨在阐述RF 测试项目的有关原理性知识,基本不涉及具体的测试方法,测试方法请参照相关文档。

首先学习射频离不开天线,要对天线知识有所了解。

天线(antenna )是RF 系统中最关键的零件,发送的时候它负责将线路中的电信号转化为电波发射出去,接收的时候它负责将电波转化为电信号。根据洛伦兹定理,变化的电场会产生磁场,因施加在天线上的电流不同,就会产生电波;当无线电波遇到天线时,电子就会流入天线导体而产生电流。

天线分为全向型和定向型两种。全向型天线收发所有方向的信号,定向性天线只收发天线所指向方向上的信号,可以将能量传送到更远的距离,信号也比较清楚,实际上根本没有真正意义上的全向天线。

天线的长度取决于频率:频率越高,天线越短。根据经验,一般的简易型天线为其波长的一般。波长和频率的计算公式是:8(310/)c

c m s f

λ=

=?其中,例如使用830KHz 的调幅广播电台,其电波的波长约为360米,因此必须使用约180米的大型天线。当然天线工程师可以运用一些技巧,进一步缩短天线,甚至可以做到随身携带的程度。

一般在天线的前端还会有个功率放大器PA(power amplifier),其实将功率提升到做大功率后发送。

然后具体了解RF 测试中各个参数的含义及其影响因素。 一、调制带宽:

调制子载波占用的频带宽度,有20MHz (11b/g )和40MHz (11n )的,我们从频谱模板的波形中也可以看出来。

二、EVM :Error Vector Magnitude ,误差矢量幅度: 其是调制后的射频信号与理想原始信号的矢量差,反映了调制的精度,是衡量信号质量的重要参数。原理上是接收到的码片信号,经过解调、解扰、解扩之后,再重复一遍发射端点的过程,即调制、加扰、扩频,然后再拿这个码矢量信号与接收到的矢量信号做矢量差,将其做统计平均,即为EVM 值。EVM 越大,说明信号受到的干扰越大,接收到的信号质量越差;反之,干扰小,接收到的信号质量就好。

EVM 有幅度偏差、频率偏差、相位偏差之分。功率放大器的非线性失真影响幅度偏差,I/Q 信号同步影响相位偏差,本振的噪声和电源噪声影响频率偏差,

影响EVM 因素主要有功率放大器的非线性失真、噪声、以及供电环境。

EVM 标准有IEEE 标准和一些国家电信的标准,下面列出IEEE 的标准供参考。

三、调制速率:

调制传送基带信号所用的码流率,它反映在被调子载波变化的快慢上,有6Mbps、12 Mbps、18 Mbps、24 Mbps、36 Mbps……

四、发射功率:

有天线口发射功率(PA输出功率减去线损,尽量减少线损)和空口发射功率(用等效全向发射功率EIRP描述,天线口发射功率+天线增益)之分,用功率谱密度描述,取RMS值衡量。

五、频率偏移:Frequency Error

指发射信道中心频率的偏差,其反映了中心频率的精度,一般取决于本振的精度,可以通过调整本振的匹配电容来纠正偏差。其中11b:要求频率偏移在±25ppm以内;11a/g:要求频率偏移在±20ppm以内。

六、接收灵敏度:

指接收机能解调的最小信号电平,就是信号的最小功率值,换句话说就是在保证所要求的误比特率的情况下,接收机所需要的最小输入功率。一般我们用误码率来衡量接收灵敏度,而不能用直接进入接收通道的信号来衡量,因为在满足一定的信噪比SNR的情况下,非常小的信号都可以解调,而当伴随信号的噪声和接收通道的噪声增加时,此时信噪比就会下降,误码率迅速增加。

一般情况下要求误码率在百分之十左右,测试的时候要求发1000个包,11b时接收到920以上,11g/n接收900个包以上时的最小信号功率,就是要测量的接收灵敏度。

