搜档网
当前位置:搜档网 › 最新力学三大观点的综合应用演示教学

最新力学三大观点的综合应用演示教学

最新力学三大观点的综合应用演示教学
最新力学三大观点的综合应用演示教学

力学三大观点的综合应用

1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.

动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.

动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力,当F为变力时,F应是合外力对作用时间的平均值.

2.动量守恒定律

(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.

(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).

(3)守恒条件

①系统不受外力或系统虽受外力但所受外力的合力为零.

②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.

③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.

3.解决力学问题的三个基本观点

(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.

(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.

(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.

1.力学规律的选用原则

(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.

(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.

2.系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.

(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.

(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).

考向1动量和能量的观点在力学中的应用

例1(2014·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B.物块与左右两边槽壁的距离如图1所示,L为1.0 m,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2.求:

图1

(1)物块与凹槽相对静止时的共同速度;

(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;

(3)从凹槽开始运动到两者刚相对静止所经历的时间及该时间内凹槽运动的位移大小.

解析(1)设两者间相对静止时速度为v,由动量守恒定律得m v0=2m v

v=2.5 m/s,方向向右.

(2)设物块与凹槽间的滑动摩擦力F f=μF N=μmg

设两者相对静止前相对运动的路程为s1,由动能定理得

-F f·s1=1

2-12m v20

2(m+m)v

解得s 1=12.5 m 已知L =1 m ,可推知物块与右侧槽壁共发生6次碰撞.

(3)设凹槽与物块碰前的速度分别为v 1、v 2,碰后的速度分别为v 1′、v 2′.有m v 1+m v 2=m v 1′+m v 2′

12m v 21+12m v 22=12m v 1′2+12

m v 2′2 得v 1′=v 2,v 2′=v 1

即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块的v —t 图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则

v =v 0+at

a =-μg

解得t =5 s

凹槽的v —t 图象所包围的阴影部分面积即为凹槽的位移大小s 2.(等腰三角形面积共分13份,第一份面积为0.5L ,其余每份面积均为L )

s 2=12(v 02

)t +6.5L 解得s 2=12.75 m

答案 (1)2.5 m/s ,方向向右 (2)6次 (3)5 s 12.75 m

如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长

为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:

图2

(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力;

(2)滑块B 被碰后瞬间的速度;

(3)讨论两滑块是否能发生第二次碰撞.

答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析

解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:

MgR =12

M v 2 由牛顿第二定律有F N -Mg =M v 2R

联立解得小滑块在D 点所受支持力F N =30 N

由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下.

(2)设B 滑块被碰后的速度为v B ,由动量守恒定律:

M v =M v A +m v B

解得小滑块在D 点右侧碰后的速度v B =4 m/s

(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则

对于A 物块 -μMgs A =0-12M v 2A

解得s A =2 m

对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则

-μmgs B =0-12

m v 2B 解得s B =8 m(即从E 点返回2 m)

由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞. 考向2 综合应用力学三大观点解决多过程问题

例2 如图3所示,在光滑的水平面上有一质量为m =1 kg 的足够长的木板C ,在C 上放置有A 、B 两物体,A 的质量m A =1 kg ,B 的质量为m B =2 kg.A 、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能E p =3 J ,现突然给A 、B 一瞬时冲量作用,使A 、B 同时获得v 0=2 m/s 的初速度,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与A 、B 分离.已知A 和C 之间的动摩擦因数为μ1=0.2,B 、C 之间的动摩擦因数为μ2=0.1,且滑动摩擦力略小于最大静摩擦力.求:

图3

(1)弹簧与A 、B 分离的瞬间,A 、B 的速度分别是多大?

(2)已知在C 第一次碰到右边的固定挡板之前,A 、B 和C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 的加速度分别是多大及该过程中产生的内能为多少?

答案 见解析

解析 (1)在弹簧弹开两物体的过程中,由于作用时间极短,对A 、B 、弹簧组成的系统由动量守恒定律和能量守恒定律可得:(m A +m B )v 0=m A v A +m B v B

E p +12(m A +m B )v 20=12m A v 2A +12

m B v 2B 联立解得:v A =0,v B =3 m/s.

(2)对物体B 有:a B =μ2g =1 m/s

对A 、C 有:μ2m B g =(m A +m )a

又因为:m A a <μ1m A g

故物体A 、C 的共同加速度为a =1 m/s 2.

对A 、B 、C 整个系统来说,水平方向不受外力,故由动量守恒定律和能量守恒定律可得: m B v B =(m A +m B +m )v

Q =12m B v 2B -12

(m A +m B +m )v 2 解得:Q =4.5 J ,v =1.5 m/s

(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C

处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.

图4

(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;

(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .

答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J

解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①

解得:v 2=v 12

=3 m/s 碰撞过程中损失的动能为:ΔE k =12m v 21-12

×2m v 22②

解得ΔE k =9 J

(2)P 滑动过程中,由牛顿第二定律知ma =-μmg ③

可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L

=v 2t +12

at 2④ 由①③④式得v 1=6L -at 2

t

①若2 s 时通过B 点,解得:v 1=14 m/s

②若4 s 时通过B 点,解得:v 1=10 m/s

故v 1的取值范围为:10 m /s ≤v 1≤14 m/s

设向左经过A 点的速度为v A ,由动能定理知

12×2m v 2A -12

×2m v 22=-μ·2mg ·4L 当v 2=12

v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E k A max =17 J.

(限时:45分钟)

1.如图1所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2.)

图1

(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的?

(2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2;

(3)求出碰后木板在水平地面上滑动的距离s .

答案 (1)向左运动 (2)v 1=4.2 m /s ,v 2=0.8 m/s (3)0.2 m

解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,

由L =12a 0t 2得:a 0=2L t

2=2.5 m/s 2 此时木板使车向右运动的摩擦力:F f =ma 0=2.5 N

木板受车向左的反作用力:F f ′=F f =2.5 N

木板受地面向右最大静摩擦力:F f0=μ(M +m )g =0.5 N

由于F f ′>F f0,所以木板不可能静止,将向左运动.

