搜档网
当前位置:搜档网 › A Wideband Compact Broadside Coupler-based Impedance Transformer

A Wideband Compact Broadside Coupler-based Impedance Transformer

A Wideband Compact Broadside Coupler-based Impedance Transformer
A Wideband Compact Broadside Coupler-based Impedance Transformer

A Wideband Compact Broadside Coupler-based Impedance Transformer with 6:1 Bandwidth

Wei Jia Lu

Temasek Laboratories

National University of Singapore

Singapore tsllwj@https://www.sodocs.net/doc/bb17314911.html,.sg

Kian Sen Ang

School of EEE

Nanyang Technological University

Singapore

akiansen@https://www.sodocs.net/doc/bb17314911.html,.sg

Koen Mouthaan

Department of ECE

National University of Singapore

Singapore

k.mouthaan@https://www.sodocs.net/doc/bb17314911.html,.sg

Abstract —A compact broadband impedance transformer using a broadside coupler is presented. The tradeoff between good return loss and design parameters that can be realistically implemented is considered during the design. To implement the coupler and the required high impedance transmission line, a combination of stripline and microstrip is used. The circuit transforms 50 Ω to 100 Ω from 1 GHz to 6 GHz. The measured return loss is larger than 15 dB from 1.1 GHz to 6.4 GHz. In general, the measured results agree well with the simulated results.

Keywords-Impedance transformer; broadside coupling; passive circuit

I. I NTRODUCTION

Impedance transformers are used in impedance matching, power splitting and power combining circuits. Commonly used impedance transformer include conventional quarter-wavelength impedance transformer, coupled line impedance transformer, tapered impedance transformer, balun impedance transformers and coaxial line impedance transformer [1]-[4]. The conventional quarter-wavelength impedance transformer is easy to implement but is typically narrowband. The bandwidth can be increased by using multiple sections of quarter wavelength line or long tapered transmission line at the expense of a larger physical footprint. Coaxial line impedance transformers such as Guanella [5] and Ruthroff [6] are able to provide a large bandwidth. These transformers typically operate in radio frequencies and the use of coils and ferrite cores limits the smallest physical size achievable. As such, compact impedance transformers are useful in practical applications with space constraint.

A compact broadband impedance transformer with three reflection zeros was proposed in [7]. The transformer employs a coupler with a high coupling coefficient and a high impedance transmission line loop as shown in Fig. 1(a). A 50 to 110 Ω stripline impedance transformer was demonstrated using edge-coupled transmission lines. It achieved better than 25 d

B return loss from 0.6 GHz to 1.6 GHz. As the realizable bandwidth is dependent on the maximum realizable coupling, the achieved bandwidth or impedance transformation ratio is

limited by the realizable gap between the coupled lines.

Fig. 1 (a) Schematic diagram of the proposed quarter-wavelength impedance transformer [7] (b) Quarter-wavelength impedance transformer using broadside coupler (c) Cross-sectional view of the impedance transformer.

Proceedings of the 42nd European Microwave Conference

An alternative method to implement the circuit using the

Vertically Installed Planar (VIP) coupler is presented in [8]. The method is able to achieve strong coupling without being restricted by the minimum gap size between two transmission lines. However, the drawback of this topology is the difficulty in determining the electrical length of the loopback transmission line. In addition, the vertical component of the

structure is more difficult to fabricate and deploy when

compared to the solution presented in [7].

In this paper, the impedance transformer is implemented

using a stripline broadside coupler and a microstrip transmission line. For the same line width, a microstrip can provide higher characteristic impedance compared to stripline. Furthermore, for a given physical length, microstrip has a longer electrical length since its effective permittivity is smaller. As such, the physical length of the loopback transmission line is longer than the coupled-line section, which allows easy practical implementation of the loopback transmission line. II. S TRUCTURE O F T HE I MPEDANCE T RANSFORMER Fig. 1(a) shows the schematic diagram of the impedance transformer. It transforms the impedance from Z 1 to Z 2. Fig. 1(b) shows our proposed implementation of the circuit and Fig. 1(c) is the cross sectional view of the impedance transformer. The stack up has four metal layers and three substrate layers. The top and bottom metal layers are the ground. The input and output transmission lines and part of the coupled line section are implemented on the second metal layer. The loopback transmission line and the other components of the coupled line section are implemented on the third metal layer. As the coupled line and loopback transmission line are both quarterwave in length, for the convenience of implementation, the loopback transmission line is realized partially in microstrip. It was done by removing a rectangular window of the top metal layer and the top and middle substrate, as shown in Fig. 1 (b). A vertical interconnect joins the loopback transmission line on the third metal layer to the second metal layer. The quarter

wavelength is determined at the center operating frequency.

