搜档网
当前位置:搜档网 › 精轧机减速器的故障分析及诊断

精轧机减速器的故障分析及诊断

精轧机减速器的故障分析及诊断
精轧机减速器的故障分析及诊断

精轧机减速器的故障分析及诊断

摘要:精轧机是热轧生产线上的重要组成部分,然而由于设计缺陷和制造质量问题的存在,减速机齿轮点蚀、断齿、断轴故障频繁发生,这给热轧厂的生产经营造成了巨大的损失。本文从精轧机减速器的结构特点入手,对减速机常见故障原因进行了分析,并针对存在的问题,从技术和管理两方面提出了解决措施。

关键词:精轧机;减速器;故障;分析;诊断

1.引语

精轧机是热轧生产线上的重要组成部分,然而由于设计缺陷和制造质量问题的存在,减速机齿轮点蚀、断齿、断轴故障频繁发生,这给热轧厂的生产经营造成了巨大的损失。精轧减速机可靠性低的问题,已成为制约一些连轧厂设备正常运行的最主要因素之一。

2.减速机结构

2.1.机体结构

主减速机机体全部为焊接结构。机体工作剖分面只有一个,然而机体分三层。主要受力部分为机体和中机体,用厚钢板焊接而成。断面尺寸主要取决于主减速机的承载能力。机盖布置在中机体之上,不承受工作载荷,用薄钢板焊接而成。机盖四周有向下伸出的凸板,插入中机体内靠上部的环形油槽,利用槽里的积存润滑油来“水封”以防止机体外杂物进入机体里。机盖和中机体之间采用两个方向的缺槽来定位。机盖和中机体之间仅用直径不大的几个螺栓轻微固定即可。这种结构对减速机的检查、维修十分方便,尤其对内部油管的检修、齿面接触状况的监督尤为方便。

2.2.齿轮的结构

齿轮的结构形式很多,如齿轮轴、锻造齿轮、焊接齿轮等。齿轮的承载能力随着工业技术的发展而提高,多采用合金钢锻造齿轮或焊接齿轮。主减速机的齿轮、齿轮轴和焊接齿轮的齿圈材料全部选用优质合金钢17Cr2Ni2Mo,经过渗碳淬火磨齿加工。磨削后的齿面硬度HRC57-62。主减速机的齿轮都经过修形,即齿端修形和沿齿高修形。

2.3.轴承的选择

主减速机全部选用滚动轴承,当轴承既承受轴向力又承受径向力时,如轴承01 和02 一般选用双列圆锥滚子轴承(带油孔油槽)。当轴承只承受径向力时,如轴承03 和04 一般选用双列圆柱滚子轴承(带油孔油槽)。

减速机故障诊断及其处理方法

减速机故障诊断及其处理方法 随着我国的经济在快速的发展,社会在不断的进步,减速机在工业化进程当中已经得到广泛的应用,但是减速机在运行的过程当中经常会出现一些故障。减速机出现故障之后,会影响整个生产设备。因此在日常的使用过程当中要减少减速机故障的发生。文章从减速机常见故障着手分析,找到一些比较好的处理方法。 标签:减速机;故障;诊断;处理 引言 减速机经常出现的故障表现有磨损漏油以及振动等,这些都可以通过观察、触摸以及倾听等方式诊断出来,相关人员还要及时诊断,及时维修,使故障不会影响减速机的使用寿命。另外在减速机应用过程中,相关人员还要做好定期维修保养工作,使减速机一直处于正常运行状态。 1减速机的工作原理 随着社会的不断进步与发展,现代工业化进程也得到了快速的发展。其中减速机作为一种应用非常广泛的机械设备,许多行业的发展都离不开它。减速机的应用范围一般都是用在转速比较低、扭距比较大的传动设备中。减速机的安装位置都是在原动机和工作机之间的,不论任何种类的减速机,在内部连接的构成都是一致的,他们都是有轴,轴承,齿轮,联轴器,机壳这些零部件组成的。减速机在工作的过程当中形成一种闭式传动装置,从而使机械在运转的过程当中速度得到降低。所以说减速机的主要作用就是让机械在运转的过程当中,转速能够得到有效的控制。使用者在减速机运行的过程当中,应该时刻的观察,如果发现减速机有任何问题,应该及时和厂家进行联系,对减速机进行故障的检测,让减速机能够保持原有的工作状态。 2减速器比较常见的故障 2.1发热及漏油 在涡轮减速机中,涡轮和蜗杆材料都要满足减速机的功能要求,前者主要以有色金属为主体材料,后者以钢材为主。这种减速机发挥作用时,主要通过滑动摩擦来实现。滑动摩擦不仅会使相互摩擦的两个部位产生磨损,还会生成大量热量,进而促使减速机的相关部件表面温度飙升。减速机内部构造中含有密封层,密封层周围的零件在温度升高时,会产生温度应力,使两者接触处发生膨胀变形,所以密封会失效。而该膨胀零件与其他部件的连接质量也会下降,两者之间也会有间隙产生。减速机中的油液在温度升高时,会发生质变,流动性也会变强,其会随着缝隙流到减速机的每个部位,从而造成大面积的渗漏。这种发热漏油现象出现的原因主要包括以下几种,其一减速机内部元件材质不同,所以其对温度变化以及其他变化的反应不同,相连接的元件材质不同情有可原,但材质之间产生

硬齿面减速机常见故障及维修方法

硬齿面减速机常见故障及维修方法 硬齿面减速机,是一种动力传达机构,其利用齿轮的速度转换器,将电机的回转数减速到所要的回转数,并得到较大转矩的装置。广泛应用于冶金、矿山、起重、 运输、水泥、建筑、化工、纺织、印染、制药等领域。 但是,在日常的使用中会出现这样那样的故障,影响生产。其中,最常见的就是硬齿面减速机磨损问题及漏油问题了,那么当出现这两种问题时该怎么维修呢? 硬齿面减速机磨损问题及修复方法: 一:长时间使用后出现故障的主要表现: 使用过程中振动增强,噪音增大。出现这一现象的主要原因为:机箱内部件磨损程度过大或已损坏。 二:可能损坏的部位:齿轮齿面磨损、齿轮轮齿折断、减速机齿轮齿轮轴孔或 键槽遭到磨损;轴承孔处的螺丝孔因为磨损很容易失效;轴面、键槽也容易因使用时间过长而产生磨损。 三:修复方式:此修复方式并不是所有维修处都有技术实力按照此法进行维修,但如是大型设备,能找到维修点对部件进行修复,对企业的整体成本而言将会大大节省。 1、如果是因为硬齿面减速机轴面轴孔键槽等处的磨损,可采取电镀的方法恢复零件的原来精度。 2、如果是硬齿面减速机的轮齿折断等损坏,就只有重新加工新的零件了。为 了保证硬齿面减速机的使用周期,朋友们在购