(2)设车与挡板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿第二定律与运动学公式:

对小车:F =ma 1 v 1=a 1t

对木板:F -μ(m +M )g =Ma 2 v 2=a 2t

两者的位移的关系:v 12t +v 22

t =L 联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s

(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有 m v 1-M v 2=(m +M )v

对碰后滑行s 的过程,由动能定理得:

-μ(M +m )gs =0-12

(M +m )v 2 联立并代入数据,解得:s =0.2 m

2.如图2所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:

图2

(1)A 、B 相碰后瞬间的共同速度的大小;

(2)A 、B 相碰前弹簧具有的弹性势能;

(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?

答案 (1)123gx 0 (2)14

mgx 0 (3) (20+43)gx 0 解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2

三大力学观点的综合应用测试题及解析

三大力学观点的综合应用测试题及解析 1.所谓对接是指两艘以几乎同样快慢同向运行的宇宙飞船在太空中互相靠近,最后连接在一起。假设“天舟一号”和“天宫二号”的质量分别为M 、m ,两者对接前的在轨速度分别为v +Δv 、v ,对接持续时间为Δt ,则在对接过程中“天舟一号”对“天宫二号”的平均作用力大小为( ) A.m 2·Δv (M +m )Δt B.M 2·Δv (M +m )Δt C.Mm ·Δv (M +m )Δt D .0 解析:选C 在“天舟一号”和“天宫二号”对接的过程中,水平方向动量守恒,则有M (v +Δv )+ m v =(M +m )v ′,解得对接后两者的共同速度v ′=v +M ·Δv M +m ,以“天宫二号”为研究对象,根据动量定理有F ·Δt =m v ′-m v ,解得F =Mm ·Δv (M +m )Δt ,故C 正确。 2.(2020·烟台模拟)在光滑水平面上有三个弹性小钢球a 、b 、c 处于静止状态,质量分别为2m 、m 和2m 。其中a 、b 两球间夹一被压缩了的弹簧,两球被左右两边的光滑挡板束缚着。若某时刻将挡板撤掉,弹簧便把a 、b 两球弹出,两球脱离弹簧后,a 球获得的速度大小为v ,若b 、c 两球相距足够远,则b 、c 两球相碰后( ) A .b 球的速度大小为13 v ,运动方向与原来相反 B .b 球的速度大小为23 v ,运动方向与原来相反 C .c 球的速度大小为83 v D .c 球的速度大小为23 v 解析:选B 设b 球脱离弹簧时的速度为v 0,b 、c 两球相碰后b 、c 的速度分别为v b 和v c ,取向右为正方向,弹簧将a 、b 两球弹出过程,由动量守恒定律得0=-2m v +m v 0,解得v 0=2v ;b 、c 两球相碰过 程,由动量守恒定律和机械能守恒定律得m v 0=m v b +2m v c ,12m v 02=12m v b 2+12·2m v c 2,联立解得v b =-23 v (负号表示方向向左,与原来相反),v c =43 v ,故B 正确。 3.[多选]如图所示,A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为R 。将小球A 从半圆槽右侧顶端由静止释放,不计一切摩擦。则( ) A .A 能到达半圆槽的左侧最高点 B .A 运动到半圆槽的最低点时A 的速率为 gR 3 C .A 运动到半圆槽的最低点时B 的速率为 4gR 3

2020高考二轮复习 专题5、动力学三大观点综合应用

1 / 5 动力学三大观点综合应用 专题 一、牛顿第二定律与动能定理的综合应用 1、如图甲所示,物体以一定的初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0m.选择斜面底端为参考平面,上升过程中,物体的机械能E 随高度h 的变化关系如图乙所示,g 取 10 m/s 2,sin 37°=0.6,cos 37°=0.8.则( ) A.物体的质量m=0.67 kg B.物体与斜面之间的动摩擦因数μ=0.5 C.物体上升过程中的加速度大小a=1m/s D.物体回到斜面底端时的动能E=10J 2、倾角为θ的斜面体固定在水平面上,在斜面体的底端附近固定一挡板,一质量不计的轻弹簧下端固定在挡板上,其自然伸长时弹簧的上端位于斜面体上的0点.质量分别为4m 、m 的物块甲和乙用一质量不计的细绳连接,且跨过固定在斜面体顶端的光滑定滑轮,连接甲的细绳与斜面平行,如图所示.开始时物块甲位于斜面体上的M 处,且MO=L ,物块乙距离水平面足够高,现将物块甲和乙由静止释放,物块甲沿斜面下滑,当甲将弹簧压缩到N 点时,甲的速度减为零,ON=L/2,已知物块甲与斜面间的动摩擦因数为μ= 8 3 ,θ=30°,重力加速度g 取10m/s 2,忽略空气阻力,整个过程细绳始终没有松弛且乙未碰到滑轮,则下列说法正确的是( ) A.物块甲由静止释放到滑至斜面体上N 点的过程,物块甲先匀加速运动紧接着 做匀减速运动到速度减为零 B.物块甲在与弹簧接触前的加速度大小为0.5m/s 2 C.物块甲位于N 点时,弹簧所储存的弹性势能的最大值为15mgL/8 D.物块甲位于N 点时,弹簧所储存的弹性势能的最大值为3mgL/8 3、如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙的模型。倾角为45°的直轨道AB ,半径R=10m 的光滑竖直圆轨道和倾角为37°的直轨道EF ,分别通过水平光滑衔接轨道 BC 、C'E 平滑连接,另有水平减速直轨道FG 与EF 平滑连接,EG 间的水平距离L=40m 。现有质量m=500kg 的过山车,从高h=40m 处的A 点静止下滑,经 BCDC'EF 最终停在G 点。过山车与轨道 AB 、EF 的 动摩擦因数均为μ1=0.2,与减速直轨道FG 的动摩擦因数μ2=0.75,过山车可视为质点,运动中不脱离轨道,求: (1)过山车运动至圆轨道最低点C 时的速度大小; (2)过山车运动至圆轨道最高点D 时对轨道的作用力; (3)减速直轨道 FG 的长度 x 。(已知sin 37°=0.6,cos 37°=0.8)

