搜档网
当前位置:搜档网 › FLUENT中壁面函数 vs 近壁面模型

FLUENT中壁面函数 vs 近壁面模型

FLUENT中壁面函数 vs 近壁面模型
FLUENT中壁面函数 vs 近壁面模型

FLUENT中壁面函数 vs 近壁面模型

在数值模拟中,如何有效处理固体壁面附近的流场一直是一个比较棘手的问题。一个稍复杂一点算例,简单更换一下壁面处理方法对计算结果都有较显著的影响,在缺少实验数据验证和流场涉及多种流动形态时,如何选择行之有效和经济合理的算法是一个艰难的考验,一般需要仔细考察流场与算法机理之间的契合度。

边界层分为层流边界层和湍流边界层,层流边界层为最靠近壁面或者层流流动时的边界层,对于一般湍流流动,两种边界层都有。按参数分布规律划分时,边界层分为内区和外区,内区分为:

粘性底层,Laminar sublayer(y+<5,Amano的三层模型),粘性起主导作用,在粘性支层中与壁面平行的速度与离开壁面的距离成线性关系(陶文铨,《数值传热学》);

过渡层,Buffer region(5

对数律层,Log-law region(30

外区:惯性力主导,上限取决于雷诺数

图1 边界层结构(引自中科大Fluent讲稿)

FLUENT中有两种方法处理近壁面区域:

A.壁面函数法。不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wall

function”的半经验方法去计算壁面与充分发展湍流区域之间的粘性影响区域。采用壁面函数法,省去了为壁面的存在而修改湍流模型。Fluent中的standard wall

functions, scalable wall functions, Non-Equilibrium wall functions和Enhanced wall

treatment都属于壁面函数法的模型。

B.近壁模型法。修改湍流模型以使其能够求解近壁粘性影响区域,包括粘性底层。此处

使用的方法即近壁模型。(近壁模型不需要使用壁面函数,如一些低雷诺数模型,K-W 湍流模型是一种典型的近壁湍流模型)。

所有壁面函数(除scalable壁面函数外)的最主要缺点在于:沿壁面法向细化网格时,会导致数值结果恶化。当y+小于15时,将会在壁面剪切力及热传递方面逐渐导致产生无界

错误。然而这是若干年前的工业标准,如今ANSYS FLUENT采取了措施提供了更高级的壁面格式,以允许网格细化而不产生结果恶化。而y+无关的格式是默认的基于w方程的低湍流模型,其采用网格求解的方式计算近壁面粘性区域。对于基于 epsilon方程的模型,增强壁面函数(EWT)提供了相同的功能。这一选项同样是SA模型所默认的,该选项允许用户使其模型与近壁面y+求解无关。

只有当所有的边界层求解都达到要求了才可能获得高质量的壁面边界层数值计算结果。这一要求比单纯的几个Y+值达到要求更重要。

使用近壁模型法时,覆盖边界层的最小网格数量在 10层左右,最好能达到20层。还有一点需要注意的是,提高边界层求解常常可以取得稳健的数值计算结果,因为只需要细化壁面法向方向网格。对于非结构网格,建议划分10~20层棱柱层网格以提高壁面边界层的预测精度。棱柱层厚度应当被设计为保证有15层或更多网格节点。另外,棱柱层大于边界层厚度是必要的,否则棱柱层会限制边界层的增长。这可以在获得计算结果后,通过查看边界层中心的最大湍流粘度,该值提供了边界层的厚度(最大值的两倍位置即边界层的边)。

一些建议:(1)对于epsilon方程,使用enhanced壁面函数。(2)若壁面函数有助于epsilon方程,则可以使用scalable壁面函数。(3)对于基于w方程的模型,使用默认的增强壁面函数。(4)SA模型,使用增强壁面处理。

1、Standard wall functions

ANSYS FLUENT中的标准壁面函数是基于launder与spalding的工作,在工业上有广泛的应用。

对于标准壁面函数法,在划分网格时,把第一个内节点P布置到对数分布律成立的范

围内,即配置到旺盛湍流区域。通常,在y+>30~60的区域,平均速度满足对数率分布。在FLUENT程序中,这一条件改变为y+>11.225。当网格y+<11.225时,FLUENT中采用层流应力应变关系,即:U+=Y+。

对于对一层网格所在的y+值,各个学者推荐的范围是不一样的,但一般在30-60之内

肯定是没有问题的。也有推荐10-110甚至200的。y+的值合理,意味着你的第一层边界网格布置比较合理,如果y+不合理,就要调整你的边界层网格。y+普遍存在于湍流问题中,

Y+是由solver解出來的結果,网格划分时,底层网格一般布置到对数分布律成立的范围内,即11.5~30<=y+<=200~400。在计算开始时,y+并不知道,这些值需要在计算过程中加以调整。数值计算实践表明,y+对传热特性的影响比较大,往往存在一个合适的取值范围,在

该范围内数值计算结果与实验数据的符合较好。算每个模型都要先大概算一下,然后得到

y+,然后再算第一层高度,重新画网格,貌似像是一个迭代的过程。

根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。

温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。

标准壁面函数用于以下模型:k-epsilon模型与Reynolds stress模型。这两个模型均为高雷诺数模型。

2、Scalable wall functions

该壁面函数是14.0新加的,以前的版本中没有。也是CFX软件中默认的湍流壁面函数。

该壁面函数能避免在y*<15时计算结果恶化,该壁面函数对于任意细化的网格,能给出一致的解。当网格粗化使y*>11时,该壁面函数的表现与标准壁面函数一致。

scalable壁面函数的目的在于联合使用标准壁面方法以强迫使用对数律。该功能是通过使用限制器y*=max(y*,y*limit)来实现的,其中y*limit=11.06。

