搜档网
当前位置:搜档网 › 土壤水分生态指标测定方法

土壤水分生态指标测定方法

土壤水分生态指标测定方法
土壤水分生态指标测定方法

土壤水分生态指标测定方法

土壤水分生态指标测定方法

1.林地土壤渗透性测定

采用单环定量加水法测定:

测定步聚:

(1)选择样地,扒走枯落物层,整平地面,(山地要整一小平台)。按土壤发生层次朋g 进行测定。

(2)把渗透筒垂直插入土中至下部刻度线(入土深度lcm左右)

(3)用量筒盛水(记录水温)100ml缓缓倒入渗透筒内(同时开始记时),等水全部渗入土中、记录起始时间。

(4)马上再倒入l00ml水,重复(3)的操作,重复4次,倒水共4次,渗水量共计400ml。

(5)沿渗透筒中部挖一垂直剖面、观测记录土壤中渗透锋面的深度。

(6)渗透速度及渗透系数的计算:

①渗透速度(V)

10×q i(ml)

Vi(mm/min)=

S(cm2)×t i(min)

V(mm/min)=10×q(ml)/s(cm2)×t(min)

式中V i、q i、t i分别为每次重复测定的渗透速度,渗水量,及渗透时间。V、q、t分别为

四次重复测定的平均渗透速度,总渗水量和渗透总

时间。S为渗透筒断面积。

②渗透系数(K)

K T(mm/min)=h(mm)/t(min)

K T

h(mm)

K10(mm/min)= =

0.7+0.03T(℃) (0.7+0.03T)t(min)

式中K T——实地测定(水温T℃)的渗透系数(mm/min)

K10——水温为l0℃的渗透系数(mm/min)

h——渗透锋面深度(mm)

t——渗透所用总时间

T——测定所用水的水温(℃)

(注:所需仪器工具:铲子、渗透筒、量筒、温度计、水桶、滤纸)·

2.土壤含水量(含水率)测定

采用酒精燃烧法测定。

操作步聚:

(1)取小铝盒若干,洗净后烘干,用天平称出每—铝盒重量(逐一标量记录)

(2)在标准地内挖土壤剖面,分20cm一层。在分层的土壤剖面上用铝盒自下而上刮

一层土(约半盒、注意避开根系和石砾等杂物),马上称重(得出湿土重十铝盒重)

(3)倒入酒精8~12ml,振荡铝盒使与土壤混合均匀(如土壤很湿要用小刀拌匀成泥

浆),点燃酒精,在火焰将熄灭时,用小刀轻拔土壤,使其充分燃烧,烧完后再加入3~4ml

进行第二次燃烧(如土壤粘重、含水量较大,再加入2~3ml酒精进行第三次燃烧)。

冷却后,马上称出重量(得干土重十盒重)。每层重复三次。

(4)土壤含水量及现有贮水量计算

(湿水重+盒重)-(干土重+盒重)

①土壤含水量(重量)=×100%

(干土重+盒重)-盒重

=水分重/干土重×l00%

土壤含水量(重量%)×容量(g/cm3)

②土壤含水量(体积)=

1(g/cm3)

水分体积

= ×100%

土壤体积

(注:水的容重一般取lg/cm3)

③单位林地土壤含水量(m3/hm2)(土壤现有贮水量)

=土壤含水量(重量%)×容量(g/cm3)×土层厚度(m)×l0000m2

=土壤含水量(体积%)×土层厚度(mm)×10000m2ππ

④单位林地面积含水量(mm)(土壤现有贮水量)

=土壤含水量(重量%)×容量(g/cm3)×土层深度(mm)

=土壤含水量(体积%)×土层厚度(mm)

(注需要工具:铝盒、天平、撤、小刀、95%酒精) 3.土壤水分物理性质测定

采用环刀法

操作步聚:

(1)首先量取环刀的高度和内径,计算出其容积(标记、做好记录):

V=πr2H

式中:V—环刀体积(cm3)

R—环刀内半径(cm)

H—环刀高度(cm)

将环刀在天平上称重(做好标记、记录)。

(2)选择标准地,在测定地点做一平台(山地),挖土壤剖面,分层取样测定(按20cm

—层),每层设三个重复。

(3)打入环刀(一定要垂直打入,且不能晃动),待土壤至环刀下沿齐平时,在环刀上垫

—滤纸层后把盖盖好,挖出环刀,用刀削平底部土壤,垫好滤纸,盖好下盖。迅速称重(得:

自然土重十环刀重)

(注:第(3)步测完后马上测定该层土壤含水量,见土壤含水量测定)可测出土壤容重。

(4)将环刀样品带回室内,拿掉上盖(保留滤纸)。将环刀放入盛水的容器中(2—3mm水层,随水减少,逐渐加水,保持此水层)。大约2小时左右(人不能离开)至土层滤纸一湿,取出环刀(用滤纸吸干)盖好上盖马上称重(得:经浸水2小时左右带土环刀重)。

然后放回原处,每隔l小时取出反复称重,直到恒重,可测出土壤毛管孔隙度。

(5)将环刀土样继续放入盛水容器中,往容器加水至水面与环刀上层齐平。净置6小时后取出环刀。稍置10秒钟。使多余水流出,用干布将环刀擦干后称重。(得:浸水6小时带土环刀重),然后再将环刀放回容器中,放置4~5小时后,再次称重,直到恒重。可测得土壤总孔

隙度。

(6)土壤物理性质指标的计算

(自然干重+环刀重)-环刀重(g)

①环刀内干土重(g)=

土壤含水量(重量%)+1

环刀内干土重(g)

②土壤容重(g/cm3)=

环刀容积(cm3)

③土壤毛管孔隙度(容积)

吸水2小时左右带土环刀重(g)-环刀重(g)-环刀内干土重(g)