专题 力学三大观点的综合应用

力学三大观点综合应用 高考定位 力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力. 考题1 动量和能量观点在力学中的应用 例1 (2014·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图1所示,L为 m,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为.开始时物块静止,凹槽以v0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2.求: 图1 (1)物块与凹槽相对静止时的共同速度; (2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数; (3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小. 答案(1) m/s (2)6次(3)5 s m 解析(1)设两者间相对静止时速度为v, 由动量守恒定律得mv0=2mv v= m/s. (2)解得物块与凹槽间的滑动摩擦力 F f=μF N=μmg 设两者相对静止前相对运动的路程为s1,由功能关系得 -F f·s1=1 2 (m+m)v2- 1 2 mv20 解得s1= m 已知L=1 m, 可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前的速度分别为v1、v2,碰后的速度分别为v1′、v2′.有 mv1+mv2=mv1′+mv2′ 1 2mv21+ 1 2 mv22= 1 2 mv1′2+ 1 2 mv2′2 得v1′=v2,v2′=v1 即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块的v—t图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v=v0+at a=-μg 解得t=5 s 凹槽的v—t图象所包围的阴影部分面积即为凹槽的位移大小s2.(等腰三角形面积共分13份,第一份面积

力学三大观点的综合应用资料讲解

力学三大观点的综合应用 1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因. 动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系. 动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力,当F为变力时,F应是合外力对作用时间的平均值. 2.动量守恒定律 (1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变. (2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反). (3)守恒条件 ①系统不受外力或系统虽受外力但所受外力的合力为零. ②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒. ③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程. 3.解决力学问题的三个基本观点 (1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题. (2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题. (3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.

高中物理三大力学观点的综合应用检测题

高中物理三大力学观点的综合应用检测题 1.所谓对接是指两艘以几乎同样快慢同向运行的宇宙飞船在太空中互相靠近,最后连接在一起。假设“天舟一号”和“天宫二号”的质量分别为M 、m ,两者对接前的在轨速度分别为v +Δv 、v ,对接持续时间为Δt ,则在对接过程中“天舟一号”对“天宫二号”的平均作用力大小为( ) A.m 2·Δv M +m Δt B.M 2·Δv M +m Δt C. Mm ·Δv M +m Δt D .0 解析:选C 在“天舟一号”和“天宫二号”对接的过程中,水平方向动量守恒,则有M (v +Δv )+ mv =(M +m )v ′,解得对接后两者的共同速度v ′=v +M ·Δv M +m ,以“天宫二号”为研究对象,根据动量定 理有F ·Δt =mv ′-mv ,解得F = Mm ·Δv M +m Δt ,故C 正确。 2.(2020·烟台模拟)在光滑水平面上有三个弹性小钢球a 、b 、c 处于静止状态,质量分别为2m 、m 和2m 。其中a 、b 两球间夹一被压缩了的弹簧,两球被左右两边的光滑挡板束缚着。若某时刻将挡板撤掉,弹簧便把a 、b 两球弹出,两球脱离弹簧后,a 球获得的速度大小为v ,若b 、c 两球相距足够远,则b 、c 两球相碰后( ) A .b 球的速度大小为1 3v ,运动方向与原来相反 B .b 球的速度大小为2 3v ,运动方向与原来相反 C .c 球的速度大小为8 3v D .c 球的速度大小为2 3 v 解析:选B 设b 球脱离弹簧时的速度为v 0,b 、c 两球相碰后b 、c 的速度分别为v b 和v c ,取向右为正方向,弹簧将a 、b 两球弹出过程,由动量守恒定律得0=-2mv +mv 0,解得v 0=2v ;b 、c 两球相碰过程,由动量守恒定律和机械能守恒定律得mv 0=mv b +2mv c ,12mv 02=12mv b 2+12·2mv c 2 ,联立解得v b =-23v (负 号表示方向向左,与原来相反),v c =4 3 v ,故B 正确。 3.[多选]如图所示,A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为 R 。将小球A 从半圆槽右侧顶端由静止释放,不计一切摩擦。则( ) A .A 能到达半圆槽的左侧最高点 B .A 运动到半圆槽的最低点时A 的速率为 gR 3

2020高考物理二轮复习强化练习(九) 力学三大观点的综合应用含解析

专题强化练(九)力学三大观点的综合应用 (满分:64分时间:40分钟) 一、选择题(共3小题,每小题8分,共24分) 1. (考点3)(多选)(2018陕西宝鸡一模)光滑水平面上放有质量分别为2m和m的物块A和B,用细线将它们连接起来,两物块中间加有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x。现将细线剪断,此刻物块A的加速度大小为a,两物块刚要离开弹簧时物块A的速度大小为v,则() A.物块B的加速度大小为a时弹簧的压缩量为 B.物块A从开始运动到刚要离开弹簧时位移大小为x C.物块开始运动前弹簧的弹性势能为mv2 D.物块开始运动前弹簧的弹性势能为3mv2 A的加速度大小为a时,根据胡克定律和牛顿第二定律得kx=2ma,当物块B的加速度大小为a时,有kx'=ma,对比可得x'=,即此时弹簧的压缩量为,选项A正确;取水平向左为正方向,根据 系统的动量守恒得2m-m=0,又x A+x B=x,解得A的位移为x A=x,选项B错误;根据动量守恒定律得0=2mv-mv B,得物块B刚要离开弹簧时的速度v B=2v,由系统的机械能守恒得物块开始运动前弹簧的弹性势能为E p=·2mv2+=3mv2,选项C错误、D正确。 2. (考点2)(多选)(2019四川成都石室中学高三2月份入学考试)如图所示,长为L、质量为3m的长木板B放在光滑的水平面上,质量为m的铁块A放在长木板右端。一质量为m的子弹以速度v0射入木板并留在其中,铁块恰好不滑离木板。子弹射入木板中的时间极短,子弹、铁块均视为质点,铁块与木板间的动摩擦因数恒定,重力加速度为g。下列说法正确的是() A.木板获得的最大速度为 B.铁块获得的最大速度为 C.铁块与木板之间的动摩擦因数为 D.子弹、木块、铁块组成的系统损失的机械能为 B系统,根据动量守恒定律有mv0=4mv1,解得v1=,选项A错误;对木板B和铁块A(包括子弹)系统根据动量守恒定律有mv0=5mv2,解得v2=,选项B正确;子弹打入木板后,对木板B