III. C HARACTERISTICS O F T HE I MPEDANCE T RANSFORMER The impedance transformation ratio and the bandwidth are controlled by the characteristic impedance, Z 0, of the loopback transmission line and the even mode impedance, Z 0e , and odd mode impedance, Z 0o , of the coupled lines. Given the desired impedance transformation ratio and the bandwidth, the design curves in [4] can be used to determine the required Z 0o , Z 0e and Z 0. However, when the bandwidth and the impedance transformation ratios are large, it may be difficult to

implement it if one refers to the design curves. Simulation

using Agilent’s Advanced Design System (ADS) shows that Z 0 and Z 0o have greater impact on the bandwidth and the return loss of the circuit while Z 0e mainly affects the return loss. A very large return loss at some frequencies will result in extreme dimensions which cannot be realistically achieved. Therefore, a compromise between return loss and practically

achievable printed circuit dimensions is necessary.

Fig. 2 and Fig. 3 show the simulated S-parameters of the same impedance transformer but with different sets of design parameters. Fig. 2 has a better return loss but requires an impedance of 250 Ω, which is difficult to realize. Fig. 3 has a

moderate return loss performance but with a more realistic

Fig. 2 ADS simulation of a 50 Ω to 100 Ω impedance transformer with parameters: Z 0 = 250 Ω, Z 0e = 155 Ω and Z 0o = 27.5 Ω

.

Fig.

3 ADS simulation of 50 Ω to 100 Ω impedance transformer with different parameters: Z 0 = 155 Ω, Z 0e = 17

4 Ω and Z 0o = 21 Ω.

impedance requirement of 155 Ω. As such, the following section will focus on this design. IV. F ULL W AVE S IMULATION A 50 Ω to 100 Ω impedance transformer with a centre frequency of 3.5 GHz is designed and simulated. The bandwidth of the impedance transformer is 142.9%. It covers 1 GHz to 6 GHz. The required Z 0, Z 0e and Z 0o are 155 ?, 174 ? and 21 ? respectively.

The physical structure of the impedance transformer is

simulated in Ansys HFSS. Further optimization has been done to take into consideration the effect of the vertical

interconnect. The circuit is implemented using Rogers 5880.

The top and bottom substrate are 62 mils while the middle

substrate is 5 mils. The slot on the top substrate is 17.1 mm by 4 mm. The section of circuit used for impedance

transformation is 13.7 mm in length. Using [9], the width of

Fig. 4 HFSS simulation result for |S 11| and |S 21|.

Fig. 5 Different layers of the fabricated quarter-wavelength impedance transformer.

Fig. 6 Photo of the fabricated quarter-wavelength impedance

transformer.

Fig. 7 Measured |S 11| and |S 21| (solid line) and simulated |S 11| and |S 21| (dot dash line) with Z 1 = 50 Ω and Z 2 = 100 Ω.

Fig. 8 Measured |S 12| and |S 22| (solid line) and simulated |S 12| and |S 22| (dot dash line) with Z 1 = 50 Ω and Z 2 = 100 Ω.

the required coupled line is about 0.8 mm. The width of the loopback transmission line is 0.3 mm. The distance between the coupled line and the transmission line is 1.7 mm. The screws that hold the PCBs together are modeled as cylindrical perfect electric conductors.

Fig. 4 shows the HFSS simulation results for |S11| and |S21|. Three dips are observed in the |S11| response. The return loss is better than 15 dB from about 0.9 GHz to 5 GHz and better than 10 dB from 5 GHz to 5.8 GHz. The bandwidth of the impedance transformer is narrower than the designed bandwidth. The dip observed at 5.8 GHz is probably caused by a cavity resonance. Additionally, the vertical interconnection used to join the loop back transmission line and the top layer of the coupled line, is also a source of error.

V.M EASUREMENT A ND D ISCUSSION

Fig. 5 and Fig. 6show the fabricated circuit. The overall dimension of the circuit is 45 mm by 29.5 mm. A length of 50 Ω transmission line is added to the input and output ports respectively for calibration purposes. M2 screws are used to hold the three substrates together. The top and bottom grounds are soldered to the ground of the SMA connectors. The loopback transmission line is connected to the top layer of the coupled line by soldering.

The circuit is then measured using a HP8510C Vector Network Analyzer (VNA). A TRL calibration set for the coaxial to stripline transition was designed and used to calibrate out the effect of the 50 Ω connectors and the coaxial to stripline transitions. As the test ports of the VNA are 50 Ω, the data collected was inserted into ADS where 100 Ω load terminations can be readily used.

Fig. 7 and Fig. 8 show the simulated and measured performance of the impedance transformer. When terminated with 100 Ω at port 2, the fabricated impedance transformer achieves a return loss larger than 15 dB from 1.1 GHz to 4.6 GHz and from 4.8 GHz to 6.4 GHz. The circuit still has a return loss better than 10 dB between 4.4 GHz and 4.8 GHz despite an observed resonance.