买硬齿面减速机时一定要选好型,保证硬齿面减速机的安全系数,并严格遵照说明书操作,以发挥硬齿面减速机的最大功效。 硬齿面减速机漏油维修方法: 1、改进透气帽和检查孔盖板: 减速机内压大于外界大气压是漏油的主要原因之一,如果设法使机内、机外压力均衡,漏油就可以防止。减速机虽都有透气帽,但透气孔太小,容易被煤粉、油污堵塞,而且每次加油都要打开检查孔盖板,打开一次就增加一次漏油的可能性,使原本不漏的地方也发生泄漏。 为此,矿中机械特别制作了一种油杯式透气帽,并将原来薄的检查孔盖板改为 6mm厚,将油杯式透气帽焊在盖板上,透气孔直径为6mm,便于通气,实现了均压,而且加油时从油杯中加油,不用打开检查孔盖板,减少了漏油机会。 2、畅流: 要使被齿轮甩在轴承上多余的润滑油不在轴封处积聚,必须使多余的润滑油沿一定方向流回油池,即做到畅流。具体的做法是在轴承座的下瓦中心开一个向机内 倾斜的回油槽,同时在端盖直口处也开一缺口,缺口正对回油槽,这样多余的润滑油经缺口、回油槽流回油池。 3、改进轴封结构 1)输出轴为半轴的减速机轴封改进:带式输送机、螺旋卸车机、叶轮给煤机等 大多数设备的减速机输出轴为半轴,改造较方便。 将减速机解体,拆下联轴器,取出减速机轴封端盖,按照配套的骨架油封尺寸,在原端盖外侧车加工槽,装上骨架油封,带弹簧的一侧向里。回装时,如果端盖距联轴器内侧端面35mm以上,则可在端盖外侧的轴上装一个备用油封,一旦油封失效,即

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

减速机故障诊断及其处理方法分析

减速机故障诊断及其处理方法分析 发表时间:2018-12-17T14:08:00.743Z 来源:《防护工程》2018年第26期作者:郭志强刘海静[导读] 减速机是机械传动系统的重要组成部分,保障其稳定安全运转十分重要。 SEW-工业减速机(天津)有限公司 300457 摘要:减速机是机械传动系统的重要组成部分,保障其稳定安全运转十分重要。本文在介绍减速机的工作原理的基础上,分析了减速机运行过程中出现的常见故障及故障发生的原因,对各种故障提出相应的解决对策,并对指出了减少减速机故障的预防措施,对降低减速机在运行中发生的故障具有重要意义。 关键词:减速机;故障诊断;处理方法 1 引言 减速机的主要功能是转化动力,为机械运转提供合适的动力。减速机工作时主要靠不同尺寸的齿轮转化速度,最终将电机轴的转速达到所需范围内,并获取较大的转矩机构。在目前的实际应用中,减速机被用于传递机械转速和转化机械动力,减速机的应用愈加广泛和普遍。一般的工业企业生产过程中,主要是利用减速机的增加转矩和减速的作用,实现各种机械设备的速度转换。因此,一旦减速机出现故障将会严重影响企业的生产活动,所以针对减速机故障,做出准确的判断并且能够找到解决方法能够确保各种设备的正常运行,具有十分重要的作用。 2 减速机常见故障 2.1零件发热漏油 为了提高减速机的工作效率,大部分的减速机制造厂家都会选择有色金属材料来制造减速机的涡轮,而制造蜗杆的材料是质地较硬的钢材。这就使得减速机在工作过程中,各零件之间不断地摩擦和滑动,产生许多热量,又因为减速机内部零件的材质不同,进而导致材料受热膨胀程度不同,使得零件原本之间的配合间隙变小,不断地摩擦损耗。同时,零件之间的润滑油也受到温度升高影响,浓度变稀,导致了减速机出现漏油故障。 2.2涡轮磨损故障 制造蜗轮的材料一般都是有色金属,比如锡青铜合金,而蜗杆对应使用45钢,并且为了保证硬度,会经过淬火处理,其硬度可以达到HRC45-55。当减速机处于正常运行的过程中,蜗杆硬度较高,导致工作时,长期与涡轮摩擦,从而导致了涡轮出现严重的磨损。由于涡轮和蜗杆是减速机的关键零件,涡轮的磨损会导致减速机的使用寿命缩短。除了涡轮与蜗杆硬度不匹配导致涡轮磨损之外,减速机应用场合和型号、减速机工作时间以及减速机工作中的负荷情况,都会对减速机的涡轮产生不同程度的磨损。 2.3传动小斜齿轮磨损 该类故障主要发生于立式的减速机设备中,这是由于润滑油的类型和使用量存在一定问题。在安装立式减速机的时候,工作人员会在其内部加入定量的润滑油。当减速机工作一段时间之后,由于润滑油的消耗或者出现泄露情况,导致减速机零件之间缺少润滑油的保护。当减速机停止运作时,受重力影响,润滑油会逐渐低落到减速机的底部,而当减速机再次启动时,上半部分的齿轮或者其他零件之间缺少润滑油的保护,出现较为严重的磨损情况。这样一来,不仅会导致减速机使用寿命缩减,还会因为零件之间摩擦生热,出现其他故障。 2.4蜗杆轴承损坏 减速机发生故障的过程中,即使密封箱保护良好,也将会出现齿轮油乳化的情况,进而导致轴承出现损坏、腐蚀以及生锈的情况。这是由于减速机在停止运行的过程中,齿轮油突然变冷所产生的水分经过凝聚所成。 3 减速机故障处理方法 3.1严格保证机械装配的质量 为了能够严格的控制减速机装配的质量,就必须自制或者购买一些减速机专用的工具,在对减速机的相关部分进行检查或者维修使避免使用锤子等工具进行直接的敲打,在更换减速机齿轮以及减速机涡轮蜗杆的时候,尽可能的使用减速机的原配件,同时要进行减速机承兑的更换工作,装配减速机输出轴的过程中,必要时严格的控制减速机公差的配合,同时在减速机装配的过程中使用红丹油或者防粘剂,这样就是为了尽可能的保护减速机的空心轴,防止减速机空心轴发生摩擦而出现生锈情况的发生以及减速机配合面出现积垢现象的发生,这样能够保证在积垢现象后期的维修过程中容易进行维修与检查。 3.2润滑油以及添加剂的选择使用 蜗齿减速机一般情况下是使用 220# 的齿轮油,但是对于一些负荷比较重的减速机,在频繁启动减速机时还需要选择一些润滑油添加剂,减速机在停止工作的过程中,减速机中的齿轮油仍然依附在减速机的齿轮的表面上,这样就在减速机的齿轮上形成一层保护膜避免减速机出现超重的负荷,而且在减速机添加剂中都含有密封圈的防漏剂及调节剂,能够让减速机保持弹性和柔软,有效的减少减速机泄等漏情况的发生。 3.3安装位置选择 在减速机安装的过程中首先要强调尽量不适用立式安装,因为立式安装形式使减速机润滑油的使用要比水平的安装形式多很多,这样就容易造成减速机漏油或者发热的情况发生,所以,在条件允许的情况下,避免减速机立式安装。 3.4减少故障措施 一般而言,减速机故障常见的预防措施就是减速机的保养及润滑,任何机械设备在运行中都需要进行定期的保养与检修,减速机故障的派出需要有专业的工作人员进行定期的保养,同时减速机在运行以前,就需要工作人员将相应数据及型号的润滑脂加入到减速机中,而且减速机如果需要在非常规的条件下进行工作是需要向减速机制造企业进行一定的询问与调查,如果条件允许减速机就可以正常的进行工作,但是减速机一旦有出现故障的要避免在常规条件下进行工作。 3.5优化减速机工作环境,保障其通气舒畅