力学的三大基本观点及其应用

力学的三大基本观点及其应用 一、力学的三个基本观点: 力的观点:牛顿运动定律、运动学规律 动量观点:动量定理、动量守恒定律 能量观点:动能定理、机械能守恒定律、能的转化和守恒定律 例1.质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,速度为v0,某时刻拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大 小结:先大后小,守恒优先 变1:质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大 小结:涉及时间,动量定理优先 变2:质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,中途拖车脱钩,待司机发现时,汽车已行驶了L的距离,于是立即关闭油门.设运行过程中所受阻力与重力成正比,汽车牵引力恒定不变,汽车停下时与拖车相距多远 小结:涉及位移,动能定理优先 二、力的观点与动量观点结合: 例2.如图所示,长 12 m、质量为 50 kg 的木板右端有一立柱,木板置于水平地面上,木板与地面间的动摩因数为,质量为 50 kg 的人立于木板左端,木板与人均静止,当人以 4 m/s2的加速度匀加速向右奔跑至板右端时立即抱住立柱,(取 g=10 m/s2)试求: (1)人在奔跑过程中受到的摩擦力的大小. (2)人从开始奔跑至到达木板右端所经历的时间. (3)人抱住立柱后,木板向什么方向滑动还能滑行多远的距离

三、动量观点与能量观点综合: 例3.如图所示,坡道顶端距水平面高度为 h,质量为 m1的小物块 A 从坡道顶端由静止滑下,在进入水平面上的滑道时无机械能损失,为使 A 制动,将轻弹簧的一端固定在水平滑道延长线 M 处的墙上,另一端与质量为 m2的挡板 B 相连,弹簧处于原长时,B 恰位于滑道的末端 O 点.A 与 B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在 OM 段 A、B 与水平面间动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为 g,求: (1)物块 A 在与挡板 B 碰撞前瞬间速度 v 的大小. (2)弹簧最大压缩量为 d 时的弹性势能 E p(设弹簧处于原长时弹性势能为零). 四、三种观点综合应用: 例4.对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B 两物体位于光滑水平面上,仅限于沿同一直线运动.当它们之间的距离大于等于某一定值 d 时,相互作用力为零,当它们之间的距离小于 d 时,存在大小恒为 F 的斥力.设 A 物体质量 m1= kg,开始时静止在直线上某点;B 物体质量m2= kg,以速度 v0从远处沿直线向 A 运动,如图所示.若 d= m,F= N,v0= m/s,求: (1)相互作用过程中 A、B 加速度的大小; (2)从开始相互作用到 A、B 间的距离最小时,系统动能的减少量; (3)A、B 间的最小距离. 例5.如图所示,在光滑的水平面上有一质量为m、长度为 L的小车,小车左端有一质量也是 m 可视为质点的物块,车子的右壁固定有一个处于锁定状态的压缩轻弹簧(弹簧长度与车长相比可忽略),物块与小车间滑动摩擦因数为μ,整个系统处于静止状态.现在给物块一个水平向右的初速度 v0,物块刚好能与小车右壁的弹簧接触,此时弹簧锁定瞬间解除,当物块再回到左端时,恰与小车相对静止.求: (1)物块的初速度 v0及解除锁定前小车相对地运动的位移. (2)求弹簧解除锁定瞬间物块和小车的速度分别为多少

高考物理专项练习50 力学三大规律的综合应用

高考物理专项练习50 力学三大规律的综合应用 1. 如图所示,某超市两辆相同的手推购物车质量均为m 、相距l 沿直线排列,静置于水平地面上.为节 省收纳空间,工人给第一辆车一个瞬间的水平推力使其运动,并与第二辆车相碰,且在极短时间内相 互嵌套结为一体,以共同的速度运动了距离l 2,恰好停靠在墙边.若车运动时受到的摩擦力恒为车重的 k 倍,忽略空气阻力,重力加速度为g .求: (1) 购物车碰撞过程中系统损失的机械能; (2) 工人给第一辆购物车的水平冲量大小. 2. 如图所示,质量分布均匀、半径为R 的光滑半圆形金属槽,静止在光滑的水平面上,左边紧靠竖直墙 壁.一质量为m 的小球从距金属槽上端R 处由静止下落,恰好与金属槽左端相切进入槽内,到达最低 点后向右运动从金属槽的右端冲出,小球到达最高点时与金属槽圆弧最低点的距离为7 4R ,重力加速度 为g ,不计空气阻力.求: (1) 小球第一次到达最低点时对金属槽的压力大小; (2) 金属槽的质量. 3. 如图所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道 匀速运动,与静止在同一光滑水平轨道上的木板C 发生碰撞,碰撞后B 、C 的速度相同,B 、C 的上表面相平且B 、C 不粘连,A 滑上C 后恰好能到达C 板的右端.已知A 、B 质量相等,C 的质量为A 的质量的2倍,木板C 长为L ,重力加速度为g .求: (1) A 物体与木板C 上表面间的动摩擦因数; (2) 当A 刚到C 的右端时,B 、C 相距多远?

4.足够长的倾角为θ的光滑斜面的底端固定一轻弹簧,弹簧的上端连接质量为m、厚度不计的钢板,钢 板静止时弹簧的压缩量为x0,如图所示.一物块从钢板上方距离为3x0的A处沿斜面滑下,与钢板碰撞后立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点,O为弹簧自然伸长时钢板的位置.若物块质量为2m,仍从A处沿斜面滑下,则物块与钢板回到O点时,还具有向上的速度,已知重力加速度为g,计算结果可以用根式表示,求: (1)质量为m的物块与钢板碰撞后瞬间的速度大小v1; (2)碰撞前弹簧的弹性势能; (3)质量为2m的物块沿斜面向上运动到达的最高点离O点的距离. 5.如图所示,质量为m1=0.5 kg的小物块P置于台面上的A点并与水平弹簧的右端接触(不拴接),轻弹 簧左端固定,且处于原长状态.质量M=1 kg的长木板静置于水平面上,其上表面与水平台面相平,且紧靠台面右端.木板左端放有一质量m2=1 kg的小滑块Q.现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内),撤去推力,此后P沿台面滑到边缘C时速度v0=10 m/s,与长木板左端的滑块Q相碰,最后物块P停在AC的正中点,Q停在木板上.已知台面AB部分光滑,P与台面AC间的动摩擦因数μ1=0.1,AC间距离L=4 m.Q与木板上表面间的动摩擦因数μ2=0.4,木板下表面与水平面间的动摩擦因数μ3=0.1(g取10 m/s2),求: (1)撤去推力时弹簧的弹性势能; (2)长木板运动中的最大速度; (3)长木板的最小长度. 6.如图所示,某时刻质量为m1=50 kg的人站在m2=10 kg的小车上,推着m3=40 kg的铁箱一起以速 度v0=2 m/s在水平地面沿直线运动到A点时,该人迅速将铁箱推出,推出后人和车刚好停在A点,铁箱则向右运动到距A点s=0.25 m的竖直墙壁时与之发生碰撞而被弹回,弹回时的速度大小是碰撞前的二分之一,当铁箱回到A点时被人接住,人、小车和铁箱一起向左运动,已知小车、铁箱受到的摩擦力均为地面压力的0.2倍,重力加速度g=10 m/s2,求: (1)人推出铁箱时对铁箱所做的功; (2)人、小车和铁箱停止运动时距A点的距离.