=

×100%

环刀容积cm3

④毛管最大持水量(重量)(又称田间持水量)

吸水2小时左右带土环刀重(g)-环刀重(g)-环刀内干土重(g)

=

×100%

环刀内干土重(g)

土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的: 一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。 二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛: xx1mm;③铝盒:

小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平: 感量为 0.001g和 0.01g;⑤小型电热恒温烘箱;⑥干燥器: xx变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3. 4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3. 4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3. 5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至 0.001g。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至 0.001g。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。

土壤湿度检测及自动浇水系统设计

土壤湿度检测及自动浇水系统设计 1 设计主要内容及要求 1.1 设计目的: 随着人们生活水平的提高花卉逐渐受到人们的青睐,本设计要求利用单片机设计一款家庭智能浇花器,实现自动浇花,节省人力,方便人们出差的时候不至于影响花卉的生长,如果在家也可以关断浇花器。 (1)了解土壤湿度检测的基本知识以及电工电子学、单片机、传感器等相关技术。 (2)初步掌握常用土壤湿度检测传感器的特点和应用场合,并选择恰当方法应用于本设计。 1.2 基本要求 (1)通过c8051f020单片机编程来实现土壤湿度的实时显示,并具有超量程报警装置。 (2)要求设计相关传感器系统和控制系统实现自动浇水功能。 (3)要求设计相关的硬件电路,包括传感器的选型、控制系统和显示系统的硬件电路设计。 1.3 发挥部分 自由发挥 2 设计过程及论文的基本要求: 2.1 设计过程的基本要求 (1)基本部分必须完成,发挥部分可任选; (2)符合设计要求的报告一份,其中包括总体设计框图、电路原理图各一份; (3)报告的电子档需全班统一存盘上交。 2.2 课程设计论文的基本要求 (1)参照毕业设计论文规范打印,包括附录中的图纸。项目齐全、不许涂改,不少于4000字。图纸为A4,所有插图不允许复印。 (2)装订顺序:封面、任务书、成绩评审意见表、中文摘要、关键词、目录、正文(设计题目、设计任务、设计思路、设计框图、各部分电路及相应的详细的功能分析和重要的参数计算、工作过程分析、元器件清单、主要器件介绍)、小结、参考文献、附录(总体设计框图与电路原理图)。 3 时间进度安排

一设计任务描述 1.1 设计题目:土壤湿度检测及自动浇水系统设计 1.2 设计要求 1.2.1 设计目的: 随着人们生活水平的提高花卉逐渐受到人们的青睐,本设计要求利用单片机设计一款家庭智能浇花器,实现自动浇花,节省人力,方便人们出差的时候不至于影响花卉的生长,如果在家也可以关断浇花器。 (1)了解土壤湿度检测的基本知识以及电工电子学、单片机、传感器等相关技术。(2)初步掌握常用土壤湿度检测传感器的特点和应用场合,并选择恰当方法应用于本设计。 1.2.2 基本要求: (1)通过C8051F020单片机编程来实现土壤湿度的实时显示,并具有超量程报警装置。 (2)要求设计相关传感器系统和控制系统实现自动浇水功能。 (3)要求设计相关的硬件电路,包括传感器的选型、控制系统和显示系统的硬件电路设计。

土壤容重、孔隙度、含水率等测定方法

1.土壤含水量(含水率)测定 采用酒精燃烧法测定。 操作步聚: (1)取小铝盒若干,洗净后烘干,用天平称出每—铝盒重量(逐一标量记录) (2)在标准地内挖土壤剖面,分20cm 一层。在分层的土壤剖面上用铝盒自下而上刮一层土(约半盒、注意避开根系和石砾等杂物),马上称重(得出湿土重十铝盒重) (3)倒入酒精8-12ml ,振荡铝盒使与土壤混合均匀(如土壤很湿要用小刀拌匀成泥浆),点燃酒精,在火焰将熄灭时,用小刀轻拔土壤,使其充分燃烧,烧完后再加入3~4ml 进行第二次燃烧(如土壤粘重、含水量较大,再加入2~3ml 酒精进行第三次燃烧)。 冷却后,马上称出重量(得干土重十盒重)。每层重复三次。 (4)土壤含水量及现有贮水量计算 ①土壤含水量(重量)=%重(干土重+盒重)-盒干土重+盒重)(湿土重+盒重)-(100? =水分重/干土重×l00% ②土壤含水量(体积)=) ()容重(土壤含水量(重量%)33g/cm 1g/cm ? =%土壤体积 水分体积100? (注:水的容重一般取lg /cm 3) 2.土壤物理性质测定 采用环刀法 操作步聚: (1)首先量取环刀的高度和内径,计算出其容积(标记、做好记录): V =πr 2H 式中:V —环刀体积(cm 3) R —环刀内半径(cm) H —环刀高度(cm) 将环刀在天平上称重(做好标记、记录)。 (2)选择标准地,在测定地点做一平台(山地),挖土壤剖面,分层取样测定(按20cm —层),每层设三个重复。 (3)打入环刀(一定要垂直打入,且不能晃动),待土壤至环刀下沿齐平时,在环刀上垫—滤纸层后把盖盖好,挖出环刀,用刀削平底部土壤,垫好滤纸,盖好下盖。迅速称重(得:自然土重十环刀重)