A shift in resonance frequency is observed in the operation band of the fabricated impedance transformer towards lower frequencies as compared to the simulation results. The explanation is the presences of stray capacitance introduced by the vertical interconnect. Further studies using optimization on these parts are necessary for improvement of the performance.

VI.C ONCLUSION

A compact broadband impedance transformer using a broadside coupler and loopback transmission line is presented. The method overcomes the minimum gap limitation encountered in couplers using edge coupling. The device is able to achieve a 6:1 bandwidth with a length of a quarter wavelength, which is significantly smaller than the traditional multi-section counterpart. The device will be useful in broadband power dividers and broadband matching for antennas. The drawback of the circuit is the difficulty in making the vertical interconnect between the top and bottom layer PCBs in a laboratory. PCBs made in an industrial process, which incorporates plated through vias and blind vias, will solve this problem.

A CKNOWLEDGMENT

The authors would like to thank Mr Ray Fang and Madam Lee Siew Choo from the National University of Singapore for their technical support in the TRL calibration set design and the circuit fabrication.

R EFERENCES

[1] E.G. Cristal, “Meander-line and hybrid meander-line transformer,”

IEEE Trans. Microw. Theory Tech., vol. MTT-21, pp. 69-75, Feb 1973. [2]G. L. Matthaei, L. Young, and E. M. T. Jones, “Short-step Chebyshev

impedance transformers,” IEEE Trans. Microwave Theory Tech., vol.

MTT-14, pp. 372-383, Aug. 1966.

[3] A. Podcameni, “Symmetrical and asymmetrical edge-coupled-line

impedance transformers with a prescribed insertion loss design,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1-7, Jan 1986.

[4] A. Grebennikov, RF and Micrwave Transmitter Design, 1st ed.

Hoboken, NJ: Wiley, 2011, ch. 4.

[5] C. L. Ruthroff, “Some Broadband Transformers,” Proc IRE, Vol 47,

August 1959, pp 1337-1342.

[6]G. Guanella, “New Method of Impedance Matching in Radio-

Frequency Circuits”, Brown Boveri Review, September 1944, pp. 327-

329.

[7]K. S. Ang, C. H. Lee, and Y. C. Leong, “A broadband quarter-

wavelength impedance transformer with three reflection zeros within passband,” IEEE Trans. Microwave Theory Tech, vol. 52, no. 12, pp.

2640-2644, Dec. 2004.

[8]W. Lu, K. S. Ang, and K. Mouthaan, “A Broadband Quarter-

wavelength Impedance Transformer Using Vertically Installed Planar Coupler,” Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, vol., no., pp.1, 5-10 June 2011

[9]Cohn, S.B., "Characteristic Impedances of Broadside-Coupled Strip

Transmission Lines," Microwave Theory and Techniques, IRE Transactions on , vol.8, no.6, pp.633-637, November 1960.

中国姓氏英文翻译大全S-Z

A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F:

范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简--Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong 焦--Chiao 金/靳--Jin/King 景/荆--King/Ching

图像处理中值滤波器中英文对照外文翻译文献

中英文资料对照外文翻译 一、英文原文 A NEW CONTENT BASED MEDIAN FILTER ABSTRACT In this paper the hardware implementation of a contentbased median filter suitabl e for real-time impulse noise suppression is presented. The function of the proposed ci rcuitry is adaptive; it detects the existence of impulse noise in an image neighborhood and applies the median filter operator only when necessary. In this way, the blurring o f the imagein process is avoided and the integrity of edge and detail information is pre served. The proposed digital hardware structure is capable of processing gray-scale im ages of 8-bit resolution and is fully pipelined, whereas parallel processing is used to m inimize computational time. The architecturepresented was implemented in FPGA an d it can be used in industrial imaging applications, where fast processing is of the utm ost importance. The typical system clock frequency is 55 MHz. 1. INTRODUCTION Two applications of great importance in the area of image processing are noise filtering and image enhancement [1].These tasks are an essential part of any image pro cessor,whether the final image is utilized for visual interpretation or for automatic an alysis. The aim of noise filtering is to eliminate noise and its effects on the original im age, while corrupting the image as little as possible. To this end, nonlinear techniques (like the median and, in general, order statistics filters) have been found to provide mo re satisfactory results in comparison to linear methods. Impulse noise exists in many p ractical applications and can be generated by various sources, including a number of man made phenomena, such as unprotected switches, industrial machines and car ign ition systems. Images are often corrupted by impulse noise due to a noisy sensor or ch annel transmission errors. The most common method used for impulse noise suppressi on n forgray-scale and color images is the median filter (MF) [2].The basic drawback o f the application of the MF is the blurringof the image in process. In the general case,t he filter is applied uniformly across an image, modifying pixels that arenot contamina ted by noise. In this way, the effective elimination of impulse noise is often at the exp ense of an overalldegradation of the image and blurred or distorted features[3].In this paper an intelligent hardware structure of a content based median filter (CBMF) suita ble for impulse noise suppression is presented. The function of the proposed circuit is to detect the existence of noise in the image window and apply the corresponding MF