§4 电磁感应与力学规律的综合应用

§4 电磁感应与力学规律的综合应用 教学目标: 1.综合应用电磁感应等电学知识解决力、电综合问题; 2.培养学生分析解决综合问题的能力 教学重点:力、电综合问题的解法 教学难点:电磁感应等电学知识和力学知识的综合应用,主要有 1、利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2、应用牛顿第二定律解决导体切割磁感线运动的问题。 3、应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。 4、应用能的转化和守恒定律解决电磁感应问题。 教学方法:讲练结合,计算机辅助教学 教学过程: 一、电磁感应中的动力学问题 这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是: 【例1】如图所示,AB 、CD 是两根足够长的固定平行金属导轨,两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨放置的金属棒ab ,从静止开始沿导轨下滑,求此过程中ab 棒的最大速度。已知ab 与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计。 F=BIL 界状态 v 与a 方向关系 运动状态的分析 a 变化情况 F=ma 合外力 感应电流 确定电源(E ,r ) r R E I +=

解析:ab 沿导轨下滑过程中受四个力作用,即重力mg ,支持力F N 、摩擦力F f 和安培力F 安,如图所示,ab 由静止开始下滑后,将是↓↑→↑→↑→↑→a F I E v 安(↑为增大符号),所以这是个变加速过程,当加速度减到a =0时,其速度即增到最大v =v m ,此时必将处于平衡状态,以后将以v m 匀速下滑 ab 下滑时因切割磁感线,要产生感应电动势,根据电磁感应定律: E=BLv ① 闭合电路AC ba 中将产生感应电流,根据闭合电路欧姆定律: I=E/R ② 据右手定则可判定感应电流方向为aAC ba ,再据左手定则判断它受的安培力F 安方向如图示,其大小为: F 安=BIL ③ 取平行和垂直导轨的两个方向对ab 所受的力进行正交分解,应有: F N = mg cos θ F f = μmg cos θ 由①②③可得R v L B F 22=安 以ab 为研究对象,根据牛顿第二定律应有: mg sin θ –μmg cos θ-R v L B 22=ma ab 做加速度减小的变加速运动,当a =0时速度达最大 因此,ab 达到v m 时应有: mg sin θ –μmg cos θ-R v L B 22=0 ④ 由④式可解得()2 2cos sin L B R mg v m θμθ-= 注意:(1)电磁感应中的动态分析,是处理电磁感应问题的关键,要学会从动态分析的过程中来选择是从动力学方面,还是从能量、动量方面来解决问题。 (2)在分析运动导体的受力时,常画出平面示意图和物体受力图。 二、电磁感应中的能量、动量问题 无论是使闭合回路的磁通量发生变化,还是使闭合回路的部分导体切割磁感线,都要消耗其它形式的能量,转化为回路中的电能。这个过程不仅体现了能量的转化,而且保持守恒,使我们进一步认识包含电和磁在内的能量的转化和守恒定律的普遍性。 分析问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其它形式能转化为电能,做正功将电能转化为其它形式的能;然后利用能量守恒列出方程求解。

专题强化四 力学三大观点的综合应用—2021高中物理一轮复习学案

专题强化四力学三大观点的综合应用 一、解动力学问题的三个基本观点 力的观点运用牛顿运动定律结合运动学知识解题,可处理匀变速直线运动问题能量观点用动能定理和能量守恒观点解题,可处理非匀变速运动问题 动量观点用动量定理和动量守恒观点解题,可处理非匀变速运动问题 相同点①研究对象都是相互作用的物体组成的系统 ②研究过程都是某一运动过程 不同点动量守恒定律是矢量表达式,还可以写出分量表达式;而动能定理和能量守恒定律都是标量表达式,无分量表达式 (1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律)。 (2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。 (3)若研究过程涉及时间,一般考虑用动量定理或运动学公式。 (4)因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处。特别对于变力做功问题,就更显示出它们的优越性。 1.动力学方法的应用 若一个物体参与了多个运动过程,而运动过程只涉及运动和力的问题或只要求分析物体的动力学特点而不涉及能量问题,则常常用牛顿运动定律和运动学规律求解。 例1 (2019·河北衡水中学模拟)如图甲所示,水平地面上有一长为l=1 m,高为h =0.8 m,质量M=2 kg的木板,木板的右侧放置一个质量为m=1 kg的木块(可视为质点),已知木板与木块之间的动摩擦因数为μ1=0.4,木板与地面之间的动摩擦因数为μ2=0.6,初始时两者均静止。现对木板施加一水平向右的拉力F,拉力F随时间的变化如图乙所示,取g=10 m/s2。求: (1)前2 s内木板的加速度大小; (2)木块落地时距离木板左侧的水平距离Δs。 [解析]本题根据F-t图象考查板块问题。