土壤水份和植物组织含水量的测定

土壤水份和植物组织含水量的测定 实验的目的与要求: 通过对植物和土壤水分的测定来学习和使用烘干法水分测定仪,掌握实验和实习的技巧,了解一定的实习的规则! 通过对实习数据的比较,以及结合自身的知识来分析土壤和植物组织含水量的关系,了解水分对植物生长的影响,了解土壤中水分对植物生长的影响。 结合生态学的知识来分析土壤和植物含水量受整个生态系统的影响。 实验的主要内容: 记录实验地的周围环境的各种生态环境因素,如温度,风向,湿度。 测量土壤和植物组织含水量值,在不同的环境下测量对比,同一环境下不同物种的值。 记录实验测量的数据值,分析得出结论。 实习的主要工具: 1.烘干法水分测定仪(LSH-100A型): 最大秤量:100g 实际标尺分度值:1mg 准确度级别:2级 水分测量允许误差:±0.2%(样品≥2克) 水分含量测定可读性:0.01% 测量水分范围:0~100% 加热源:卤素灯(环型400W) 温控精度:±1℃ 加热温度设定:室温~160℃(以1℃调整) 时间设定:0~180min(以1min调整) 测量方法:手动、自动 操作温度范围:10~30℃ 电源及功耗:AC220V±22V 50Hz 420W 秤盘尺寸:¢100mm 外壳尺寸:360mm×250mm×270mm 净重:7kg 实验用剪刀、小袋子 实验原理: 首先对同一环境下的不同生长情况的高山榕进行水分的测定,记录数据并比较,然后对不同环境下的不同株池杉进行水分的测定,在数据中得出结论。用烘干法测定仪进行含水量的测定,使用小塑料袋来装实验品以防止植物叶子和土壤水分的蒸发。 实验的步骤: 首先进行样本的采样,在学校的马路边分别进行不同生长情况高山榕叶子的取样,然后再树下进行土壤的取样。在昭阳湖旁不同地方生长情况相同的池杉的叶子和土壤的进行取样。将取来的样品装入袋中,并做好标签。 预热烘干法测定仪后,将取来的样品放入烘干仪中保持5-8分钟,待屏幕中的数值稳定后进行数据的记录。 对数据进行整理分析和讨论,得出结论。 实验的结果:

土壤湿度的测定方法

土壤湿度的测定方法 国内外有很多土壤水分测定方法。具体方法列举如下:称重法,时域反射法(TDR),石膏法,红外遥感法,频域反射法/频域法(FDR/FD法),滴定法,电容法,电阻法,微波法,中子法, Karl Fischer法,γ射线法和核磁共振法等。 ①烘干法 烘干法是测定土壤水分最普遍的方法,也是标准方法。具体为:从野外获取一定量的土壤,然后放到105℃的烘箱中,等待烘干。其中烘干的标准为前后两次称重恒定不变。烘干后失去的水分即为土壤的水分含量。计算公式为土壤含水量=W/M*100%,M为烘干前的土壤重量,W为土壤水分的重量,即M与烘干后土壤重量M’的差值。称重法缺点是费时费力(需8小时以上),还需要干燥箱及电源,不适合野外作业。如果采用酒精燃烧法,由于需要翻炒多次,极为不便,不适合用于细粒土壤和含有有机物的土壤,且容易掉落土粒或燃烧不均匀而带来较大误差,而且需要取土测量,对土壤有破坏性。 ②TDR(Time Domain Reflectometry)法 TDR法是上世纪80年代发展起来的一种土壤水分测定方法,中文为时域反射仪。这种方法在国外应用相当普遍,国内才刚开始引进,当各部门都相当重视。TDR是一个类似于雷达系统的系统,有较强的独立性,其结果与土壤类型、密度、温度基本无关。而且还有很重要的一点就是,TDR能在结冰下测定土壤水分,这是其他

方法无法比拟的。另外,TDR能同时监测土壤水盐含量,且前后两次测量的结果几乎没有差别。这种测定方法的精确度可见一斑。 ③欧速土壤水分传感器直接测量法 因为TDR法设备昂贵,我公司开始用比TDR更为简单的方法来测量土壤的介电常数,而且测量时间更短,在经过特定的土壤校准之后,测量精度高,而且探头的形状不受限制,可以多深度同时测量,数据采集实现较容易。

土壤含水量测定方法小结

土壤含水量测定方法小结 1,烘干称重; 这个不多说了。准确度最高,但测定得到的是质量含 水量,与其他方法所得数据进行比较是注意换算。 2,中子仪; 技术比较成熟,准确性极高,是烘干法以外的第二标 准方法。 但是中子仪测定需要安装套管,理论上可达任何深度,设备昂贵,投入很大。中子射线对操作者身体有损害,严格来说需要相关证件才可以操作。无法测定表层土 壤。 3,电阻法; 一般使用石膏块作为介质埋设地下,石膏块中埋设两根导线,导线之间的石膏成分组成电阻,石膏块电阻与土壤含水量相关。石膏块制作简单,哪怕进口的成品成本也是非常低廉,可以作很多重复,可以不破坏土壤在田间连续自动监测。存在问题,石膏块滞后时间较长,所以不可能用来做移动式测定和自动灌溉系统。石膏块只适合用于非盐碱土壤中,同时石膏块不适合使用直流电(文献查得,表示怀疑,因为所有的石膏块读书表都是用干电池作为电源),测定受土壤类型影响很大,标定结果会随时间改变,达到一定年 限后,石膏会逐渐溶解到土壤中。 4,TDR(Time Domain Reflectometry) TDR有两种时域反射仪和时域延迟,两者均简称TDR。TDR技术是当前土壤水分测定装置的主流原理,可以连续、快速、准确测量。可以测量土壤表层含

水量。一般的TDR原理的设备响应时间约10-20秒,适合移动测量和定点监测。测定结果受盐度影响很小,TDR缺点是电路比较复杂,设备较昂贵。 5,FDR(Frequency Domain Reflectometry)几乎具有TDR的所有优点,探头形状非常灵活。比较夸张的甚至可以放在做成犁状放在拖拉机后面运动中 测量。FDR相对TDR需要更少的校正工作。 TDR和FDR同样有一个缺点,当探头附近的土壤有空洞或者水分含量非常不均匀时,会影响测定结果。 非常奇怪的是,基于FDR原理的往往是低端的仪器设备,根据笔者实际使用经验,FDR技术可能在精度上存在瓶颈,经常在5%的误差左右,写文章时候数据基本上不好用。