减速机常见问题及排除方法

减速机常见问题及排除方法 1、斜齿轮减速机一般故障原因及排除方法 故障可能原因处理方法 减速机过热1)超负荷 2)润滑油不足或过多 3)通气帽未旋开 1)调整符合或更换较大功率减速机 2)按规定用油量用油 3)开机前应旋开通气帽排气 异常的稳定的运转噪声1)转动/研磨噪声,轴承损坏 2)敲击噪声,啮合不规则 1)拆机检查 2)与用户服务机构联系 异常的不稳定的运转噪声油污染或油量不足换油或加油至规定值 通气帽漏油1)油量太多 2)通气器安装不正确 1)修正油位 2)正确安装通气帽 油封或闷盖漏油油封闷盖老化或安装不正确更换油封闷盖电动机转动时输出轴不转减速机键联接破坏拆机检修 2、蜗轮减速机一般故障原因及排除方法 故障类型故障原因排除方法 减速机过热超负荷运载 润滑油过少或过多 润滑油不良或不适当 油封过度摩擦 出力轴与传动装置连接不当 调整至适当负荷或选大机型 依指示加入适当润滑油 油排出后加入适当润滑油 在油封处滴数滴润滑油 调整至适当位置 减速机杂音蜗轮、蜗杆啮合不良 轴承损伤或间隙过大 润滑油不足 异物侵入 修整齿接触面 更换轴承 依指示加入适量润滑油 去除异物并更换润滑油 不正常振动传动装置固定不良 蜗轮磨耗或损伤 轴承磨耗或损伤 螺栓松脱 异物侵入 固定传动装置 更换蜗轮 更换轴承 拧紧螺栓 去除异物并更换润滑油 漏油油封损伤 密封垫破损 油量过多 油塞松脱 油标破损 更换油封 更换密封垫 加入适量润滑油 拧紧油塞 更换油标 入力或出力轴不转蜗轮蜗杆过热 轴承损坏 异物侵入 蜗轮、蜗杆过度磨损 更换或维修 更换轴承 去除异物并更换润滑油 更换蜗轮或蜗杆 蜗轮过度磨损超负何运转 润滑油不良或不适当 润滑油不足 轴承磨损 调整至适当负何 更换适当润滑油 依指示加入适当润滑油 更换轴承

电动机故障诊断系统设计毕业设计

电动机故障诊断系统设计毕业设计 目录 第一章绪言 (1) 第一节电动机的发展 (1) 第二节电动机的结构及分类 (2) 第三节电动机的原理 (5) 第二章电动机的用途及常见故障 (6) 第一节电动机的运行方式及参数 (6) 第二节电动机的用途 (7) 第三节电动机的常见故障及维修 (8) 第三章电动机的故障诊断 (15) 第一节电动机的故障诊断方法 (15) 第二节PLC原理介绍及设备总体结构介绍 (15) 第三节电动机的故障分析 (19) 第四节电动机故障检测系统设计 (19) 第五节硬件设计 (21) 第六节软件设计 (24) 第四章电动机的电气保护及维护 (28) 第一节电动机的电气装置保护 (28) 第二节电动机的日常维护 (31) 结论 (35) 致谢 (36) 参考文献 (37) 附录 (38)

第一章绪言 第一节电动机的发展 电动机是一种实现机、电能量转换的电磁装置。它是随着生产力的发展而发展的,反过来,电动机的发展也促进了社会生产力的不断提高。从19世纪末期起,电动机就逐渐代替蒸汽机作为拖动生产机械的原动机,一个多世纪以来,虽然电动机的基本结构变化不大,但是电动机的类型增加了许多,在运行性能,经济指标等方面也都有了很大的改进和提高,而且随着自动控制系统和计算机技术的发展,在一般旋转电动机的理论基础上又发展出许多种类的控制电动机,控制电动机具有高可靠性﹑好精确度﹑快速响应的特点,已成为电动机学科的一个独立分支。 电动机的功能是将电能转换成机械能,它可以作为拖动各种生产机械的动力,是国民经济各部门应用最多的动力机械。 在现代化工业生产过程中,为了实现各种生产工艺过程,需要各种各样的生产机械。拖动各种生产机械运转,可以采用气动,液压传动和电力拖动。由于电力拖动具有控制简单﹑调节性能好﹑耗损小﹑经济,能实现远距离控制和自动控制等一系列优点,因此大多数生产机械都采用电力拖动。 按照电动机的种类不同,电力拖动系统分为直流电力拖动系统和交流电力拖动系统两大类。 纵观电力拖动的发展过程,交、直流两种拖动方式并存于各个生产领域。在交流电出现以前,直流电力拖动是唯一的一种电力拖动方式,19世纪末期,由于研制出了经济实用的交流电动机,致使交流电力拖动在工业中得到了广泛的应用,但随着生产技术的发展,特别是精密机械加工与冶金工业生产过程的进步,对电力拖动在起动,制动,正反转以及调速精度与围等静态特性和动态响应方面提出了新的,更高的要求。由于交流电力拖动比直流电力拖动在技术上难以实现这些要求,所以20世纪以来,在可逆,可调速与高精度的拖动技术领域中,相当时期几乎都是采用直流电力拖动,而交流电力拖动则主要用于恒转速系统。