高考物理力学规律的综合应用复习

高考物理力学规律的综合应用复习 【考点透视】 解决动力学问题有三个基本观点,即是力的观点、动量的观点、能量的观点。 一、知识回顾 1.力的观点 ⑴.匀变速直线运动中常见的公式(或规律): 牛顿第二定律:ma F = 运动学公式:at v v t +=0,202 1at t v s + =,as v v t 22 2=-,t v s =,2aT s =? ⑵.圆周运动的主要公式:22 ωmr r v m ma F ===向向 2.动量观点 ⑴.恒力的冲量:Ft I = ⑵.动量:mv p =,动量的变化12mv mv p -=? ⑶.动量大小与动能的关系k mE P 2= ⑷.动量定理:p I ?=,对于恒力12mv mv t F -=合,通常研究的对象是一个物体。 ⑸.动量守恒定律: 条件:系统不受外力或系统所受外力的合力为零;或系统所受外力的合力虽不为零,但比系统内力小得多,(如碰撞问题中的摩擦力、爆炸问题中的重力等外力比起相互作用的内力来小得多,可以忽略不计);或系统所受外力的合力虽不为零,但在某个方向上的分量为零(在该方向上系统的总动量的分量保持不变)。 表达式:对于两个物体有221 12211v m v m v m v m '+'=+,研究的对象是一个系统(含两个或两个以上相互作用的物体)。 3.用能量观点解题的基本概念及主要关系 ⑴.恒力做功:θcos Fs W =,Pt W =, ⑵.重力势能mgh E P =,动能221mv E k =,动能变化21222 121mv mv E k -=? ⑶.动能定理:力对物体所做的总功等于物体动能变化,表达式2 1222 121W mv mv -=总 ⑷.常见的功能关系 重力做功等于重力势能增量的负值P G E W ?-= 弹簧弹力做功等于弹性势能增量的负值E W P ?-=弹 有相对时,系统克服滑动摩擦力做功等于系统产生的内能,即2221202 12121mv mv mv fl Q --= = ⑸.机械能守恒:只有重力或系统内的弹力做功系统的总的机械能保持不变。表达式有 2211p k p k E E E E +=+、减增p k E E ?=?、减增B A E E ?=? ⑹.能量守恒:能量守恒定律是自然界中普遍适用的基本规律。 二、力学规律的选用原则: 1.研究某一物体所受力的瞬时作用与物体运动状态的关系时,一般用力的观点解题。

动力学三大定律的综合应用汇总

动力学三大定律的综合应用 教学目的:1.明确三大定律的区别及解题过程中的应用原则 2.掌握三大定律解题的思路和方法 教学重点、难点:用两个守恒定律去解决问题时,必须注意研究的问题是否满足守恒的条件. 考点梳理: 一、解决动力学问题的三个基本观点 1.力的观点 牛顿运动定律结合运动学公式,是解决力学问题的基本思路和方法,此种方法往往求得的是瞬时关系.利用此种方法解题必须考虑运动状态改变的细节.中学只能用于匀变速运动(包括直线和曲线运动),对于一般的变加速运动不作要求. 2.动量的观点 动量观点主要考虑动量守恒定律. 3.能量的观点 能量观点主要包括动能定理和能量守恒定律.动量的观点和能量的观点研究的是物体或系统经历的过程中状态的改变,它不要求对过程细节深入研究,关心的是运动状态的变化,只要求知道过

程的始末状态动量、动能和力在过程中功,即可对问题求解.二、力学规律的选用原则 1.选用原则:求解物理在某一时刻的受力及加速度时,可用牛顿第二定律解决,有时也可结合运动学公式列出含有加速度的关系式. 2.动能定理的选用原则:研究某一物体受到力的持续作用而发生运动状态改变时,涉及位移和速度,不涉及时间时优先考虑动能定理。 3.动量守恒定律和机械能守恒定律原则:若研究的对象为相互作用的物体组成的系统,一般用这两个守恒定律去解决问题,但须注意研究的问题是否满足守恒的条件. 4.选用能量守恒定律的原则:在涉及相对位移问题时优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量. 5.选用动量守恒定律的原则:在涉及碰撞、爆炸、打击、绳绷紧等物理过程时,必须注意到一般这些过程中均隐含有系统机械能与其他形式能量之间的转化.这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场. 三、综合应用力学三大观点解题的步骤 1.认真审题,明确题目所述的物理情景,确定研究对象.2.分析所选研究对象的受力情况及运动状态和运动状态的变化过程,画出草图.对于过程比较复杂的问题,要正确、合理地把

三大力学规律的综合应用

三大力学规律的综合应用 □内蒙古/高级教师李贞莲 力学的核心是研究物体受力与运动变化的关系。从三种不同视角建立了解决动力学问题的三类不同的规律,得出三种不同的解题方法。这三种方法是解决力学问题的法宝。深入透彻地理解掌握并能熟练地综合应用这三类规律,是高中物理学习的重中之重。 一.三类基本规律比较表:

二.解力学综合题的基本思路: 1 认真审题,全面准确地弄清题意。 综合题一般所涉及的是比较复杂的物理情景,其中包含多个物理过程,需综合应用多个物理概念、理论、规律解答。审题在于: (1)获取信息,理解题意。审题过程就是要认真细致的读题,准确全面地最大限度获取题目所给的信息;明确题目所述的物理事件,物理情景所经历的物理过程。初步形成解题的思维框架。这是解题的基础。 (2)分析确定题目中所给已知条件: 已知条件有两种,一种是明显的直接给出的已知条件,另一种是间接给出的隐含的已知条件。 在审题过程中,对所获取的每个信息用简明的方式,按顺序记录下来(如可用文字、数据、图表等方式),从而确定明显的已知条件。明显直接的已知条件容易发现,而隐含条件比较隐蔽,难于发现,但这些隐含条件往往又是解题的关键,所以在审题时要特别重视题目中隐含条件的发现和确定。 隐含条件一般隐藏在关键的词语中或题目的附图中,或在所设计的物理模型之中。 所以在审题过程中,要认真细致逐词、逐句、逐图的阅读分析,绝不轻易放过每一个细节,尤其要注意题目中关键的字、词、句及附图的每个细节。 全面、多角度的收集题中所给信息,用联想分析的方法去挖掘并转化隐含条件,这是解综合题的关键。 (3)分析确定物理变化的过程: 通过审题,要弄清所述物理事件或现象发生的前因后果,中间状态变化情况,发生这些变化的条件和经历的物理过程,明确运动性质,确定哪些量是变量,哪些量不变及相关联的物理量。通过这些分析找出适合各物理过程的物理规律。 2.确定研究对象,进行两种分析——受力分析和运动情况分析。 (1)研究对象的选择原则: a)选择跟已知和未知均有关系且已知条件多的物体 b)选择能满足某些力学规律的物体作为研究对象。 (2)分析研究对象的受力情况: 根据研究对象与周围物体的关系及其运动情况依据受力分析的原则和方法按顺序 分析出研究对象所受各个力,并画出受力图。 (3)分析研究对象的运动情况: 分析物体在某一运动状态下的速度(v)位移(s)和加速度。在一个复杂题目中物体的运动情况可能不只一种,会发生运动情况的变化,这时要注意运动的连续性,即当物体从一种运动状态变为另一种运动状态时,两种运动状态的物理量v,s,a的关系,二要注意联系这两个过程的物理量是什么,运动变化的可能性。即物体在一定条件下,运动可能出现不同的情况。要做全面分析,对它的运动情况做出准确的判断,通过对运动情况的分析,画出运动示意图。 3 准确运用物理规律列方程(组): 根据两个分析找出相适应的物理规律,用这些物理规律和题中所给出的等量关系列出相应的方程或方程组求解。 4检查解题思路和过程,分析解题结果。