实验三 土壤水分含量的测定

实验三 土壤水分含量的测定 一、目的要求 土壤水分是土壤的重要组成部分,也是重要的土壤肥力因素。进行土壤水分的测定 有两个目的:一是了解田间土壤的水分状况,为土壤耕作、播种、合理排灌等提供依据; 二是在室内分析工作中,测定风干土的水分,把风干土重换算成烘干土重,可作为各项 分析结果的计算基础。 本实验要求掌握烘干法和酒精燃烧法测定土壤水分的原理和方法, 能较准确地测定 出土壤的水分含量。 二、仪器与试剂 天平(感量0.01g和0.001g)、烘箱、干燥器、称样皿、铝盒、量筒(10ml)、无 水酒精、滴管、玻棒等。 三、测定方法 测定土壤中水分含量的方法很多,常用的有烘干法和酒精燃烧法。烘干法是目前测 土壤水分的标准方法,其测定结果比较准确,适合于大批量样品的测定,但这种方法需 要时较长。酒精燃烧法测定土壤水分快但精确度较低,只适合田间速测。 (一)烘干法 1. 方法原理 在105±2℃的温度下从土壤中全部蒸发,而结构水不会破坏,土壤 有机质也不被分解。因此,将土壤样品至于105±2℃下烘至恒重,根据其烘干前后质量 之差,就可以计算出土壤水分含量的百分数。 2. 操作步骤 (1)取有盖的铝盒(或称样皿),洗净,放入干燥器中冷却至室温,然后再分析天 平上称重(W1),并注意标好号,以防弄错。 (2)用角匙取过1mm筛孔的风干土样4~5g(精确至0.001g),铺在铝盒中(或 称样皿中)进行称重(W2) (3)将铝盒盖打开,放入恒温箱中,在105±2℃的温度下烘6h左右。 (4)盖上铝盒盖子,将铝盒放入干燥器中20~30min,使其冷却至室温,取出称 重。 (5)打开铝盒盖子,放入恒温箱中,在105±2℃的温度下再烘2h,冷却,称重至 恒重(W3)。 3. 结果计算 以烘干土为基数计算土壤水分的百分含量(W%) 土壤水分含量= (W2- W3)/W3*100% 水分系数(x)=烘干土重/风干土重

土壤含水量测量方法

土壤含水量测量方法 ( 1 )称重法(Gravimetric) 也称烘干法,这是唯一可以直接测量土壤水分方法,也是目前国际上的标准方法。用土钻采取土样,用0.1g 精度的天平称取土样的重量,记作土样的湿重 M,在 105℃的烘箱内将土样烘 6~8 小时至恒重,然后测定烘干土样,记作土样的干重 Ms 土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质 量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100% ( 2 )张力计法(Tensiometer) 也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率 ( 3 ) 电阻法(Electricalresistance) 多孔介质的导电能力是同它的含水量以及介电常数有关的,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题 ( 4 ) 中子法(Neutronscattering) 中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云

土壤水分遥感监测方法进展

第!"卷, 第#期中国农业资源与区划$%&’!",(%’#,))*+,*-!..*年.+月/%0123&%4567238917:0&;013&<=>%01:=>32?<=97%23&@&322729/02=,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!..*?技术方法? 土壤水分遥感监测方法进展 邓辉,周清波 (中国农科院资源区划所,北京A ...B A )摘要该文全面地回顾了目前国内外遥感监测土壤水分的方法和研究进展,比较和评价了热惯量法、微 波法、热红外法、距平植被指数法、植被缺水指数法、植被供水指数法等方法的优缺点和应用范围,并对 土壤水分遥感监测方法的发展趋势进行了分析和展望。关键词旱情监测土壤水分热惯量法微波法植被缺水指数方法回顾收稿日期:!..#,.#,#.邓辉为硕士生周清波为研究员 一、引言 干旱(农业干旱)是指:作物生长过程中因供水不足,阻碍作物的正常生长而发生的水量供应不平衡现象,即农田土壤含水量降低到影响农作物的正常生长发育。干旱是我国农业的一大威胁,在各种自然灾 害中造成的损失列为首位。据统计,我国农业自然灾害的近+.C 是干旱造成的,每年有近"D .万6E !耕地受旱减产,占播种面积的"’B +C ,按减产#.C !".C 的轻灾计算,每年直接经济损失达*亿!D 亿元。探讨一套客观、动态、实时的土壤水分监测方法,对于各级政府和领导及时了解旱情程度和分布,采取有效的防、抗措施,科学的指导农业生产,具有重要意义。 传统的旱情监测方法,主要是根据有限的旱情测量站点测定土壤水分含量来监测土壤水分。经典的土壤水分测量方法主要有称重法、中子水分探测法、快速烘干法、电阻法、F G <法(时域反射)等,因采样速度慢而且花费大量人力物力,范围有限。传统方法难以满足实时、大范围监测的需要。随着遥感技术的迅速发展,多时相、多光谱、高光谱遥感数据反映了大面积的地表信息,这些信息从定位、定量方面反映了土壤水分状况。 二、监测土壤水分的方法和进展 (一)热惯量法 水分有较大的热容量和热传导率使较湿的土壤具有较大的热惯量,而这一热惯量可由光学遥感监测地表温度的变化得到。热惯量法也是国内研究较多的一种方法。 国外:H 3;>%2等人[A ,!](A -D A ,A -D *)最早应用了热模型;A -D B 年热容量制图卫星(I 5JJ )发射 成功,随后具有较高分辨率的F K >F 6=1E 3&K 2=1;7,3,即