从下面接收灵敏度IEEE标准中可以看出,当数据率越高,接收器所接收到的信号就越容易被损毁,接收灵敏度要求的功率电平就越大。

11b

11g

七、最大接收电平

是接收机能解调的最大信号电平,由于接收机前端有低噪放LNA,其工作点电平受限,过大的信号会导致其饱和,形成信号阻塞。

八、频谱模板Spectrum Mask

其描述了发射信号的频谱分布,反映了信号能量的集中范围,如果带外的能量多的话,会影响到相邻信道的通信,一般用包含被调制信道的调制带宽及其信道外的电平分布来衡量。功率放大器PA的非线性失真和匹配都会影响到频谱模板,可能会超出其范围。如果能够很好的控制相位噪声,比如预失真处理能够很好的降低带外噪声,同时提高EVM都会保证频谱模板的要求。

九、功率平坦度Spectral Flatness

反映信号子载波的功率变化,它测量每个子载波的平均功率对所有子载波的平均功率的偏移。11b没有平坦度,是因为其采用的调制方式时单载波调制,11g/n采用的是OFDM调制方式。

十、星座图

星座图反映了各个速率时采用的调制方式、编码率、EVM等信息。

测试的过程中,我们可以看到不同速率下的星座图,接收信号的范围集中说明信号的质量就比较好,越是发散,说明信号的质量越差。

各种调制方式的星座图如下:

各种调制方式分别承载的数据位数为:BPSK:1bit/symbol;QPSK:2bits/symbol;16QAM:4bits/symbol;64QAM:6bits/symbol。

模拟调制方式有三种:调幅、调频、调相,就是载波随着调制信号的幅度、频率或相位的变化而变化,这样载波就承载了调制信号的信息,此时的信号成为已调信号,传入发信机发送出去。与之相对应的数字调制方式也有三种:振幅键控ASK、频移键控FSK、相移键控PSK。

802.11中常用的调制方式是差分相位调制DPSK,而不是绝对相位调制PSK,因为PSK 对通信收发双方的同步性能要求很高,一旦同步被波坏,就难以恢复原有信号,导致相位颠倒,称为“倒π现象”,而DPSK是利用相邻载波的相位差就可以避免此问题的发生。

BPSK用前后载波的相位差为0时表示符号0,相差为半个周期π时表示符号1;因BPSK 只能编码一个位,可以采用一种差分正交相移键控DQPSK编码两个位,即是采用一个基波与三个偏移波,每个波偏移1/4个周期,如用相移π/2表示符号01,相移0表示符号00,相移π表示符号11,相移3π/2表示符号10,当然也可以用上面QPSK图中的四个正交的相位π/4,3π/4,5π/4,7π/4来表示。

802.11还采用正交调幅QAM技术来传送数目,能够承载更多的比特数,以此来提高调制的速率。QAM是在单一载波上编码数据,该载波有同相信号I和落后其1/4周期的正交信号组成,当两种信号被限定在一组特定的电平时,就形成了所谓的星座图constellation。星座图描绘了同乡和正交型号的可能值,星座图中的每个点代表一种符号symbol,每个符号代表特定的位置,如上面图中所示。需要注意的是,QAM前面的数值表示总共的符号个数,其实每个符号的2的乘幂数,可以算出每个符号代表的比特数,比图64-QAM就是每个符号代表6bits信息,256-QAM就是每个符号代表8bits信息。

要提高数据的速率,只要使用点数更多的星座图即可,不过数据率提高,就要求接收信号的质量要足够好,否则就难以区分星座图中的相邻点。如果距离太近,每个信号可以接收的误差范围就会缩小。

下面详细了解下802.11各个标准的编码和调制细节。

802.11b直接序列扩频PHY采用每秒1100万的碎片率,其将碎片流划分为一系列的11位的贝克码Barker word,每秒传送100万个Barker word。每个word根据所使用的1.0Mbps 还是2Mbps的数据率,分别编码1或2个比特。

为了达到更高的传输速率,就要求每个word编码更多的字节,802.11采用了一种叫做补码键控CCK(Complementary code keying)的方式,就是将碎片流划分为一系列的由8个位构成的码符号,因此每秒要传送137.5万个码符号。CCK采用复杂的数学转换函数,可以使用若干这8bit序列在每个码字中编码4或8个位是吞吐量达到5.5Mbps和11Mbps。