尾减速器常见故障分析

尾减速器常见故障分析 摘要:直九型尾减速器位于直升机尾端的涵道内,其主要功能是利用尾传动轴传递过来的动力,通过一对轴交角90度的螺旋锥齿轮经减速后驱动尾桨,并通过操纵轴和操纵杆调节尾桨桨矩,来平衡主旋翼的扭矩,以保证直升机的正常飞行。在实际应用中,本文针对尾减速器经常发生的故障写的一些心得体会,仅供同行参考。 关键词:尾减速器;故障;漏油;光谱分析 一、尾减速器概述 直九直升机上安装的尾减速器具有结构紧凑、重量轻、可靠性高、使用维护方便、工艺精度高等特点。其主要功能是利用尾传动轴传递过来的动力,通过一对轴交角90度的螺旋锥齿轮经减速后驱动尾桨,并通过操纵轴和操纵杆调节尾桨桨矩来平衡主旋翼的扭矩,以保证直升机的正常飞行。 1、尾减速器的结构 尾减速器的具体结构(如图所示),主要由尾减主机匣(9)、输入机匣(2)、主动螺旋锥齿轮(4)、从动螺旋锥齿轮轴(10)、操纵轴(14)及5个不同型号的轴承(5)(11)(12)(16)等组成。这里的从动螺旋锥齿轮轴是将一个从动螺旋锥齿轮轴上的一段还通过精密加工,作为轴承的内环,以降低尾减速器的重量和结构的复杂性。 2、尾减速器传动的连接方式 尾减速器通过连接轴上的内花键与尾轴后段的外花键滑配合连接,为了消除尾传动轴与尾减速器输入端不同轴度对传动的影响,在次连接中采用了膜片连轴节(18)。输出端的从动锥齿轮轴也通过花键与尾桨盘相连,并且通过专用的螺栓(15)和螺母将尾桨盘固定在从动齿轮轴上。操纵轴和操纵杆之间是通过一个双排球轴承(11)连接的,以便保证两者间轴向运动的传递。此外,操纵轴是通过一个锥形操纵盘(13)与尾桨盘上的桨矩调节机构相连的。 3、尾减速器转动零件的支撑方式 在输入机匣中,主动锥齿轮靠两个同型号上网锥滚子(16)轴承来支撑。

减速机常见故障及现场修复案例汇总_图文

煤矿减速机常见故障及现场修复案例汇总 1、减速机轴承室磨损 减速机轴承室磨损(轴承跑外圈)的主要原因有:减速机因尺寸超差、频繁拆装更换密封酯等因素,造成轴承室(座)与轴承的配合尺寸发生变化,进而造成轴承跑外圈而导致轴承室磨损;二是轴承润滑冷却不到位,轴承发热抱死损坏,造成轴承跑外圈,导致轴承室加剧磨损。 采用2211F金属修复材料进行现场修复,通过定位修复工艺来恢复磨损尺寸及部件对应法来保证修复后的配合面要求的综合工艺,可以快速有效的解决并满足设备运行要求。高分子复合材料具有优异物理性能外,而且具有金属材料不具备的“退让性”,可以很好的解决并满足轴承运行要求的“热胀”要求。 应用图例信息 2、减速机传动齿轮轴轴头磨损(键槽损伤) 减速机传动齿轮轴与液力耦合器或联轴器的连接,通常采用键链接和轴头过盈配合的方式来满足。

若键与键槽配合存在间隙,或者轴有轴孔存在间隙,都是导致键槽损坏滚键和轴头磨损的关键因素。同时在震动、冲击作用力的影响下更加剧了键槽滚键及轴头磨损问题。 采用2211F金属修复材料,可免拆卸、免补焊,快速有效修复轴头及键槽的轻微磨损。即无补焊热应力影响,修复厚度也不受限制,同时产品所具有的金属材料不具备的退让性,吸收设备的冲击震动,并且可使配合面100%接触,避免了再次出现磨损的可能。针对磨损严重的情况,也可采用机加工修复工艺来获得最佳配合精度。 应用图例信息 3、减速机传动轴轴径磨损(轴承位) 减速机齿轮轴轴承位磨损(轴承跑内圈)的主要因素有:轴承与轴配合的过盈量大小是与栽荷大小相适应的,如果过盈量不足,将导致轴承与轴颈之间的摩擦力不足而跑内圈;轴承的轴向固定不合理,或者轴承受紧固松动等因素影响,导致轴承出现轴向的较大窜动,引起轴承跑内圈;轴承本身的质量和设备运行中的维护也是造成轴承跑内圈的重要因素。 采用2211F金属修复材料,磨损量较大时,涂抹高分子材料通过机加工方法修复轴承位磨损,即无补焊热应力影响,修复厚度也不受限制,当磨损量较为轻微时,轻微打上麻点,配合高分子复合材