土壤含水量测量实验报告

土壤水分的测定实验 一、实验目的 1、了解土壤的实际含水情况,以便适时灌排,保证植物生长对水分的需求。 2、风干土样水分的测定,是各项分析结果计算的基础。土壤水分含量的多少,直接影响土壤的固、液、气三相比例,以及土壤的适耕性和植物的生长发育。 二、实验原理 土壤水分大致分为化学结合水、吸湿水和自由水三类。自由水是可供植物自由利用的有效水和多余水,可以通过土壤在空气中自然风干的方法从土壤中释放出来;吸湿水是土壤颗粒表面被分子张力所吸附的单分子水层,只有在105-110℃下才能摆脱土壤颗粒表面分子力的吸附,以气态的形式释放出来,由于土粒对水汽分子的这种吸附力高达成千上万个大气压,所以这层水分子是定向排列,而且排列紧密,水分不能自由移动,也没有溶解能力,属于无效水;而化学结合水因为参与了粘土矿物晶格的组成,所以是以OH-的形式存在的,要在600--700℃时才能脱离土粒的作用而释放出来。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 三、实验器材 铝盒、烘箱、干燥器、天平、小铲子、小刀。 四、实验步骤 1、在室内将铝盒编号并称重,重量记为W0 。 2、用已知重量的铝盒在天平上称取欲测土样15—20克,称量铝盒与新鲜土壤样

第11章 土壤湿度测量解析

第 11章土壤湿度测量 11.1概述 土壤含水量是影响农作物收成与水保的重要因素之一。土壤湿度对于制定灌溉进程表、水与溶质流的评价、净太阳辐射潜热与显热的划分等方面都是很重要的。 作为预测水源耗竭模式中的重要参量,土壤湿度在水文学中是很重要的。在大气数值模式中陆气相互作用的模拟及水气循环的其它参量要求测量土壤湿度,卫星遥感评价的验证也需要直接测量地表土壤水分。 土壤湿度的测量可用土壤含水量与土壤湿度位势的测定来表示。土壤含水量反映了土壤中水的质量与体积,而土壤湿度位势则反映土壤水分能量状态。 农业学科非常关注土壤水分的测定。为满足土壤水分状态测量的广泛需求,许多仪器已发展到商业化的程度,使用最普遍的将在下面予以讨论,包括其优点与缺点。此外,对在将来不久可能被广泛使用的新式仪器也予以简要讨论。 11.1.1定义 土壤含水量 称重技术是测量土壤含水量最为简单且被广泛运用的方法。因为此方法简单易行而且是直接测量,所以被用作其它方法参照的标准。定义在干质基础上的称重土壤湿度g θ可表达为: 100?=soil water g M M θ (11.1 此处 water M 为土样中水质量, soil M 为土样中烤干(100-110℃后的土质量。

对于风干(25℃的矿物土壤,称重土壤湿度通常少于 2%,但随着土壤水分达到饱和,其水含量会增到 25%至 60%。但是称重取样法具有破坏性,使得土壤接近饱和时,取得准确的土壤含水量测量结果变得极为困难。 通常,土壤湿度用体积表达。由于降水、蒸散量和溶质变化参量通常用容量表示,用体积表示的水含量更为有用。体积水含量v θ可表达为: 100?soil water v V V θ (11.2 此处, water V 为水体积, soil V 为土壤(土 +气 +水总体积。 土壤体积含水量的变化可从风干土壤的少于 10%到临近饱和的矿物土壤的 40-50%间变化。由于水与土壤体积的准确测定存在困难,体积水含量通常间接测定。 体积与称重土壤含水量有一定关系。该关系如下: w b g v ρρθθ/= (11.3 b ρ是干土壤体积密度, w ρ是土壤水分密度 土壤湿度位势 土壤湿度位势是描述土壤水分能量状态,它对水分传输分析、含水量评价、土壤——植被——水相互作用等都很重要。两地土壤湿度位势的不同反映了水流的趋势,即由高位势流向低位势。由于湿度位势会随干燥而减少(负值变得更大 ,运移它所需的功就要增加,使得植物抽吸水变得困难。当植物水上吸变得更困难时,植物水位势因此下降,最终导致植物受压,甚至枯萎。 通常,湿度位势描述土壤水力做的功,或在负位势下水从土壤中运移出来所需的功。总湿度位势t ψ(所有力场的综合效应表达如下: p m z t ψψψψψ+++=0 (11.4

测量土壤含水量的方法汇总

测量土壤含水量的方法有哪些 土壤水分是指由地面向下至地下水面(浅水面)以上的土壤层中的水分,它能够供给 作物生产,是农业生产的必要条件,也是土壤肥力的重要组成部分。在农业生产种植中,对土壤水分进行有效的监测,有利于及时了解土壤的肥力状况,为合理施肥、科 学灌溉、加强土壤环境管理起到重要作用。 目前,用于监测土壤含水量的方法很多种,但归纳起来主要有以下几大类: (1)烘干法:又称重量测定法,即取土样放入烘箱,烘干至恒重。此时土壤水分中自由态水以蒸汽形式全部散失掉,再称重量从而获得土壤水分含量。烘干法还有红外法、酒精燃烧法和烤炉法等一些快速测定法。 (2)中子仪法:将中子源埋入待测土壤中,中子源不断发射快中子,快中子进入土壤介质与各种原子离子相碰撞,快中子损失能量,从而使其慢化。当快中子与氢原子碰 撞时,损失能量最大,更易于慢化,土壤中水分含量越高,氢原子就越多,从而慢中