高中物理“力学”解题的三大思路

高中物理——“力学”解题的三大思路1.力学研究的是物体的受力作用与运动变化的关系,以三条线索(包括五条重要规律)为纽带建立联系,如右表所示: 2.解决动力学问题,一般有三种途径: (1)牛顿第二定律和运动学公式(力的观点); (2)动量定理和动量守恒定律(动量观点); (3)动能定理、机械能守恒定律、功能关系、能的转化和守恒定律(能量观点).以上这三种观点称.三条线索(主要是五条重要规律),俗称求解力学问题的三把“金钥匙” ☆3.三把“金钥匙”的合理选取:

①研究某一物体所受力的瞬时作用与物体运动状态的关系(或涉及加速度)时,一般用力的观点解决问题; ②研究某一物体受到力的持续作用发生运动状态改变时,一般优先选用动量定理,涉及功和位移时优先考虑动能定理; ③若研究的对象为一物体系统,且它们之间有相互作用时,优先考虑两大守恒定律,特别是出现相对路程的则优先考虑能量守恒定律. ④一般来说,用动量观点、 能量观点比用力的观点解题简便,因此在解题时优先选用这两种观点;但在涉及加速度问题时就必须用力的观点。有些问题,用到的观点不只一个,特别像高考中的一些综合题,常用动量观点和能量观点联合求解,或用动量观点与力的观点联合求解,有时甚至三种观点都采用才能求解,因此,三种观点不要绝对化. 4.解决力学问题的常用程序是: ⑴.确定研究对象,进行运动和受力分析; ⑵.分析物理过程,按特点划分阶段.

⑶.选用相应规律解决不同阶段的问题,列出规律性方程. ⑷.找出关键性问题,挖掘隐含条件,根据具体特点,列出辅助性方程. ⑸.检查未知量个数与方程个数是否匹配. ⑹.解方程组. 【例题展示】 1.滑雪运动员到达高为h的斜坡顶端时速度为v1,如图4所示.已知斜坡倾角为θ,滑雪板与斜坡的摩擦因数为μ.求运动员滑到底端的速度.

[原创]高三物理二轮专题复习——力学规律的综合应用教案doc高中物理

[原创]高三物理二轮专题复习——力学规律的综合应用教案doc 高中物理二步:构建知识网路 一.三个观念及其概要力学规律的综合应用是指运用三个观念解题:动力学观念:包括牛顿定律和运动规律;动量的观念:包括动量定理Ft= △ p 和动量守恒定律m1v1+m2v2=m1v1'+m2v2' ; 能量的观念:包括动能定理弋总=\ E K和能量守恒定律E初=E 末. 1. 动力学观念——力的瞬时作用效应 力的瞬时作用效应是改变物体的速度,使物体产生加速度。牛顿第二定律F=ma 表示力和加速度之间的关系假设物体的受力情形,由牛顿第二定律求出加速度,再由运动学公式就能够明白物体的运动情形;假设物体的运动情形,明白了加速度,由牛顿第二定律能够求出未知的力。 做匀速圆周运动物体所受的合外力是向心力,向心力跟向心加速度的关系也同样遵从牛顿第二定律。 2. 动量的观念——力的时刻积存效应。 力的时刻积存效应是改变物体的动量。 动量定理1= △ p表示合外力的冲量和物体动量变化之间的关系。在确定了研究对象〔系统〕后,系统内各物体间的相互作用的内力总是成对显现的,且在任意一段时刻内的总冲量一定为零,因此系统的内力只能改变系统内某一物体的动量,不改变系统的总动量。 动量定理适用于某个物体,也适用于由假设干物体组成的系统。在系统所受合外力为零的条件下,该系统的总动量守恒. 3. 能量的观念——力的空间积存效应。 力的空间积存效应是改变物体的动能。动能定理W= △ E K表示合外力做功和物体动能变化之间的关系。 与冲量不同的是:即使合外力对系统不做功,但系统内一对内力在同一时刻内的位移可能不相等,因此其做的总功可能不是零,从而改变系统的总动能。 因此,在一样情形下,动能定理只能用于单个的物体而不能用于由假设干物体组成的系统。 假如对某个系统而言只有重力和弹力做功,那么系统中就只有动能和势能相互转化,其总和保持不变,机械能守恒。 二.选择解题方法 ①对单个物体的讨论,宜用两大定理:涉及时刻〔或研究力的瞬时作用〕优先考虑动量定理,涉及位移及功优先考虑动能定理;

力学三大观点的综合应用二

力学三大观点的综合应用(二) 1、质量为M的圆环用细线(质量不计)悬挂着,将两个质量均为m的有孔小珠套在此环上且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求: (1)在圆环不动的条件下,悬线中的张力T随cosθ(θ为小珠和大环圆心连线与竖直方向的夹角)变化的函数关系,并求出张力T的极小值及相应的cosθ值; (2)小球与圆环的质量比至少为多大时圆环才有可能上升? 2、如图(a)所示,把质量均为m的两个小钢球用长为2L的线连接,放在光滑的水平面上.在线的中央作用一个恒定的拉力,其大小为F,其方向沿水平方向且与开始时连线的方向垂直,连线非常柔软且不会伸缩,质量可忽略不计.试问: (1)当两连线的张角为2时,如图(b)所示,在与力F垂直的方向上钢球所受的作用力是多大? (2)钢球第一次碰撞时,在与力F垂直的方向上钢球的对地速度为多大? (3)经过若下次碰撞,最后两个钢球一直处于接触状态下运动,则由于碰撞而失去的总能量为多少?