谓语动词单复数用法

谓语动词单复数用法: 主谓一致是指: 1)语法形式上要一致,即单复数形式与谓语要一致。 2)意义上要一致,即主语意义上的单复数要与谓语的单复数形式一致。 3)就近原则,即谓语动词的单复形式取决于最靠近它的词语, 一般来说,不可数名词用动词单数,可数名词复数用动词复数。 There is much water in the thermos. 但当不可数名词前有表示数量的复数名词时,谓语动词用复数形式。 Ten thousand tons of coal were produced last year. 1 并列结构作主语时谓语用复数 Reading and writing are very important. 注意:当主语由and连结时,如果它表示一个单一的概念,即指同一人或同一物时,谓语动词用单数,and 此时连接的两个词前只有一个冠词。 The iron and steel industry is very important to our life. 2 主谓一致中的靠近原则 1)当there be 句型的主语是一系列事物时,谓语应与最邻近的主语保持一致。 There is a pen, a knife and several books on the desk.. There are twenty boy-students and twenty-three girl-students in the class. 2)当either… or… 与neither… nor,连接两个主语时,谓语动词与最邻近的主语保持一致。如果句子是由here, there引导,而主语又不止一个时,谓语通常也和最邻近的主语一致。 Either you or she is to go. Here is a pen, a few envelops and some paper for you. 3 谓语动词与前面的主语一致 当主语后面跟有with, together with, like, except, but, no less than, as well as 等词引起的短语时,谓语动词与前面的主语一致。The teacher together with some students is visiting the factory. He as well as I wants to go boating. 4 谓语需用单数 1)代词each和由every, some, no, any等构成的复合代词作主语,或主语中含有each, every, 谓语需用单数。 Each of us has a tape-recorder. There is something wrong with my watch. 2)当主语是一本书或一条格言时,谓语动词常用单数。 The Arabian Night is a book known to lovers of English. <<天方夜谭>>是英语爱好者熟悉的一本好书。 3)表示金钱,时间,价格或度量衡的复合名词作主语时,通常把这些名词看作一个整体,谓语一般用单数。(用复数也可,意思不变。) Three weeks was allowed for making the necessary preparations. Ten yuan is enough. 5 指代意义决定谓语的单复数

中国姓氏英语翻译大全

中国姓氏英语翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha

常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F:

范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H:

韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简--Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong

图像处理外文翻译 (2)

附录一英文原文 Illustrator software and Photoshop software difference Photoshop and Illustrator is by Adobe product of our company, but as everyone more familiar Photoshop software, set scanning images, editing modification, image production, advertising creative, image input and output in one of the image processing software, favored by the vast number of graphic design personnel and computer art lovers alike. Photoshop expertise in image processing, and not graphics creation. Its application field, also very extensive, images, graphics, text, video, publishing various aspects have involved. Look from the function, Photoshop can be divided into image editing, image synthesis, school tonal color and special effects production parts. Image editing is image processing based on the image, can do all kinds of transform such as amplifier, reducing, rotation, lean, mirror, clairvoyant, etc. Also can copy, remove stain, repair damaged image, to modify etc. This in wedding photography, portrait processing production is very useful, and remove the part of the portrait, not satisfied with beautification processing, get let a person very satisfactory results. Image synthesis is will a few image through layer operation, tools application of intact, transmit definite synthesis of meaning images, which is a sure way of fine arts design. Photoshop provide drawing tools let foreign image and creative good fusion, the synthesis of possible make the image is perfect. School colour in photoshop with power is one of the functions of deep, the image can be quickly on the color rendition, color slants adjustment and correction, also can be in different colors to switch to meet in different areas such as web image design, printing and multimedia application. Special effects production in photoshop mainly by filter, passage of comprehensive application tools and finish. Including image effects of creative and special effects words such as paintings, making relief, gypsum paintings, drawings, etc commonly used traditional arts skills can be completed by photoshop effects. And all sorts of effects of production are

双语:中国姓氏英文翻译对照大合集

[ ]

步Poo 百里Pai-li C: 蔡/柴Tsia/Choi/Tsai 曹/晁/巢Chao/Chiao/Tsao 岑Cheng 崔Tsui 查Cha 常Chiong 车Che 陈Chen/Chan/Tan 成/程Cheng 池Chi 褚/楚Chu 淳于Chwen-yu

D: 戴/代Day/Tai 邓Teng/Tang/Tung 狄Ti 刁Tiao 丁Ting/T 董/东Tung/Tong 窦Tou 杜To/Du/Too 段Tuan 端木Duan-mu 东郭Tung-kuo 东方Tung-fang F: 范/樊Fan/Van