子云密度就越大。中子仪测定水分就是通过测定慢中子云的密度与水分子间的函数关系来确定土壤中的水分含量。 (3)γ射线法:与中子仪类似,γ射线透射法利用放射源137Cs放射出γ线,用探头接收γ射线透过土体后的能量,与土壤水分含量换算得到。 (4)土壤水分传感器法:目前采用的传感器多种多样,有陶瓷水分传感器,电解质水分传感器、高分子传感器、压阻水分传感器、光敏水分传感器、微波法水分传感器、电容式水分传感器等等。 (5)时域反射法:即TDR(Time Domain Reflectometry)法,它是依据电磁波在土壤介质中传播时,其传导常数如速度的衰减取决于土壤的性质,特别是取决于土壤中含水量和电导率。 (6)频域反射法:即FDR(Frequency Domain Reflectometry)法,该系统是通过测量电解质常量的变化量测量土壤的水分体积含量,这些变化转变为与土壤湿度成比例的毫伏信号。

土壤温湿度计使用原理及使用步骤

土壤温湿度计使用原理及使用步骤 大家都知道现在大棚种植都会使用壁挂式土壤温湿度计来保持大棚内的温度和湿度,从而使植物能很好的生产,其实只保持大棚内的温度是远远不够的,植物生长也需要适合的土壤温度和湿度。 要测量土壤的温湿度一般都是使用插入式的土壤温湿度计的,当然这种插入式土壤温湿度计和我们通常所说的工业上的插入式土壤温湿度计也是不同的。一般土壤插入式土壤温湿度计比较小,而且不同工业上使用的土壤温湿度计,一般土壤温湿度计有好几个探针,而且探针的长度不一样,这样是为了更好的测量不同深度土壤的温湿度。 土壤温湿度计又称为便携式土壤温度速测仪、快速土壤水分温度仪、快速土壤水分温度测定仪、土壤温湿度测定仪、土壤温湿度记录仪等,土壤温湿度计可同时测土壤表层和不同深度的土壤容积含水量,测量精度高,存储容量大,体积小巧,便于携带。可用于农田、水利、森林、草坪、公路、铁路养护等的长期监测,可连续监测土壤的水分,性能稳定,可靠性高,免维护。 土壤温湿度计可脱离开计算机独立工作,上位机软件功能强大,数据查看方便,随时可以将记录数据导出到计算机中,并可以存储为EXCE表格文件,生成数据曲线,以供其它分析软件进一步进行数据处理,连接计算机可以打印存储数据。 土壤温湿度计广泛应用于农业、林业、地质、农田、水利、森林、草坪、公

路、铁路养护等测等方面的测量及研究。 既然我们知道了土壤温湿度计有这么多的功能和优点,但是土壤温湿度计具体的使用步骤大家都不太清楚吧,接下来就由小编来详细的介绍下吧! 土壤温湿度计使用步骤: 1、去除被测土壤表面石子、草、树叶等覆盖物,去除表层土壤,如果土壤太干,先浇一些水,过25~30分钟后再进行测量; 2、在测量前,用柔软的布将探头金属表面擦拭干净,将开关选择到测量的选项,水分,酸度。初次使用该仪器时,建议反复测试几次再读数,以免探头金属表面的保护油层对水分值和PH值造成影响; 3、测土壤PH值和湿度时,先将探头尽量深地插到土里,探头上面部分留大约1厘米。 4、在测量时,将仪器探头插入土壤,注意将探头电极要全部插入土壤里面,而且要确保电极和边上的土壤紧密接触。 5、拨动笔上的按键到MOIST, MOIST是水份键,对应表上的是MOIST, DRY 是干, WET是湿,数值1-3(红色部分)说明需要浇水, 4-7(绿色部分)是合适的,请根据植物的品种调整浇水时间, 8-10(蓝色部分)说明太湿了。 6、拨动笔上的按键到PH, PH是酸碱度键,对应表上的是8-3.5数值, ALKALINE是碱, ACDIC是酸,数值7基本是中性,数越小说明酸度越大,请根据植物的品种调整土壤酸碱度。 7、LIGHT键是光照度,测量范围0-2000流明,数值越大,说明光照越强,请根据植物的品种来决定是否需要遮阴。 8、为了确保测量土壤的PH值金额水分值,需将探头插入土壤约十分钟。因为土壤性质的不同,探头和土壤接触的紧密度也不同,建议测量多个数值,取平均值; 9、使用时注意插电极时不能碰到石头,不要用力过猛,否则容易伤害电极.

土壤水分的遥感监测

土壤水分的遥感监测 摘要:针对日益严重的全球干旱问题,本文从水分监测领域出发进行研究。从国内外各种研究方法的比较及传统方法和遥感监测方法的比较中突出遥感监测的优越性。从遥感监测的各种方法分述,对比出气各自适用的范围和优缺点。联系实际和GIS技术的发展,提出该技术的进步空间。 一、研究土壤水分监测的意义 近百年来全球变化最突出的特征就是气候的显著变暖,这种气候变化会使有些地区极端天气与气候事件如干旱、洪涝、沙尘暴等的频率与强度加强增加。中国气候变暖最明显的地区在西北、华北和东北地区,特别是西北变暖的强度高于全国平均值,使得夏季干旱化和暖冬比较突出。新世纪以来尤为明显:2000年多省干旱面积大,达4054万公顷,受灾面积6.09亿亩,成灾面积4.02亿亩。建国以来可能是最为严重的干旱。 2003年江南和华南、西南部分地区江南和华南、西南部分地区发生严重伏秋连旱,其中湖南、江西、浙江、福建、广东等省部分地区发生了伏秋冬连旱,旱情严重。 2004年我国南方遭受53年来罕见干旱,造成经济损失40多亿元,720多万人出现了饮水困难。 2005年华南南部、云南严重秋冬春连旱,云南发生近50年来少见严重初春旱。 2006年重庆旱灾达百年一遇,全市伏旱日数普遍在53天以上,12区县超过58天。直接经济损失71.55亿元,农作物受旱面积1979.34万亩,815万人饮水困难。 2007年全国22个省全国耕地受旱面积2.24亿亩,897万人、752万头牲畜发生临时性饮水困难。中央财政先后下达特大抗旱补助费2.23亿元。 2008年云南连续近三个月干旱,云南省农作物受灾面积现达1500多万亩。仅昆明山区就有近1.9万公顷农作物受旱,13多万人饮水困难。 2009年华北、黄淮等15个省市连续3个多月,华北、黄淮、西北、江淮等