齿轮减速机故障诊断分析

齿轮减速机故障诊断分析 齿轮减速机故障诊断分析: 1.概述 目前,用于传递动力与运动的机构中,齿轮减速机的应用非常广泛。齿轮减速机是原动机和工作机之间的独立的闭式传动装置,随着现代化机械设备的不断大型化、复杂化.其工作和结构形式愈加复杂,经常性引发设备故障.在线对齿轮减速机的工况监测与故障诊断技术运用也就显得更加重要。关于齿轮减速机故障诊断分析方法和测试手段,国内外学者做了一些定性研究和典型案例分析。在此运用故障诊断分析技术对一台二次圆筒混合机的三级齿轮齿轮减速机噪声超标的原因进行分析,并结合现场测试数据,分析出齿轮减速机齿轮存在缺陷的主要影响因素,提前预测设备隐患,由此提出相应的解决办法。 2.齿轮减速机特征频率分析 齿轮减速机特征频率主要包括轴频、齿轮的啮合频率、轴承的内外圈、滚动体、保持架的频率,它们与谐频、边频相结合,成为对齿轮减速机故障判定的依据。 造成齿轮振动故障的主要原因如下。 (1)齿轮制造和安装误差引起的故障。齿轮在制造过程中存在误差或由于装配过程中产生的误差,降低了齿轮的啮合精度,导致齿轮的振动和噪声增大,增大了齿轮的故障率,在频谱图上表现为啮合频率及其各次谐波幅值的变化。 (2)齿轮自身固有运动(工作环境)引起的故障。齿轮在啮合过程中,齿与齿连续冲击使齿轮产生受迫振动.产生噪声,在频谱图上表现为齿轮的啮合频率。 (3)齿轮表面损伤故障。 ①齿面磨损。齿轮由于齿面剥落、拉伤等缺陷发展到一定程度时,齿轮每转I圈就会相互撞击1次,产生明显的冲击现象。每一次撞击相当于I个脉冲激励,脉冲响应函数为齿轮固有的衰减振动,从而构成了周期性较高频率的冲击振动信号,循环周期就是轴的旋转周期,衰减振动频率就是齿轮的固有频率。 ②齿面点蚀、崩齿。齿轮在啮合过程中,尤其是因为齿轮磨损、齿隙增大时都会产生啮合振动,振动频率为齿轮啮合频率。例如:某点出现缺陷(如点蚀、崩齿)时.齿轮啮合过程中产生短期的“加载”、“卸载”效应,产生幅值调整和频率调整信号,其在频域上表现为以啮合频率为中心,以轴的旋转频率为间距的一组谱线,即边频带。 ③轴弯曲。旋转轴当出现重度弯曲时,时域中通常会明显地出现以一定时间为间隔的冲击振动,边带数量多且密集。 ④齿轮动不平衡。具有不平衡质量,或者偏心的齿轮在转动过程中造成齿轮副的不稳定运行。在该不平衡力矩的激励下,产生以调频为主,调幅为辅的振动,将在啮合频率及其谐波两侧产生边频带.受不平衡力的激励,齿轮轴的旋转频率及其谐波的能量也有相应的增加。 ⑤齿轮箱内部松动。在转速较低的升速与降速过程中会出现突然随机剧烈声响,在时域图上表现为突然大幅度断续上升,具有较大的随机性。 ⑥齿轮齿根出现裂纹。时域表现为以齿轮旋转频率为频率的冲击脉冲,其频域特征是以旋转频率处出现谐波。 另一方面,由于轴弯曲和齿轮本身存在的缺陷和故障均可产生调制现象。调制的载波频率有三种:啮合频率及其高次谐波、齿轮谐振频率、箱体谐振频率。 不同激励能量有不同的调制振动:①故障较轻.如轻微的轴弯曲或面积小、数最少的齿面点蚀,啮合频率为载频,轴频为调制频率;②故障较严重、激振能量较大时,齿轮本身的谐振频率为载波频率;③故障非常严重、激励能量非常大时,箱体固有频率为载波频率。 不同故障情况下,啮合频率呈现不同的形态:①正常齿轮在一转内时域平均信号,信号

减速机常见故障合集

减速机常见故障合集 基础 1、减速机是一种动力传递机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。 2、减速机的种类很多,按照传动类型可分为齿轮减速机、蜗杆减速机和行星减速机以及它们互相组合起来的减速机;按照传动的级数可分为单级和多级减速机;按照齿轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥一圆柱齿轮减速机;按照传动的布置形式又可分为展开式、分流式和同轴式减速机。 3、齿轮采用油池润滑和循环润滑两种形式。 4、润滑油应定期检查更换,新安装的减速机第一次使用时,在运转10-15天以后,须更换新油。以后应定期(2-3个月)检查油的质量状况,发现不符合要求时应立即更换,一般至少每半年换油一次。 简单分析 2.1、减速机齿轮点蚀与剥落由哪些原因? 答:a.材质、硬度和缺陷。齿轮的材质不符合要求;影响齿轮接触疲劳强度的主要因素是热处理后的硬度较低,无法保证齿轮应有的接触疲劳强度。此外,齿表面或内部有缺陷,也是接触疲劳强度不够的原因之一。 b.齿轮精度较差。齿轮加工和装配精度不符合要求,如啮合精度、运动精度较差等。还有圆弧齿轮的壳体中心距误差太大。

c.润滑油不符合要求。使用的润滑油的牌号不对,油品的粘度较低,润滑性能较差。 d.油位过高。油位过高,油的温升高,降低了润滑油的粘度,破坏了润滑性能,减少了油膜的工作厚度。 2.2、请简单分析减速机串轴原因? 答:a.是由于断齿使输入轴失去轴向约束而发生串轴。 b.是中间轴上的从动齿轮与轴紧固不牢所致。在实际传动中,往往由于从动齿轮与中间轴之间的过盈量不够,从动齿轮相对中间轴产生轴向串动,进而使输入轴发生轴向串动。因此,过盈量不够是造成减速机串轴的主要原因。 c.减速机的转向对串轴也有一定的影响。 2.3、请简单分析减速机油温过高的原因? 答:a.润滑油不合格或使用时间过长。 b.润滑油过多,不利于齿轮箱内机构散热。 c.机件损坏。机件损坏包括齿轮点蚀严重,断齿,轴承保持架、内外圈、滚珠损坏以及轴承抱死或轴变形严重; d.箱体外部被杂物或灰尘覆盖。当减速机周围堆放东西或机体表面长期没有清理时,有可能因杂物或灰尘的覆盖导致减速机散热不完全以致使油温升高; e.冷却装置堵塞或失效。冷却装置同减速机一样置于灰尘较大的厂房中,如果长期工作而未清理内部的管路造成冷却装置堵塞或冷却装置坏掉时,都会引起减速机油温升高;