房/方Fang 费Fei 冯/凤/封Fung/Fong 符/傅Fu/Foo G: 盖Kai 甘Kan 高/郜Gao/Kao 葛Keh 耿Keng 弓/宫/龚/恭Kung 勾Kou 古/谷/顾Ku/Koo 桂Kwei 管/关Kuan/Kwan

郭/国Kwok/Kuo 公孙Kung-sun 公羊Kung-yang 公冶Kung-yeh 谷梁Ku-liang H: 海Hay 韩Hon/Han 杭Hang 郝Hoa/Howe 何/贺Ho 桓Won 侯Hou 洪Hung 胡/扈Hu/Hoo

花/华Hua 宦Huan 黄Wong/Hwang 霍Huo 皇甫Hwang-fu 呼延Hu-yen J: 纪/翼/季/吉/嵇/汲/籍/姬Chi 居Chu 贾Chia 翦/简Jen/Jane/Chieh 蒋/姜/江/ Chiang/Kwong 焦Chiao 金/靳Jin/King 景/荆King/Ching

塑壳断路器的选用

塑壳断路器的选用 1.引言 塑料外壳式断路器 以下简称MCCB ,作为低压配电系统和电动机保护回路中的过载、短路保护电器,是应用极广的产品。随着现代科技水平的不断发展,新技术、新工艺、新材料不断出现,断路器的生产工艺及各种材质不断改进,使断路器的性能有了很大的提高,除国际知名品牌,如ABB、施耐德外,国内一些企业也不甘落后,自行开发、研制或引进国外先进技术,并加以消化、吸收,也向市场推出了成熟了的产品 如常熟开关厂的CMl、天津低压开关厂TM30等 。这类产品具有零飞弧、高分断、大容量、进出线方向可以互换、智能型、四极、内部附件结构模块化、安装积木化、体积小型化等特点。实现了MCCB所需的选择性保护功能和多种辅助功能,并带有通信接口,使低压配电系统实现自动化和组网成为可能;降低了低压成套配电装置的动、热稳定性的要求;缩小了成套配电装置的体积;大大地提高了供配电系统和设备运行的可靠性。 然而,目前在一些电气设计方案中,对MCCB的正确合理选用并不尽人意,往往忽略了所选厂家的MCCB规格、型号、附件等其它电气参数,特别是对一些新型MCCB的电气参数理解不透,标注不全、应用类别、使用场合及用途等考虑不周。选用了不合适的MCCB,导致成套厂订货困难,保护的选择性变差,灵敏性,合理性不符合设计规范要求,不但使MCCB 没有物尽所用,反而造成了浪费,降低了配电系统的可靠性,影响了工矿企业的生产和人们的生活。为此,本文结合有关MC—CB的常用参数和国家标准谈谈自己对MCCB正确选用的一些看法。 2.断路器的常用基本相关符号其合义及相互之间的关系 Inm——断路器壳架等级电流 A ,它所指的含义是本断路器内所能安装的最大开关及脱扣器电流值。 In——断路器的额定电流 A ,它所指的含义是该断路器内选用的额定热动型脱扣器电流值,在不可调固定式热脱扣器中In=Ir1。 Ir1——断路器的长延时整定电流 A ,它所指的含义是该断路器的过载保护脱扣器所整定的电流值。 Ir2——断路器的短延时整定电流 A ,它所指的含义是该断路器的短延时脱扣器整定的电流,它的数值在电子可调式脱扣器中为 2~12Irl 左右可调。 Ir3——断路器的瞬时整定电流 A ,它所指的含义是该断路器瞬时脱扣器整定的电流,它的数值在不可调固定式脱扣器中,配电型为5Irl、10Irl两种,电动机保护型为12Ir1,在电子可调式中,为 4~16Irl 左右可调。 Ir4——断路器的单相接地整定电流 A ,它所指的含义是该断路器保护的线路或设备发生单相接地故障时,接地保护脱扣器整定的电流值,它的数值为0.2~0.6Irl 左右可调。 Ire——断路器的漏电动作电流 A ,它所指的含义是该断路器保护的线路或设备发生不正常泄漏电流时,漏电保护脱扣器整定的电流值。它的数值为0.03/0.1/0.3/0.5A几种。 Ir0——断路器预报警动作电流 A ,它所指的含义是该断路器负载电流超出预先设定的电流时,预报警装置发出报警指示信号,它的数值为 0.5~lIr1 左右可调。 Ir2——短延时脱扣器的脱扣时间整定值 s ,可调时间为0.05~0.45s。