土壤含水量的测定实验报告书

1. 实验二 土壤含水量的测定 (烘干法与酒精燃烧法) 一、目的意义 进行土壤含水量的测定有两个目的:一是为了解田间土壤的实际含水情况,以便及时进行播种、灌排、保墒措施,以保证作物的正常生长;或联系作物长相长势及耕作栽培措施,总结丰产的水肥条件。二是风干土样水分的测定,是各项分析结果计算的基础。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 二、土壤自然含水量的测定 土壤自然含水量是指田间土壤中实际的含水量,它随时在变化之中,不是一个常数。土壤自然含水量测定的方法,介绍烘干法和酒精燃烧法。 (一)烘干法 1.方法原理 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 2.操作步骤 (1)将铝盒擦净,烘干冷却,在1/100天平上称重,并记下铝盒号码(A )。 (2)在田间取有代表性的土样(0~20cm )20g 左右,迅速装入铝盒中,盖好盒盖,带回室内(注意铝盒不可倒置,以免样品撒落),在天平上称重(B ),每个样品至少重复测3份。 (3)将打开盖子的铝盒(盖子放在铝盒旁侧或盖子平放在盒下),放人105℃±2℃的恒温箱中烘6~8小时。 (4)待烘箱温度下降至50℃左右时,盖好盖子,置铝盒于干燥器中30分钟左右,冷却至室温,称重(C ),如无干燥器,亦可将盖好的铝盒放在磁盘或木盘中,待至不烫手时称重。 (5)然后,启开盒盖,再烘4小时,冷却后称重,一直到前后两次称重相差不超过1%时为止(C )。 3.结果计算 土壤含水量(%)= 100A C C B ?-- 式中:A — 铝盒重(g ) B — 铝盒加湿土重(g ) C — 铝盒加烘干土重(g ) 4.注意事项 (1)烘箱温度以105℃±2℃为宜,温度过高,土壤有机质易碳化逸失。在烘箱中,一

测量土壤湿度

智能花盆设计 3.硬件电路设计 3.1 系统单片机 所谓的单片机就是把中央处理器CPU、存储器ROM/RAM、输入输出接口电路以及定时器/计数器等部件制作在一块集成电路芯片中,构成一个完整的微型计算机―单片微型计算机。由于单片机把各种功能部件集成在一块芯片上,因此它的结构紧凑、超小型化、可靠性高、价格低廉、易于开发应用。 3.1.1 AT89S51单片机 本论文所设计的系统的核心采用的是AT89S51单片机。AT89S51单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4K bytes的可系统编程的Flash只读程序存储器,器件采用ATMEL 公司的高密度,非易失性存储技术生产,兼容标准8051指令系统及引脚。它集Flash程序存储器,既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片芯片中,ATMEL公司的功能强大,低价AT89S51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电 模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中 断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三 种封装形式,以适应不同产品的需求。 它的引脚图如图6。管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收 8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。 P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第 八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校 验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓 冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为 高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是图6 AT89S51引脚图 由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

土壤水分测定法

土壤水分测定法 依据标准:NY/T52-1987 1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2测定原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 3仪器、设备 3.1土钻; 3.2土壤筛:孔径1mm; 3.3铝盒:小型的直径约40mm,高约20mm; 大型的直径约55mm,高约28mm; 3.4分析天平:感量为0.001g和0.01g; 3.5小型电热恒温烘箱; 3.6干燥器:内盛变色硅胶或无水氯化钙。 4试样的选取和制备 4.1风干土样:选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 4.2新鲜土样:在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。

5测定步骤 5.1风干土样水分的测定 取小型铝盒在105℃恒温箱中烘烤约2h ,移入干燥器内冷却至室温,称重,准确至0.001g 。用角勺将风干土样拌匀,舀取约5g ,均匀的平铺在铝盒中,盖好,称重,准确至0.001g 。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h 。取出,盖好,移入干燥器内冷却至室温(约20min ),立即称重。风干土样水分的测定应做两份平行测定。 5.2新鲜土样水分的测定 将盛有新鲜土样的大型铝盒在分析天平上称重,准确至0.01g 。揭开盒盖,放在盒底下,置于已预热至105±2℃的烘箱中烘烤12h 。取出,盖好,移入干燥器内冷却至室温(约30min ),立即称重。新鲜土样水分的测定应做三份平行测定。 6测定结果的计算 6.1计算公式 水分(分析基),%=100m m m m 0 121?--……………………(1) 水分(干基),%=100m m m m 0 221?--……………………(2) 式中:m0——烘干空铝盒质量,g ; M1——烘干前铝盒及土样质量,g ; M2——烘干后铝盒及土样质量,g 。 6.2平行测定的结果用算术平均值表示,保留小数后1位。 6.3平行测定结果的相差,水分小于5%的风干土样不得超过0.2%,水分为5~25%的潮湿土样不得超过0.3%,水分大于15%的大粒(粒径约10mm )粘重潮湿土样

土壤干湿度的检测

土壤干湿度的检测 平时可以凭经验观察判断土壤的干湿度,但用一个简单的仪器测量显示出来则更科学准确,直观简便。土壤湿度检测仪就是这样一种电子装置,它是通过发光管亮的数目反映出土壤的干湿程度。 工作原理 酸碱盐都是电解质,它们在水中发生电离而导电。土壤中含有大量的各种无机盐,土壤的含水量不同即湿度不同,导电性能也不同。湿度大,导电能力强,即电阻小,土壤干,导电能力差,即电阻大。通过大量的观察和测量:最适宜植物生长的土壤湿度,其电阻值一在5KΩ—10KΩ之间,低于5 KΩ过湿,高于10 KΩ过干,均不利于植物生长。本检测仪正是利用土壤的湿度不同,电阻不同,通过电路使显示的发光管数目不同而制作