3、如图所示,水平地面上静止放置着物块B和C相距l=1.0m物快A以速度v0=10m/s沿水平方向与B正碰,碰撞后A和B牢固粘在一起向右运动,并再与C发生正碰,碰后瞬间C 的速度v=2.0m/s,已知A和B的质量均为m.C的质量为A质量的k倍,物块与地面的动摩擦因数μ=0.45(设碰撞时间很短,g取10m/s2) (1)计算与C碰撞前瞬间AB的速度(2)根据AB与C的碰撞过程分析k 的取值范围,并讨论与C碰撞后AB的可能运动方向. 4、

5、 6、如图所示,一长为6L的轻杆一端连着质量为m的小球,另一端固定在铰链O处(轻杆可绕铰链自由转动)。一根不可伸长的轻绳一端系于轻杆的中点,另一端通过轻小定滑轮连接在质量M=12m的小物块上,物块放置在倾角θ=30°的斜面顶端。已知滑轮到地面A点的距离为3L,铰链O到A点的距离为L,不计一切摩擦。整个装置从图中实线所示位置由静止释放,直到轻杆被拉至竖直位置。问:(1)在这一过程中小球与物块构成的系统重力势能变化了多少?是增加了还是减少了? (2)当轻杆被拉至竖直位置时小球的瞬时速度多大? (3)在这一过程中轻绳对轻杆做了多少功?

动力学三大定律的综合应用

动力学三大定律的综合应用

————————————————————————————————作者: ————————————————————————————————日期: ?

动力学三大定律的综合应用 教学目的:1.明确三大定律的区别及解题过程中的应用原则 2.掌握三大定律解题的思路和方法 教学重点、难点:用两个守恒定律去解决问题时,必须注意研究的问题是否满足守恒的条件. 考点梳理: 一、解决动力学问题的三个基本观点 1.力的观点 牛顿运动定律结合运动学公式,是解决力学问题的基本思路和方法,此种方法往往求得的是瞬时关系.利用此种方法解题必须考虑运动状态改变的细节.中学只能用于匀变速运动(包括直线和曲线运动),对于一般的变加速运动不作要求. 2.动量的观点 动量观点主要考虑动量守恒定律. 3.能量的观点 能量观点主要包括动能定理和能量守恒定律.动量的观点和能量的观点研究的是物体或系统经历的过程中状态的改变,它不要求对过程细节深入研究,关心的是运动状态的变化,只要求知道过

程的始末状态动量、动能和力在过程中功,即可对问题求解. 二、力学规律的选用原则 1.选用原则:求解物理在某一时刻的受力及加速度时,可用牛顿第二定律解决,有时也可结合运动学公式列出含有加速度的关系式. 2.动能定理的选用原则:研究某一物体受到力的持续作用而发生运动状态改变时,涉及位移和速度,不涉及时间时优先考虑动能定理。 3.动量守恒定律和机械能守恒定律原则:若研究的对象为相互作用的物体组成的系统,一般用这两个守恒定律去解决问题,但须注意研究的问题是否满足守恒的条件. 4.选用能量守恒定律的原则:在涉及相对位移问题时优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量. 5.选用动量守恒定律的原则:在涉及碰撞、爆炸、打击、绳绷紧等物理过程时,必须注意到一般这些过程中均隐含有系统机械能与其他形式能量之间的转化.这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场. 三、综合应用力学三大观点解题的步骤 1.认真审题,明确题目所述的物理情景,确定研究对象.2.分析所选研究对象的受力情况及运动状态和运动状态的变化过程,画出草图.对于过程比较复杂的问题,要正确、合理地把

电磁感应与力学规律的综合应用解析

§4 电磁感应与力学规律的综合应用 教学目标: 1.综合应用电磁感应等电学知识解决力、电综合问题; 2.培养学生分析解决综合问题的能力 教学重点:力、电综合问题的解法 教学难点:电磁感应等电学知识和力学知识的综合应用,主要有 1、利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2、应用牛顿第二定律解决导体切割磁感线运动的问题。 3、应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。 4、应用能的转化和守恒定律解决电磁感应问题。 教学方法:讲练结合,计算机辅助教学 教学过程: 一、电磁感应中的动力学问题 这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是: 【例1】如图所示,AB 、CD 是两根足够长的固定平行金属导轨, 两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平 面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在 导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨 放置的金属棒ab ,从静止开始沿导轨下滑,求此过程中ab 棒的最大 速度。已知ab 与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不 F=BIL 界状态 v 与a 方向关系 运动状态的分析 a 变化情况 F=ma 合外力 运动导体所受的安培力 感应电流 确定电源(E ,r ) r R E I +=

计。 解析:ab 沿导轨下滑过程中受四个力作用,即重力mg ,支持力F N 、摩擦力F f 和安培力F 安,如图所示,ab 由静止开始下滑后,将是↓↑→↑→↑→↑→a F I E v 安(↑为增大符号),所以这是个变加速过程,当加速度减到a =0时,其速度即增到最大v =v m ,此时必将处于平衡状态,以后将以v m 匀速下滑 ab 下滑时因切割磁感线,要产生感应电动势,根据电磁 感应定律: E=BLv ① 闭合电路AC ba 中将产生感应电流,根据闭合电路欧姆定 律: I=E/R ② 据右手定则可判定感应电流方向为aAC ba ,再据左手定则判断它受的安培力F 安方向如图示,其大小为: F 安=BIL ③ 取平行和垂直导轨的两个方向对ab 所受的力进行正交分解,应有: F N = mg cos θ F f = μmg cos θ 由①②③可得R v L B F 22=安 以ab 为研究对象,根据牛顿第二定律应有: mg sin θ –μmg cos θ-R v L B 22=ma ab 做加速度减小的变加速运动,当a =0时速度达最大 因此,ab 达到v m 时应有: mg sin θ –μmg cos θ-R v L B 22=0 ④ 由④式可解得()22cos sin L B R mg v m θμθ-=

相关主题