图像处理中常用英文词解释

Algebraic operation 代数运算一种图像处理运算,包括两幅图像对应像素的和、差、积、商。 Aliasing 走样(混叠)当图像像素间距和图像细节相比太大时产生的一种人工痕迹。Arc 弧图的一部分;表示一曲线一段的相连的像素集合。 Binary image 二值图像只有两级灰度的数字图像(通常为0和1,黑和白) Blur 模糊由于散焦、低通滤波、摄像机运动等引起的图像清晰度的下降。 Border 边框一副图像的首、末行或列。 Boundary chain code 边界链码定义一个物体边界的方向序列。 Boundary pixel 边界像素至少和一个背景像素相邻接的内部像素(比较:外部像素、内部像素) Boundary tracking 边界跟踪一种图像分割技术,通过沿弧从一个像素顺序探索到下一个像素将弧检测出。 Brightness 亮度和图像一个点相关的值,表示从该点的物体发射或放射的光的量。 Change detection 变化检测通过相减等操作将两幅匹准图像的像素加以比较从而检测出其中物体差别的技术。 Class 类见模或类 Closed curve 封闭曲线一条首尾点处于同一位置的曲线。 Cluster 聚类、集群在空间(如在特征空间)中位置接近的点的集合。 Cluster analysis 聚类分析在空间中对聚类的检测,度量和描述。 Concave 凹的物体是凹的是指至少存在两个物体内部的点,其连线不能完全包含在物体内部(反义词为凸) Connected 连通的 Contour encoding 轮廓编码对具有均匀灰度的区域,只将其边界进行编码的一种图像压缩技术。 Contrast 对比度物体平均亮度(或灰度)与其周围背景的差别程度 Contrast stretch 对比度扩展一种线性的灰度变换 Convex 凸的物体是凸的是指连接物体内部任意两点的直线均落在物体内部。Convolution 卷积一种将两个函数组合成第三个函数的运算,卷积刻画了线性移不变系统的运算。 Corrvolution kernel 卷积核1,用于数字图像卷积滤波的二维数字阵列,2,与图像或信号卷积的函数。 Curve 曲线1,空间的一条连续路径,2 表示一路径的像素集合(见弧、封闭曲线)。 Deblurring 去模糊1一种降低图像模糊,锐化图像细节的运算。2 消除或降低图像的模糊,通常是图像复原或重构的一个步骤。 Decision rule 决策规则在模式识别中,用以将图像中物体赋以一定量的规则或算法,这种赋值是以对物体特征度量为基础的。 Digital image 数字图像 1 表示景物图像的整数阵列,2 一个二维或更高维的采样并量化的函数,它由相同维数的连续图像产生,3 在矩形(或其他)网络上采样一连续函数,并才采样点上将值量化后的阵列。 Digital image processing 数字图像处理对图像的数字化处理;由计算机对图片信息进

谓语动词只能用单数的8种情况

2011-06-06 11:41:25| 分类:英语学习|字号订阅 1 非谓语动词或从句做主语 不定时(to do 或疑问词+to do);动名词(doing )或主语从句做主语,谓语动词用单数。如: When and Where to build the new factory ----not decided yet . 【分析】答案是A。“疑问词+to do ”做主语,谓语动词用单数,此题又是被动语态。 2 复合不定时做主语 以some-,any-,every-,no-,开头,以-thing,-body,-one结尾的复合不定代词作主语时,谓语动词用单数。如: Everything is going well.一切顺利。 3.以-s结尾的学科名、书名、国名作主语 表示学科(如physics,politics,maths)、书名(如The Arabian Nights)、国名(如the United States,Wales,the United Nations)等以-s结尾的名词作主语时,谓语动词通常用单数。如: The United States has many different kinds of climate. 美国的气候是多种多样的。 4.“more than one/many a+单数名词”作主语,

“more than one+单数名词”和“many a +单数名词”作主语时,谓语动词用单数。如: More than one student has seen the film. 不止一个学生看过这部电影。 Many a strong man has weakened before such a chal-lenge. 许多坚强的人遇到这种困难都动摇了。 5.指同一个人或事物的并列结构作主语 指同一个人或事物的A and B结构(如knife and fork 刀叉,bread and butter 黄油面包,a teacher and writer 老师兼作家,fish and chips 鱼和炸土豆片)作主语时,谓语动词用单数。如: A worker and writer was present at the meeting. 一位工人作家出席了会议。 Fish and chips is a popular meal in Britain. 鱼和炸土豆片在英国是很受欢迎的膳食。 6.“one/each of+复数名词”作主语 “one/each of+复数名词”作主语时,谓语动词用单数。如: —Each of the student,working hard at his or her lessons,——to go to university. —So do I.