的。本制作所用的核心元件是一块四电压比较器集成电路LM339,它内部含有四个相同的电压比较器,见图1(a),每一个电压比较器都有“+”“-”两个输入端,一个输出端,如图1(b),当输入端电压U+>U-时,输出端U0为高电压,U+

土壤容重的测定方法

土壤容重的测定方法 土壤容重是指单位容积原状土壤干土的质量,通常以克/厘米3表示;孔隙度是指单位容积土壤中孔隙所占的百分率,即土壤固体颗粒间孔隙的百分率.土壤总孔隙度包括毛管孔隙及非毛管孔隙. 土壤容重大小反映土壤结构、透气性、透水性能以及保水能力的高低,一般耕作层土壤容重1~1.3克/厘米3,土层越深则容重越大,可达1.4~1.6克/厘米3,土壤容重越小说明土壤结构、透气透水性能越好。测定土壤容重的方法很多,着重介绍环刀法: 1、仪器:环刀(容积为100厘米3)、天平(感量0.1克和0.01克)、烘箱、环刀托、削小刀、小铁铲、铝盒、钢丝锯、干燥器等。 2、操作步骤:先在田间选择挖掘土壤剖面的位置,然后挖掘土壤剖面,观察面向阳。挖出的土放在土坑两边。挖的深度一般是1米,如只测定耕作层土壤容重,则不必挖土壤剖面。 用修土刀修平土壤剖面,并记录剖面的形态特征,按剖面层次分层采样,每层重复3个。 将环刀托放在已知重量的环刀上,环刀内壁稍涂上凡士林,将环刀刃口向下垂直压入土中,直至环刀筒中充满样品为止。若土层坚实,可用手锄慢慢敲打,环刀压如时要平稳,用力一致。 用修土刀切开环刃周围的土样,取出已装上的环刀,细心削去环刀两端多余的土,并擦净外面的土。同时在同层采样处用铝盒采样,测定自然含水量。 把装有样品的环刀两端立即加盖,以免水分蒸发。随即称重(精确到0.01克),并记录。 将装有样品的铝盒烘干称重(精确到0.01克),测定土壤含水量。或者直接从环刀筒中取出样品测定土壤含水量。 3、结果计算:环刀容积按下式计算: V=лr2h 式中:V——环刀容积(厘米3); r——环刀内半径(厘米); h——环刀高度(厘米); л——圆周率(3.1416)。 按下式计算土壤容重: rs=g.100/v.(100+W)

土壤温湿度测定仪操作方法

土壤温湿度测定仪操作方法 土壤温度是影响土壤环境的重要因素之一,而温度大小对作物的生长、节水灌溉有着重要的作用。利用土壤温湿度测定仪测量土壤温度,不仅能保障土壤温度测定数据的准确性,还可以为农田作物管理提供科学的依据,有利于提高农作物的产量和质量。 土壤温湿度测定仪应用领域: 土壤温湿度测定仪又名土壤墒情监测站是一款集土壤温度、土壤水分采集、存储、传输和管理于一体的土壤墒情自动监测系统。整机由多通道数据采集仪、土壤水分传感器、土壤温度传感器、计算机软件组成。 土壤温湿度测定仪可应用于土壤墒情监测、节水灌溉、温室控制、精细农业等领域。,农业、林业、地质等方面土壤温度、湿度测量及研究。 土壤温湿度测定仪功能特点: 1、本机体积小,软件操作简单,性能可靠,记录间隔可根据要求从1分至24小时任意设置。 2、全程跟踪记录被测环境中的温度数据,记录时间长,具有断电数据自动存储保护功能。 3、整机功耗小,使用内置电池供电,电池供电可达半年以上。 4、软件功能强大,数据查看方便,随时可以将记录仪中的数据导出到计算机中,并可以存 5、储为EXCEL表格文件,生成数据曲线,以供其它分析软件进

一步进行数据处理。 6、单台记录仪可以接入最多6路温度探头,探头可测量空气、水或土壤中的温度分布情况。 7、记录仪可脱开计算机独立工作,当需要查看当前环境数据时可通过通讯接口由计算机读取记录仪内的数据。 8、一台记录仪,可以同时测量多个点的温度及土壤湿度。 土壤温湿度测定仪操作方法: 1 测量时将不锈钢探针完全埋于土壤中; 2 若土壤过硬,则需先打一个小孔,不能强行插入,传感器背后不能用硬物敲击; 3 使用完拔出时,需握住黑色外壳,不能直接拉通讯线; 4 不能使探针弯曲,否则会影响测量精度; 5 当需要测量水分的土壤泥土较深时,去表面土壤; 6 当土壤为岩石表面土壤,且表层土壤没有探针长度的厚度,则需使用其他方法测定。 土壤温湿度测定仪日常保养: 1、避免仪器被刮划,保持外部保护膜完整性,增加仪器使用寿命; 使用仪器时请将各连接部位固定牢固,避免仪器的损坏; 2、避免粗暴地对待仪器,毁坏内部电路板及精密的结构; 3、不要用颜料涂抹仪器,涂抹会在可拆卸部件中阻塞杂物从而影响正常操作; 4、经常紧固易松动的螺丝和零件; 5、使用清洁、干燥的软布清洁仪器外部; 6、定时查看其他配置设备的电源电量,确保仪器正常工作; 7、定期检查电缆与传感器及采集器连接是否松动,每年定期检查电缆是否

相关主题