减速机常见故障及处理方法分析

减速机常见故障及处理方法分析 发表时间:2012-03-07T15:12:12.633Z 来源:《时代报告》2011年12月下供稿作者:肖朱能[导读] 减速机是机械传动系统的重要组成部分,保障其稳定安全运转十分重要。 肖朱能(国投新疆罗布泊钾盐有限责任公司,新疆哈密 839000) 中图分类号:TD528 文献标识码:A 文章编号:1003-2738(2011)12-0283-01 摘要:减速机是机械传动系统的重要组成部分,保障其稳定安全运转十分重要。本文在介绍减速机的工作原理的基础上,分析了减速机运行过程中出现的常见故障及故障发生的原因,对各种故障提出相应的解决对策,并对指出了减少减速机故障的预防措施,对降低减速机在运行中发生的故障具有重要意义。关键词:减速机;故障;处理方法;预防措施一、引言 减速机是一种利用齿轮的速度转换器将电机的回转数减速到所要的回转数的动力传达机构,用来降低转速并相应地增大转矩。第一次工业革命以来,减速机作为独立的产品迅速发展壮大,其在工业设备中的应用渗透于冶金、物流、石化、化工、环保、国防等国民经济各个领域。作为生产中的关键生产设备,减速机在传递动力与运动的机构中已得到了相当广泛的应用,大到机械工业中的自动化生产设备、汽车、机车及建筑等用的重型机具,小到日常生活中常见的家电,钟表等,都可以见到减速器的踪迹。因此开展减速机常见故障及处理方法研究对保障减速机械的可靠性运行变得尤为重要。 二、减速机的工作原理和分类在现代化工业生产中绝大部分的生产机械是采用电动机来拖动。机械传动系统基本结构如图1所示,它是由原动机、传动机构和生产机械三部分组成[1]。减速机一般用于低转速大扭矩的传动设备,是原动机与工作机之间独立的闭式传动装置。从图1可以看出,减速机是装在原动机与工作机之间,用来降低转速和相应地改变其扭矩。减速机通常分单级传动和多级传动两类,不论是何种传动方式的减速机,构成其内部结构的零部件都是由轴、轴承、齿轮、联轴器、机壳等组成 图1 机械传动系统基本结构三、减速机常见故障原因及处理方法分析作为生产中的关键生产设备,保障减速机的安全运转十分重要。当减速机出现异常情况时,一般由轴、轴承、齿轮、联轴器、机壳等零部件出现故障所引起的,因此,减速机的故障原因的查询也就是针对这几种零件的故障诊断,如果能对这些零部件出现故障引发减速机故障做出准确的判断,则可以对减速机运行过程中出现的问题及时做出判断和处理,保证机组运行的安全。目前减速机常见的主要故障类型有四类:1.轴不平衡;2.轴不对中;3.滚动轴承故障;4.齿轮故障[2]。不平衡是减速机最常见的故障。引起转子不平衡的原因有:结构设计不合理,制造和安装误差,材质不均匀,运行中转子的腐蚀、磨损、结垢、零部件的松动和脱落等。轴不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。轴不对中可分为联轴器不对中和轴承不对中,联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。滚动轴承损伤或损坏将导致减速机故障,滚动轴承主要故障形式有:疲劳剥落、磨损、塑性变形、断裂、保持架损坏等。由于齿轮制造,操作,维护以及齿轮材料、热处理、运行状态等因素的不同,产生异常的形式也不同,常见的齿轮异常有齿面磨损、面胶合和擦伤、面接触疲劳及弯曲疲劳与断齿四种形式。由于减速机运行环境恶劣,常会出现磨损、渗漏等故障,运行中的减速机很容易出现故障,故障的主要表现形式有如下几种:1.减速机轴承室磨损,其中又包括壳体轴承箱、箱体内孔轴承室、变速箱轴承室的磨损;2.减速机齿轮轴轴径磨损,主要磨损部位在轴头、键槽等;3.减速机传动轴轴承位磨损;4.减速机结合面渗漏。针对减速机磨损问题,传统解决办法是补焊或刷镀后机加工修复,但两者均存在一定弊端:补焊高温产生的热应力无法完全消除,易造成材质损伤,导致部件出现弯曲或断裂;而电刷镀受涂层厚度限制,容易剥落,以上两种方法都是用金属修复金属,无法改变“硬对硬”的配合关系。运行中的减速机除了磨损、渗透故障外,还有渗透油、温升过高、运转声响异常及油流不循环等故障形式,其产生原因和处理方向分析详见表1。 表1 减速机常见故障及处理方法

减速机常见故障

1.减速器漏油 1.1原因分析 1.1.1减速器箱内压力过大:在封闭减速器箱体内,齿轮啮合发生摩擦发出热量,随工作的时间增长,减速器箱内压力增大,飞溅到箱体内壁的润滑油会在密封不良处渗出,从而出现漏油现象。 1.1.2减速器结构设计不合理:如设计的减速器没有通风罩,减速器无法实现均压,造成箱内压力越来越大。 1.1.3减速器注油孔盖与减速器外壳结合面处漏油:减速器内的润滑油过多、毡垫和胶圈损坏或老化、密封失效、减速器的回油槽堵、油封失效、注油孔盖变形、减速器呼吸阀堵塞使减速器内压力过大而漏油。 1.1.4减速器维护工作不到位:如在减速器封盖操作时很随意地操作,即使厂家把减速器结构设计得很好,也会出现漏油现象。 1.2预防及排除方法 1.2.1密封圈压盖采用易拆卸、开口式结构。 1.2.2对减速器壳体进行时效处理,避免沿合箱面处漏油。 1.2.3在减速器底座的合箱面上铸造或加工环形油槽,且有多个回油孔与环形油槽连通。 1.2.4箱内油面应当在油面检视孔的1/3~2/3最为常[2]。 1.2.5油封失效时更换油封,油封在运转一段时间后应在二级保养时更换及拆洗、清理呼吸阀等。在视孔盖处和放油孔处加装密封垫,且拧紧螺栓。 2.减速器轴承部位过热或轴承部位有噪音 2.1原因分析 2.1.1润滑油不足:润滑的油位添加不足或由于减速器漏油而不能达到合理高度时,就可能引起减速器轴承部位温度高或有杂音。 2.1.2轴承盖或密封部分摩擦:轴承由于安装不正、轴承盖不端正或长期使用使轴承盖或密封部分与连接部分有磨损时,可能使减速器轴承温度高或有杂音。 2.1.3轴承损坏或磨损:轴承的保持架损坏、内外圈磨损或变形、滚珠磨损或掉出等原因都会使减速器无法正常工作。 2.2预防及排除方法 2.2.1检查油位并加注润滑油;轴承的安装要精确,磨损严重的轴承要及时更换。更换合格的轴承盖,轴承盖上与轴承接触部分的粗糙度一定要满足图纸要求。 2.2.2购买轴承时,一定要看轴承保持架的结构与材料,选用保持架内圈与外圈的挡边引导定心的实体结构的保持架,材料用铝合金、铜合金或酚醛胶布;轴承内外套要按原厂的配对装配,一般不允许互换,特别是不是同一厂家的轴承严禁互换,否则易导致严重后果。 3.减速器油温过高 3.1原因分析 3.1.1润滑油不合格、使用过长或加注过多:如果加入过期的或与该型号的润滑油性质不一致的油及减速器半年以上没有更换润滑油,或者润滑油加注过多就可能导致减速器油温过高。 3.1.2箱体外部被杂物或粉尘覆盖:减速器表面长期没有清理时,有可能因杂物或粉尘的覆盖导致减速器散热不完全致使油温升高。 3.1.3冷却装置堵塞、失效或机件损坏:在粉尘较大的厂房中,长期工作而未清理冷却装置内部管路造成冷却装置堵塞或坏掉,或齿轮点蚀严重、断齿,轴承保持架、内外圈、滚珠损坏及轴承抱死或轴变形严重都会引起减速器油温升高。