塑壳断路器的选用

1.引言 塑料外壳式断路器以下简称MCCB,作为低压配电系统和电动机保护回路中的过载、短路保护电器,是应用极广的产品。随着现代科技水平的不断发展,新技术、新工艺、新材料不断出现,断路器的生产工艺及各种材质不断改进,使断路器的性能有了很大的提高,除国际知名品牌,如ABB、施耐德外,国内一些企业也不甘落后,自行开发、研制或引进国外先进技术,并加以消化、吸收,也向市场推出了成熟了的产品如常熟开关厂的CMl、天津低压开关厂TM30等。这类产品具有零飞弧、高分断、大容量、进出线方向可以互换、智能型、四极、内部附件结构模块化、安装积木化、体积小型化等特点。实现了MCCB所需的选择性保护功能和多种辅助功能,并带有通信接口,使低压配电系统实现自动化和组网成为可能;降低了低压成套配电装置的动、热稳定性的要求;缩小了成套配电装置的体积;大大地提高了供配电系统和设备运行的可靠性。 然而,目前在一些电气设计方案中,对MCCB的正确合理选用并不尽人意,往往忽略了所选厂家的MCCB规格、型号、附件等其它电气参数,特别是对一些新型MCCB 的电气参数理解不透,标注不全、应用类别、使用场合及用途等考虑不周。选用了不合适的MCCB,导致成套厂订货困难,保护的选择性变差,灵敏性,合理性不符合设计规范要求,不但使MCCB没有物尽所用,反而造成了浪费,降低了配电系统的可靠性,影响了工矿企业的生产和人们的生活。为此,本文结合有关MC—CB的常用参数和国家标准谈谈自己对MCCB正确选用的一些看法。 2.断路器的常用基本相关符号其合义及相互之间的关系 Inm——断路器壳架等级电流,它所指的含义是本断路器内所能安装的最大 开关及脱扣器电流值。 In——断路器的额定电流,它所指的含义是该断路器内选用的额定热动型脱 扣器电流值,在不可调固定式热脱扣器中In=Ir1。 Ir1——断路器的长延时整定电流,它所指的含义是该断路器的过载保护脱 扣器所整定的电流值。 Ir2——断路器的短延时整定电流,它所指的含义是该断路器的短延时脱扣 器整定的电流,它的数值在电子可调式脱扣器中为~12Irl左右可调。 Ir3——断路器的瞬时整定电流,它所指的含义是该断路器瞬时脱扣器整定 的电流,它的数值在不可调固定式脱扣器中,配电型为5Irl、10Irl两种,电动机保护型为12Ir1,在电子可调式中,为~16Irl左右可调。 Ir4——断路器的单相接地整定电流,它所指的含义是该断路器保护的线路或设备发生单相接地故障时,接地保护脱扣器整定的电流值,它的数值为0.2~0.6Irl 左右可调。 Ire——断路器的漏电动作电流,它所指的含义是该断路器保护的线路或设 备发生不正常泄漏电流时,漏电保护脱扣器整定的电流值。它的数值为 0.03/0.1/0.3/0.5A几种。 Ir0——断路器预报警动作电流,它所指的含义是该断路器负载电流超出预 先设定的电流时,预报警装置发出报警指示信号,它的数值为~lIr1左右可调。 Ir2——短延时脱扣器的脱扣时间整定值,可调时间为0.05~0.45s。 3.MCCB的额定分断能力、Ics 根据IEC947—2《低压开关设备和控制设备,低压断路器》规范,

谓语动词用单数复数的情况

谓语动词用单数的情况 1.动名词短语、不定式短语、名词性从句做主语,谓语用单数。如: Buying clothes is often a time-consuming job because those clothes that a person likes are rarely the cones that fit him or her. (1987年考研题) To understand the situation completely requires more thought than has been given thus far. 2.表示时间、距离、金额、重量、面积、体积、容积等度量的名词短语做主语时,谓语用单数。 Two weeks was too long Five times five makes twenty five 3.一般用and连接的两个单词或短语做主语时候,谓语用复数,但是下面用and 连接的主语表示一个概念,谓语用单数: law and order 法制 soap and water 肥皂水 a cup and saucer 茶杯碟子 fork and knife 刀叉 the needle and thread 针线 trial and error 反复尝试,不断摸索 horse and carriage 马车 time and tide 岁月 bread and butter 奶油面包 the ebb and flow 盛衰,潮涨潮落如: If law and order not preserved, neither the citizen nor his property is safe. A. is B. are C. was d. were 答案:A。 4.表示学科和某些疾病名称的名词是复数形式,作主语时候谓语动词用单数形式Linguistics is a branch of study on human language. 5.有些名词形式上是复数,意义上是单数,根据意义一致原则动词用单数 The chaos was stopped by the police The news is a great encouragement to us A series of debates between the lectures was scheduled for the next weekend. 6.用and 连接的成份表示一个单一概念时候,动词谓语用单数形式 Bread and butter is our daily food Time and tide waits for no man《和3同》 二.谓语用复数情况 1.由and, both …and, 连接的并列主语,和both ,a few, many ,several 等修饰语后面谓语动词通常用复数形式。 Few people know he and I were classmates when we were at college. 2.集体名词police, public, militia, cattle ,class ,youth后常用复数形式的动词 The Chinese people are brave and hardworking The cattle are grazing in the sunshine 3.当表示民族的词与冠词合用当主语,谓语动词用复数形式 The Japanese were once very aggressive 4.某些形容词前面加定冠词表示一类人,做主语时候,谓语动词用复数 The rich are not always selfish 5.不可数名词作主语,其前有表示数量的复数名词修饰时,谓语动词用复数 Three million tons of coal were exported that year 三.谓语动词可用单数,也可以用复数的情况 1.就近一致原则这种情况下,谓语动词使用单数还是复数取决于最靠近该动词的主语的单复数,存在这种情况的主要由以下几种可能: 1)由连词either…or…; neither…nor…; whether… or…;not only…but (also) ;or 等连接的并列主语 Neither money nor fame has influence on me Not only you