注意一点的是:CCK方式所采用的扩频码是由数据本身经过函数推演得出来的,而之前扩频是采用类似Barker word之类的静态且具有重复性的码字。

802.11g是基于正交频分复用OFDM(orthogonal frequency division multiplexing)技术的。OFDM是将一个较宽的信道分割成若干子信道,每个子信道均用来传输数据,就是用多路副载波进行单一传送的方式,用这些较慢的子信道复合成较快的信道。

OFDM正交性的含义是指在频域中,OFDM各个子载波的频谱的波峰互补重叠,这样所选用的副载波就不会被其他副载波所干扰,其实正交性的本质所在。

802.11g无线信道总容量的计算方法:子信道乘以每个信道的位数。比如使用64-QAM 调制方式时,每个子信道承载6bits,802.11G使用48个子信道,故每个信道的容量为288个bits。

表中每个OFDM符号承载的数据位有编码数据率乘以每个符号编码的位数得到。

802.11n是在OFDM的基础上,引入了多进多出MIMO(multiple-input multiple-output)技术。其支持当前的20MHz带宽的同时,还支持40MHz带宽,以此来提升吞吐量。

在采用MIMO多天线技术之前,一般都是单独采用一根天线进行首发的,即使是采用了多根天线也只是为了天线分集使用,802.11n采用多根天线同时进行收发,来提高数据率。

我们注意到,20M带宽在MCS7时65Mbps,在40M带宽时达到130Mbps,其实一根天线可以达到的理论速率,当使用两根天线同时收发时,MCS8-MCS15可以达到更高的数据速率。

下面是通信原理的一般性知识,对了解天线的发送和接收有好处。

20世纪60年代以后,数字通信迅速发展起来,大有取代模拟通信技术的趋势,究其原因有以下几个方面:1.数字传输抗干扰能力强;2.传输差错可以控制,改善了传输质量;3.便于使用现代数字信号处理技术对数字信息进行处理,比如FFT等;4.易于加密处理;5.可以综合传递各种消息,使通信系统功能增强。

下图是数字通信系统的一般模型。

数字通信系统模型

数字通信系统包括信源编解码、信息加密/解密、信道编解码、调制解调、信道、同步以及数字复接与多址等各个部分,下面分别进行介绍。

1.信源编码与译码

信源编码主要有两个作用:一是完成模拟信源的数字化,如果信源产生的信号是模拟信号时,首先需要对模拟信号进行数字化后才能够在数字通信系统中传输。模拟信源的数字化包括采样、量化和编码三个过程,电话系统中话音信号的数字化就是典型的模拟信源数字化的过程。信源编码的另外一个作用是为提高信息传输的有效性而采用适当的压缩技术减小信息速率。如电话系统中采用PCM编码的语音速率为64kbps,而如果采用压缩编码后,单路话音的速率则可以降低到32kbps或更低,这样在同样的信道中能够同时传输的话路就增加了。

2.信道编码与译码

信道编码的目的是为了增强通信信号的抗干扰能力。由于信号在信道传输时受到噪声和干扰的影响,接收端恢复数字信息时可能会出现差错,为了减小接收差错,信道编码器对传输的信息按照一定的规则加入保护成分(监督元),组成差错控制编码。接收端的信道译码器按照相应的逆规则进行解码,从中发现错误或纠正错误,提高通信系统的抗干扰性。在计算机中广泛使用的奇偶校验码就是最简单的一种差错控制编码,它具有一比特差错的检错能力。

3.加密和解密

在需要实现保密通信的情况下,为了保证所传输信息的安全,人为地将被传输信息的数字序列扰乱,即加上密码,这种处理过程称为加密。接收端(通常是授权或指定的接收机)对接收到的数字序列解密,恢复明文信息。

4.数字调制和解调

基本的数字调制方式有振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。在接收端可以采用相干解调或非相干解调还原基带信号,此外还有在三种基本调制方法上发展起来的其它数字调制方式,如QPSK、QAM、OQPSK、MSK、GMSK等。