减速机常见故障合集

减速机常见故障合集 1基础 1、减速机是一种动力传递机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。 2、减速机的种类很多,按照传动类型可分为齿轮减速机、蜗杆减速机和行星减速机以及它们互相组合起来的减速机;按照传动的级数可分为单级和多级减速机;按照齿轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥一圆柱齿轮减速机;按照传动的布置形式又可分为展开式、分流式和同轴式减速机。 3、齿轮采用油池润滑和循环润滑两种形式。 4、润滑油应定期检查更换,新安装的减速机第一次使用时,在运转10-15天以后,须更换新油。以后应定期(2-3个月)检查油的质量状况,发现不符合要求时应立即更换,一般至少每半年换油一次。 2简单分析 2.1、减速机齿轮点蚀与剥落由哪些原因?

答:a.材质、硬度和缺陷。齿轮的材质不符合要求;影响齿轮接触疲劳强度的主要因素是热处理后的硬度较低,无法保证齿轮应有的接触疲劳强度。此外,齿表面或内部有缺陷,也是接触疲劳强度不够的原因之一。 b.齿轮精度较差。齿轮加工和装配精度不符合要求,如啮合精度、运动精度较差等。还有圆弧齿轮的壳体中心距误差太大。 c.润滑油不符合要求。使用的润滑油的牌号不对,油品的粘度较低,润滑性能较差。 d.油位过高。油位过高,油的温升高,降低了润滑油的粘度,破坏了润滑性能,减少了油膜的工作厚度。 2.2、请简单分析减速机串轴原因? 答:a.是由于断齿使输入轴失去轴向约束而发生串轴。 b.是中间轴上的从动齿轮与轴紧固不牢所致。在实际传动中,往往由于从动齿轮与中间轴之间的过盈量不够,从动齿轮相对中间轴产生轴向串动,进而使输入轴发生轴向串动。因此,过盈量不够是造成减速机串轴的主要原因。 c.减速机的转向对串轴也有一定的影响。 2.3、请简单分析减速机油温过高的原因? 答:a.润滑油不合格或使用时间过长。 b.润滑油过多,不利于齿轮箱内机构散热。

电动机常见故障的原因和判断方法

电动机常见故障的原因和判断方法 摘要电动机在运行过程中,经常会出现故障。当电动机发生故障时,电路将无法正常工作。那么,当电动机的运行发生故障时,我们应该根据故障发生的现象,找出电动机的故障原因,并判断出故障所在。 前言电动机是一种应用非常广泛的电气动力设备。特别是三相异步交流电动机,具有结构简单,运行可靠,维护方便,效率高,重量轻,价格低等特点。在工业方面,三相异步电动机主要被应用于拖动各种机床、起重机、水泵和中小型鼓风机等设备。在农业方面,它被应用于拖动排灌机械、脱粒机、粉碎机以及其他农副产品加工机械等。单相异步电动机则在家用电器产品中得到广泛应用。如电钻、小型鼓风机、医疗器械、风扇、冷冻机、空调机、抽油烟机及家用水泵等,它是家用现代化电器设备必不可少的动力源。在工业上,单相异步电动机也常用于通风与锅炉设备以及其他伺服机构上。 同其他任何动力设备一样,电动机在运行过程中,也常常会出现故障。 三相异步电动机的故障一般可分为电气故障和机械故障。电气故障主要是指带电体及其附属机构,包括定子绕组、转子绕组、电刷等故障;机械故障主要指非带电体的故障,包括轴承、风扇、端盖、转轴、机壳等故障。 一、电动机运行故障的原因 造成电动机运行不正常的原因,有电源方面和负载方面的原因,也有可能是使用环境不良、安装不当、维护不周造成的,另外电动机本身发生故障时,也会使电动机发生运行故障。 (一)电源方面的原因 1.电源电压过高或过低 (1)电压过低:电动机的电磁转矩将显著减小。起动困难甚至不能起动,即使能起动,但转速上升很慢,起动时间过长,达不到额定转速,导致电动机电流过大、温升高,甚至冒烟烧毁。如果在运行过程中电源电压降低,负载不变时,电动机将过载运行,转速降低、电流增大、绕组过热。 (2)电压过高:会提高电动机磁路的饱和程度,导致铁损增大;同时电流增大导致铜损增大。由于损耗的增加,使电动机过热不能正常工作。即使在空载或轻载情况下电动机也要发热。电源电压过低、过高,电动机必须停止工作。