中国姓氏英语翻译大全

中国姓氏英语翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi

如何确定谓语动词的单复数形式

All the employees except the youngest one (work) very hard II .主语的“数”决定谓语动词的形式。 1.“不可数名词、可数名词单数、单数代词、不定式(短语)、动名词(短语)”或“从句”等作主语,用单数谓语形式。e.g. ①The work is important . 这项工作重要。 ②To serve the country is our duty . 为祖国服务是我们的义务。 ③How and why he left was a sad story . 他离开的经过和原因是一段伤心的经历。 2. 复数的名词、代词一般接复数谓语形式。e.g. ①The children are taken good care of . 孩子们得到很好的照料。 ②They have gone to Chengdu . 他们去成都了。 II. 以“and ”或“both… and”连接的并列主语: 1.通常作复数用。e.g. ①Plastics and rubber never rot . 塑料和橡胶从不腐烂。 ②What he says and what he does do not agree. 他言行不一致。 ③Both Tom and I are fond of medicine . 我和汤姆都喜欢医学。 2. 如果并列主语指的是“同一个”人(事、物、抽象概念),作单数用。 e.g. ①The worker and writer has come . 这位工人作家来了。 ②A cart and horse was seen in the distance . 远处能看见有一套马车。 ③Truth and honesty is the best policy . 真诚是最好的策略。

塑壳断路器附件功能与选用

塑壳断路器附件功能与选用 塑壳断路器(以下简称断路器)的附件作为断路器功能的派生和补充,为断路器增加了更多的控制手段,同时也扩大了保护功能。因此,目前已经成为断路器不可分割的一个重要部分。 1 断路器附件的种类 分为机内附件和机外附件两类。 机内附件是安装在断路器内部的附属装置,包括分励脱扣器、欠电压脱扣器、辅助开关和报警开关等四种。机外附件则是安装在断路器外部的附属装置,包括辅助手柄、外部操作手柄、电操机构、手柄闭锁装置、机械联锁装置、电气联锁装置、板后接线装置、插入式安装台和辅助接点装置等。 2 表示断路器状态的附件 辅助开关和报警开关的区别在于: 辅助开关主要用于断路器的分合状态的显示,通过断路器的分合对其他相关电器实施控制或联锁,报警开关主要用于断路器因故障而断开时的状态显示,在断路器负载发生故障时及时向其他相关电器实施控制或联锁。 3 实现断路器欠电压保护功能的附件 欠电压脱扣器是一种保护性附件,当电源电压下降到欠电压脱扣器额定电压的35%~70%时,欠电压脱扣器能使断路器脱扣;当电源电压低于欠电压脱扣器额定电压的35%时,欠电压脱扣器能保证断路器不合闸;当电源电压高于欠电压脱扣器额定电压的85%时,欠电压脱扣器能保证断路器正常工作。 4 实现断路器操作功能的附件 (1)分励脱扣器是一种实现断路器的远距离分闸的附件,通常用于应急状态下对断路器进行远距离分闸操作和作为漏电继电器等保护电器的执行元件。 (2)电操机构也是一种远距离操作断路器的机外附件,既可用来实现断路器的远距离分闸操作,也能实现断路器的合闸操作。 (3)辅助手柄一般用于600A及以上的大容量断路器上,进行手动分合闸操作。 (4)外部操作手柄是一种具有将断路器的上下扳动操作转换成旋转操作功能的机外附件。 5 实现断路器锁定功能和联锁功能的附件 (1)手柄闭锁装置是一种能使断路器操作手柄可靠地处于打开或闭合位置(即分闸或合闸锁定),而在机械上并不影响断路器自由脱扣的保护装置。 (2)机械联锁装置也是一种保护装置,主要用于双电源供电电路中两台断路器不可同时通电的场合。 (3)电气联锁装置(也称自动电源切换装置)为自动实现切换的双电源保护装置。 6 实现断路器多种安装接线方式的附件

相关主题