5.同步

同步是使收发两端的信号在时间上保持步调一致,是保证数字通信系统有序、准确和可靠工作的前提条件。按照同步的不同作用,可以将同步分为位同步、帧同步和网同步。同步分散在系统的各个部分,如码元同步主要在调制和基带处理部分,而帧同步通常是处在调制解调之后。

需要指出的是,图中给出的只是点到点数字通信系统的一般化模型,实际的数字通信系统不一定包括所有的环节,例如数字基带传输系统无需调制和解调;实际通信系统也有可能增加部分处理环节,如在信道编码或调制之前经过时分复用处理,在解调或信道解码之后加入时分解复用处理等环节。

最后了解下衡量通信系统性能好坏的指标:有效性和可靠性。有效性是指传输速率的大小,可靠性是指传输质量的问题,其是一对矛盾的统一体,同时做到完美是不现实的,具体表现为若要提高系统的可靠性,可能引起有效性的下降;若要提高系统的有效性,则有可能引起可靠性的下降。因此通常需要根据实际要求有所侧重,互相兼顾达到矛盾的统一。如在满足一定可靠性指标下,尽量提高消息的传输速度;或者,在维持一定有效性指标下,尽量提高消息的传输质量。

射频导纳物位开关原理

射频导纳物位计原理 FB8051系列为通用型连续物位仪表,适用于大多数场合。仪表由一电路单元和杆式或缆式传感元件组成,传感器可选多种材质,可整体或分体式安装。用于连续测量。 ★工作原理 射频导纳物位控制技术是一种从电容式物位控制技术发展起来的,防挂料、更可靠、更准确、适用性更广的物位控制技术,“射频导纳”中“导纳”的含义为电学中阻抗的倒数,它由阻性成分、容性成分、感性成分综合而成,而“射频”即高频,所以射频导纳技术可以理解为用高频测量导纳。高频正弦振荡器输出一个稳定的测量信号源,利用电桥原理,以精确测量安装在待测容器中的传感器上的导纳,在直接作用模式下,仪表的输出随物位的升高而增加。射频导纳技术与传统电容技术的区别在于测量参量的多样性、驱动三端屏蔽技术和增加的两个重要的电路,这些是根据在实践中的宝贵经验改进而成的。上述技术不但解决了连接电缆屏蔽和温漂问题,也解决了垂直安装的传感器根部挂料问题。所增加的两个电路是高精度振荡器驱动器和交流鉴相采样器。对一个强导电性物料的容器,由于物料是导电的,接地点可以被认为在探头绝缘层的表面,对变送器探头来说仅表现为一个纯电容,随着容器排料,探杆上产生挂料,而挂料是具有阻抗的。这样以前的纯电容现在变成了由电容和电阻组成的复阻抗,从而引起两个问题。射频导纳技术由于引入了除电容以外的测量参量,尤其是电阻参量,使得仪表测量信号信噪比上升,大幅度地提高了仪表的分辨力、准确性和可靠性;测量参量的多样性也有力地拓展了仪表的可靠应用领域。 第一个问题是物料本身对探头相当于一个电容,它不消耗变送器的能量,(纯电容不耗能),但挂料对探头等效电路中含有电阻,则挂料的阻抗会消耗能量,从而将振荡器电压拉下来,导致桥路输出改变,产生测量误差。我们在振荡器与电桥之间增加了一个驱动器,使消耗的能量得到补充,因而会稳定加在探头的振荡电压。 第二个问题是对于导电物料,探头绝缘层表面的接地点覆盖了整个物料及挂料区,使有效测量电容扩展到挂料的顶端,这样便产生挂料误差,且导电性越强误差越大。但任何物料都不完全导电的。从电学角度来看,挂料层相当于一个电阻,传感元件被挂料覆盖的部分相当于一条由无数个无穷小的电容和电阻元件组成的传输线。根据数学理论,如果挂料足够长,则挂料的电容和电阻部分的阻抗和容抗数值相等,因此用交流鉴相采样器可以分别测量电容和电阻。测得的总电容相当于C物位+C挂料,再减去与C挂料相等的电阻R,就可以获得物位真实值,从而排除挂料的影响。 即C测量=C物位+C挂料 C物位=C测量-C挂料=C测量-R 这些多参量的测量,是测量的基础,交流鉴相采样器是实现的手段。 由于使用了上述三项技术,使得射频导纳技术在现场应用中展现出非凡的生命力。FB8010系列为通用型点位控制仪表,适用于大多数场合。仪表由一电路单元和杆式或缆式传感元件组成,传感器可选多种材质,可整体或分体式安装。用于限位控制和报警。 概述 1.1仪表简介 TV502系列射频导纳物位开关由传感探杆、电子测控单元和防护外壳组成,是根据射频导纳测量原理制造的点位式物位开关。当物位达到预先设置的位置时,传感探杆产生信号,经电子测控单元处理后的输出信号可提供继电器输出,其标准的双刀双掷继电器接点可控制警铃、电磁阀或其它低功率设备动作,实现对液体、固体物位的报警和控制。 该产品为机电一体化产品,用于存放液体或固体颗粒的罐、槽、筒仓或料斗的料位控制及报警。即使在极端恶劣的现场条件下,也能可靠工作,而不受挂料、压力、材料密度、湿度甚至物料化学特性变化的影响。本产品以其耐恶劣使用环境及高可靠等特点被成功应用