减速机常见故障合集汇总

减速机常见故障合集 1、减速机是一种动力传递机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。 2、减速机的种类很多,按照传动类型可分为齿轮减速机、蜗杆减速机和行星减速机以及它们互相组合起来的减速机;按照传动的级数可分为单级和多级减速机;按照齿轮形状 可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥一圆柱齿轮减速机;按照传动的布置形 式又可分为展开式、分流式和同轴式减速机。 3、齿轮采用油池润滑和循环润滑两种形式。 4、润滑油应定期检查更换,新安装的减速机第一次使用时,在运转 10 -15天以后,须更换新油。以后应定期(2-3个月)检查油的质量状况, 发现不符合要求时应立即更换,一般至少每半年换油一次。 2简单分析 2.1、减速机齿轮点蚀与剥落由哪些原因? 答:a.材质、硬度和缺陷。齿轮的材质不符合要求;影响齿轮接触疲劳强度的主要

因素是热处理后的硬度较低,无法保证齿轮应有的接触疲劳强度。此外,齿表面或内部有缺陷,也是接触疲劳强度不够的原因之一。 b. 齿轮精度较差。齿轮加工和装配精度不符合要求,如啮合精度、运动 精度较差等。还有圆弧齿轮的壳体中心距误差太大。 c. 润滑油不符合要求。使用的润滑油的牌号不对,油品的粘度较低,润 滑性能较差。 d. 油位过高。油位过高,油的温升高,降低了润滑油的粘度,破坏了润滑性能,减少了油膜的工作厚度。 2.2、请简单分析减速机串轴原因? 答:a.是由于断齿使输入轴失去轴向约束而发生串轴。 b. 是中间轴上的从动齿轮与轴紧固不牢所致。在实际传动中,往往由于从动齿轮与中间轴之间的过盈量不够,从动齿轮相对中间轴产生轴向串动,进而使输入轴发生轴向串动。因此,过盈量不够是造成减速机串轴的主要原因。 c. 减速机的转向对串轴也有一定的影响。 2.3、请简单分析减速机油温过高的原因?答:a.润滑油不合格或使用时间过长。 b. 润滑油过多,不利于齿轮箱内机构散热。 c. 机件损坏。机件损坏包括齿轮点蚀严重,断齿,轴承保持架、内外圈、 滚珠损坏以及轴承抱死或轴变形严重;

立磨减速机故障诊断一例

立磨减速机故障诊断一例 华新水泥股份有限公司一条2 750t/d水泥熟料干法生产线的原料磨是PFEIFFER公司的MPS3550B型辊式立磨,其主减速机是Flender公司的KMPS376型减速机。该立磨于2003年9月投入运行。减速机运行初期的振动值在0.5mm/s左右(指RMS,下同)。之后振动值一直呈上升趋势,到2006年11月,振动值已达1.5mm/s。2006年11月中旬,现场对该立磨减速机进行了监测和检查,结果为:在立磨机正常运转时,减速机各处轴承声音正常;减速机输入轴各轴承处温度正常;停机检查减速机内部,发现油池中有铁屑,并少量颗粒较大;过滤器滤芯中有大量细小金属粉末;按图1的测点布置,用HY-106巡检仪逐点对减速机录取频谱图。 图1 分析测得各测点频谱图,发现3H、4H测点的故障特征比较明显。 3H测点频谱图见图2,峰值见表1。

图2 表1 计算相关特征频率:输入轴转频为16.5Hz;输入轴齿轮啮合频率为297Hz;输入轴轴承内圈频率为178.5Hz;输入轴轴承外圈频率为135.0Hz。 由图2可以看出,第1、2峰值正是轴承的内圈频率及其右边频,第3、6、7峰值是轴承的内圈频率的二倍频及其左右边频,值得注意的是,所有边频的幅值非常突出,这表明轴承的损坏程度较为严重,在减速机润滑油中发现的许多金属粉末也可以证明这一点,应立即停机予以更换。但由于没有轴承备件,该减速机在严密监视下运行至2007年1月中旬,才进行检修。发现该处轴承内圈及滚珠已发生严重的点蚀和剥落,在更换减速机输入轴轴承之后开机,立磨机空载时减速机振动值为0.1mm/s,满载时振动值为0.5~0.55mm/s,基本上与刚安装投产时相同,运行状况非常好。

电机振动的危害、原因及判断和排除故障的方法

电机振动的危害、原因及判断和排除故障的方法 内容简介:一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。在生产中我们经常采用断电法来检查区分是由于电磁还是机械原因引起的振动 电动机在各行各业中有着广泛的应用,而在使用中会出现许多问题,其中电机振动是日常生产生活中较轻易碰到的。 一、电动机振动的危害 电动机振动会加速电动机轴承磨损,使轴承的正常使用寿命大大缩短,同时,电动机振动将使绕组绝缘下降。由于振动使电机端部绑线松动,造成端部绕组产生相互磨擦,绝缘电阻降低,绝缘寿命缩短,严重时造成绝缘击穿。另外,电动机振动会造成所拖动机械的损坏,影响四周设备的正常工作,发出很大的噪声。 二、电动机振动的原因 一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。电机振动极限值在国家标准GB100068.2一88《旋转电机振动测定方法及极限振动极限》中都有规定。振动是所有电机在制造、安装、运行维护与检修中经常遇到和必须解决的问题。振动过大会导致电机的运行稳定性破坏、换向条件恶化、零部件损坏、电机寿命缩短,甚至造成停机故障。 机械部分故障主要有以下几点: 机械方面主要存在地脚紧固不牢,基础台面倾斜,不平;轴承损坏,转轴弯曲变形,电动机轴线中心与其所拖动机械轴线中心不一致;定、转子铁芯磁中心不一致,转子动平衡不良等。转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。机座、端盖重要支承件制造误差或运行变形。由于机座、端盖等转子重要支承件的配合面形位误差超差,特别是大、中型电机运行较长时间后机座、端盖等重要支承件变形,使电机在运行时轴承产生干扰力,造成电机振动。这些配件的误差或变形可采用回转打百分表等方式测得,发现有这一情况后,应对配件进行焊修等工艺方式处理,或更换配件。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表现为齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 3、电机本身结构的缺陷和安装的问题。这种故障主要表现为轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。而轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。电枢不平衡。由于旋转时不平衡质量产生的离心力的作用,使轴承上作用有一个旋转力,造成了电机和基础的振动。当气隙不匀、主极固定不紧或机座、端盖的刚度较差时,都会造成振动加剧,因此检

相关主题