射频电路(系统)的线性指标及测量方法

射频电路(系统)的线性指标及测量方法 蒋治明 1、线性指标 1.1 1dB压缩点(P1dB——1dB compression point ) 射频电路(系统)有一个线性动态范围,在这个范围内,射频电路(系统)的输出功率随输入功率线性增加。这种射频电路(系统)称之为线性射频电路(系统),这两个功率之比就是功率增益G。 随着输入功率的继续增大,射频电路(系统)进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。 通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示(见图1)。 典型情况下,当功率超过P1dB时,增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大3dB~4dB。 1db压缩点愈大,说明射频电路(系统)线性动态范围愈大。 图1 输出功率随输入功率的变化曲线 1.2 三阶交调截取点(IP3——3rd –order Intercept Poind) 当两个正弦信号经过射频电路(系统)时,此时由于射频电路(系统)的非线性作用,会输出包括多种频率的分量,其中以三阶交调分量的功率电平最大,它是非线性中的三次项产生的。假设两基频信号的频率分别是F1和F2,那么,三阶交调分量的频率为2F1-F2和2F2-F1。图2是输入信号和输出信号的频谱图。

图3反映了基频(一阶交调)与三阶交调增益曲线,当输入功率逐渐增加到IIP3时,基频与三阶交调增益曲线相交,对应的输出功率为OIP3。IIP3与OIP3分别被定义为输入三阶交调载取点(Input Third-order Intercept Point)和输出三阶交调载取点(Output Third-order Intercept Point)。 三阶交调截取点(IP3)是表示线性度或失真性能的重要参数。IP3越高表示线性度越好和更少的失真。 图3中A 线是基频(有用的)信号输出功率随输入功率变化的曲线,B 线是三阶失真输出功率随输入功率变化的曲线。B 线的斜率是A 线的斜率的3倍(以dB 为单位),理论上会与A 相交,这个交点就是三阶截取点。 1.3 三阶互调(IM3——3rd –order inter-modulation) 三阶互调是指当两个基频信号在一个线性系统中,由于非线性因素存在使一个基频信号的二次谐波与另一个基频信号产生差拍(混频)后所产生的寄生信号。比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。由于一个信号是二次谐波(二阶信号),另一个信号是基频信号(一阶信号),他们俩的 图3 增益曲线 图2 输入、输出频谱图 PO=-10dBm △IM=60dB c -70dBm

射频介绍

《射频集成电路设计基础》讲义 课程概述 关于射频(RF) 关于射频集成电路 无线通信与射频集成电路设计 课程相关信息 RFIC相关IEEE/IEE期刊和会议

关于射频 ? 射频= Radio Frequency (RF) → Wireless! ? Why Wireless? – 可移动(Mobile) – 个人化(Personalized) – 方便灵活(Self-configuring) – 低成本(在某些情况下) – and more ... ? Why Wired? <<>><>?

<<>><>? ? 多高的频率才是射频? ? 为什么使用高频频率? 30-300kHz LF 中波广播530-1700 kHz 300kHz-3MHz MF 短波广播 5.9-26.1 MHz 3-30MHz HF RFID 13 MHz 30-300MHz VHF 调频广播88-108 MHz 我们关心的频段 300-1000MHz UHF (无线)电视54-88, 174-220 MHz 1-2 GHz L-Band 遥控模型72 MHz 2-4 GHz S-Band 个人移动通信900MHz, 1.8, 1.9, 2 GHz 4-8 GHz C-Band WLAN, Bluetooth (ISM Band) 2.4-2.5GHz, 5-6GHz 注1:本表主要参考国外标准 注2:ISM =Industrial, Scientific and Medical

关于射频集成电路 ? 是什么推动了RFIC的发展? – Why IC? – 体积更小,功耗更低,更便宜→移动性、个人化、低成本 – 功能更强,适合于复杂的现代通信网络 – 更广泛的应用领域如生物芯片、RFID等 ? Quiz: why not fully integrated? ? 射频集成电路设计最具挑战性之处在于,设计者向上必须 懂得无线系统的知识,向下必须具备集成电路物理和工艺 基础,既要掌握模拟电路的设计和分析技巧,又要熟悉射频 和微波的理论与技术。(当然,高技术应该带来高收益:) <<>><>?

射频测量基本原理

射频测量基本原理 在射频测试中,人们把待测件看成是个射频网络。这里所指的网络是指一个盒子, 不管大小如何, 中间装的什么, 我们并不一定知道, 它只要是对外接有一个同轴连接器, 我们就称其为单端口网络(?习惯上又叫负载Z L ), 它上面若装有两个同轴连接器则称为两端口网络。 一、单端口网络的测试 最简单的单端口网络为负载,口上为连接器,后面接一个无感电阻。复杂的可能是个天线的入口。单端口网络的对外参数只有一个反射系数Γ,其他参数如回损、驻波比与阻抗,皆可由其导出。最常用的测反射系数的器件为反射电桥。 1. 反射电桥 反射电桥又称电桥反射计或定向电桥,它不过是测反射系数的传感头。它只能测反射并不能测入射。由于它的输出正比于反射系数,因此取名反射电桥是非常恰当的。有人称为驻波电桥,其实驻波电桥只适于那种在里面已装入检波二极管,因而只有幅度信息没有相位信息的电桥。 (1) 基本原理 原理图与惠司顿电桥完全相同,只不过结构尺寸改小适于高频连接,并且不再想法调平衡,而是直接取出误差电压而已。 如图所示,除非Z X = Z 否则a、b两点间是有误差电压V ab 的。输出正比于反射系数。 反射电桥的名称也由此而来。 (2) 电桥的基本性能参数 定向性:在电桥测试端口经开短路校正后呈一根水平线,在接上精密负载后,光点应下降,其dB值即定向性。定向性有35dB就不错了,对一般测量绰绰有余;要求高时,要用精密负载校零反射,校后有效定向性即与负载的回损值相当。 测试端口反射:这是指由测试端口向电桥内部看去是否匹配的一个指标,这个指标作到20dB(回损)左右就不错了。这个指标主要影响大反射的测量,而通常主要是测小反射,因此影响不算大,要求高时可加作三项校正校掉。 插入损耗:输入端与测试端间的插损在6dB左右,而输入端与输出端的插损理论值为12dB。 (3) 注意事项:这种桥很易损坏,主要是插头超差所引起,这里面有个L-16与N型的问题,虽然已于1990年2月1日宣布国标连接器也采用N型。但实际上L-16仍在大量应用,这样造成若用N型作桥,则L-16插上将损坏电桥,而按L-16作桥则螺纹不对,而且缝太大,对高频不利。 2.三项校正 由于组成仪器的各个功能块由于组成仪器的各个功能块(包括反射电桥)并不理想,

手机常用信号的测试

手机常用信号的测试 ●目的 1.掌握手机常用供电电压的测试方法。 2.掌握手机常用波形的测试方法。 3.掌握手机常用频率的测试方法。 ●要求 1.实习前认真阅读实习指导 2.实习中测试信号电压、波形和频率时要启动相应的电路。 3.实习后写出实习报告。 手机常见供电电压的测试 维修不开机、不入网、无发射、不识卡、不显示等故障,需要经常测量相关电路的供电电压是否正常,以确定故障部位,这些供电电压,有些为稳定的直流电压,有些则为脉冲电压,一般来说,直流电压即可用万用表测量,也可用示波器测量,当然,用万用表测量是最为方便和简单的,只要所测电压与电路图上的标称电压相当,即可判断此部分电路供电正常;而脉冲电压一般需用示波器测量,用万用表测量,则与电路图中的标称值会有较大的出入。脉冲电压大都是受控的(有些直流电压也可能是受控的),也就是说,这个脉冲电压只有在 启动相关电路时才输出,否则,用示波器也测不到。 下面分以下几种情况分析供电电压信号的测试方法。 一、外接电源供电电压 1.指导 维修手机时,经常需要用外接电源采代替手机电池,以方便维修工作,这个外接电源在和手机连接前,应调到和手机电池电压一致,过低会不开机,过高则有可能烧坏手机。 外接电源和手机连接后,要供到手机的电源IC或电源稳压块。外接稳压电源输出的是一个直流电压,且不受控;测量十分简单,只需在电源IC或稳压块的相关引脚上,用万用表即可方便地测到。如果所测的电压与外接电源供电电压相等,可视为正常,否则,应检查供电支路是否有断路或短路现象。 2.操作 以摩托罗拉T2688手机为例,装上电池,不开机,测试直通电池正极的电压,共12处: (1)功放U201的左上角(8脚)、右上角(6脚)。 (2)功控ICU202的4脚。 (3)电源ICU27的1、10脚。 (4)充电二极管D14的负极。 (5)射频供电ICIC301的7脚。 (6)U47的6脚。 (7)U35的4脚。 (8)振子驱动管集电极。 (9)电池退耦电容下端。 (10)发光二极管驱动管BQ2集电极。

射频电路设计实验报告

射频电路设计实验报告 ----Wilkinson功率分配器的设计 一、实验目的 1.掌握功率分配器的原理及基本设计方法。 2.学会使用电磁仿真软件ADS对功分器进行仿真。 3.掌握功分器的实际制作和测试方法,提高动手设计能力。 二、实验仪器 微波无源试验箱一台、矢量分析仪一台、电脑一台 三、实验原理 威尔金森功率分配器为一三端口网络,如图 信号由1端口输入、从端口2、3输出。理想的3dB微带威尔金森功分器,当1口有输入而其他端口匹配时,端口2、3有等幅同相的输出,并且都比输入信号滞后90°且2、3端口对应的两个支路完全隔离。 四、实验内容 (一)技术指标 1、中心频率f0=1GHz 2. 带宽BW:0.9GHz—1.1GHz 3. 各端口匹配:Vswr<1.5(s11,) 4. 工作频带内输入端口的回波损耗:S11<-18dB 5. 工作频带内的传输损耗:-3.4dB<=S21<=-2.6dB 6. 两个输出端口间的隔离度S23<=-20dB (二)功率分配器的建模

(三)功率分配器的仿真 附近S11衰减很大,大于35dB,说明返回到1端口的能量很小 S22为2端口的反射系数,反应了2端口的回波损耗,同样在工作频率附近绝对值很大。 S21为1端口到2端口的传输系数,理想情况下2、3端口应平分功率,故应为3dB,由于存在介质损耗角正切等原因,实际略大于3dB。 S23反应2、3端口之间的隔离度,在1GHz附近大于30dB,说明隔离度较好。

(四)实物的制作与测试 下图为制作的实物 上图为1端口输入时2、3端口的输出关系S21为3.35dB S23为28.9dB 五、实验总结 1在用ADS进行建模,设置各个器件的参数时要注意不要忘记加单位 2.测试的结果与仿真的结果基本相等,说明制作的功分器满足了实验的技术指标与要求

相关主题