3、Non-equilibrium wall functions

非平衡壁面函数的特点:(1)用于平均速度的launder及spalding的对数律对于压力梯度效应敏感。(2)采用双层概念以计算临壁面单元的湍流动能。对于平均温度及组分质量分数则与标准壁面函数处理方式相同。

非平衡壁面函数考虑了压力梯度效应,因此对于涉及到分离、再附着、及撞击等平均速度与压力梯度相关且变化迅速的复杂流动问题,推荐使用些壁面函数。但是非平衡壁面函数不适合于低雷诺流动问题。

非平衡壁面函数适用于高雷诺流动问题,适用于以下湍流模型:

(1)K-epsilon模型;

(2)Reynolds stress transport模型。

4、Enhanced wall treatment

不依赖于壁面法则,对于复杂流动尤其是低雷诺数流动问题很适合。该方法要求近壁面网格很密,y+接近于1,比low-Reynolds number model要求的网格更密。

对于epsilon方程的近壁面处理结合了速度分布双层模型和壁面增强处理函数。增强壁面处理使用传统的双层区域模型(整个计算域被划分为粘性影响区域和充分湍流区域)给边界层分区,然后给近壁单元指定湍流耗散率e和湍流粘度。增强型壁面函数的特点是用一个单一的壁面函数平滑地混合了对数层公式与层流公式,这样它的计算范围扩展到了全部近壁区域。

增强壁面函数可用于以下湍流模型:

(1)所有的基于epsilon的湍流模型(不包括二次RSM模型)

(2)所有的w模型

(3)对于SA模型,这一选项不可用。然而,这一模型对于壁面函数(y*>15)及粘性子层网格(y*<2)是一致的。处于中间的网格应当被避免,因为会降低计算精度。换句话说,对于SA模型,要么y*>15,要么y*<2

壁面函数方法的局限

对于大多数壁面边界流动问题,标准壁面函数能给出合理的预测。非平衡壁面函数考虑了压力梯度效应,扩展了标准壁面函数的功能。但是一些流动问题不适合使用壁面函数,否则可能导致不合理的解。如以下一些情况:

(1)低雷诺数流动或近壁面效应(例如小缝出流、高粘性低速流动问题)

(2)通过壁面的大量沸腾

(3)大的压力梯度导致的边界层分离

(4)强体力(如旋转圆盘附近的流动、浮力驱动流动)

(5)近壁区域高度三维流动(如ekman螺旋流动、高度歪斜的3D边界层)

若模型中出现了以上的情况,则必须使用近壁模型。ANSYS FLUENT中提供了增强壁面处理以应对这些情况。这一方法能够用于K-epsilon模型及RSM模型。

流热仿真课后作业

第一章 1、计算流体动力学的基本任务是什么? 答:计算流体动力学,简称CFD,是通过计算机数值计算和图像显示,对包含流体流动和热传导等相关物理现象的系统所做的分析。CFD可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种模拟我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度)的分布,以及这些物理量随时间的变化,确定漩涡分布的特性、空化特性及脱流区等。 2、什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 答:(1)流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含了不同组分的混合成相互作用系统,还要遵守组分守恒定律,而控制方程是这些守恒组分守恒定律,而控制方程是这些守恒定律的数学描述。 (2)①质量守恒方程:任何流动问题都必须满足;②动量守恒方程:任何流动系统都必须满足;③能量守恒方程:包含有热交换的流动系统必须满足。 3、试写出变径圆管内液体流动的控制方程及其边界条件(假定没有热交换),并写出用CFD来分析时的求解过程。注意说明控制方程如何使用。 第二章 1、什么叫离散化?意义是什么? 2、常用的离散化方法有哪些?各有何特点? 3、简述有限体积法的基本思想,说明其使用的网格有何特点? 4、简述瞬态问题与稳态问题之控制方程的区别,说明在时间域上离散控制方程的基本思想及方法?

5、分析比较中心差分格式、一阶迎风格式、混合格式、指数格式、二阶迎风格式、QUICK格式各自的特点及使用场合? 第四章 1、湍流流动的特征是什么? 答:Reynolds数值大于临界值,流动呈现无序的混乱状态。这时,即使边界条件保持不变,流动也是不稳定的,速度等流动特性都随机变化。 2、三维湍流数值模拟的方法分类? 答:直接数值模拟方法、非直接数值模拟方法。 3、标准k—ε模型方程的解法及适用性? 4、Realizable K—ε模型的适用模型? 答:Realizable K—ε模型已被有效地用于各种不同类型的流动模拟,包括旋转均匀剪切流、包含有射流、混合流的自由流动、管道内流动、边界层流动、以及带有分离的流动等。 5、LES方法的基本思想如何?它与DNS方法有怎样的联系和区别?它的控制方程组与时均化方法的控制方程有什么异同? 答:(1)LES方法的主要思想是:用瞬时的N-S方程直接模拟湍流中的大尺度涡,不直接模拟小尺度涡,而小涡对大涡的影响通过近似的模型来考虑。 (2)LES和DNS是湍流数值模拟常用的方法,DNS是直接用瞬时的N-S方程对湍流进行计算,最大好处是无需对湍流流动作任何简化或近似,理论上可以得到相对精确的计算结果,是直接数值模拟方法,而LES是非直接数值模拟方法,同时,DNS对内存空间及计算速度的要求高于LES。 (3)LES方法的控制方程组不考虑脉动对湍流运用的影响,将湍流运动看作是时间上的平均流动而DNS考察脉动的影响,把湍流运动看作是时间平均流动和

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

湍流流动的近壁处理详解

壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。 实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。 图4-1,边界层结构 第一节,壁面函数与近壁模型 近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。 对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。 如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。

4.1.1壁面函数 FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。 4.1.1.1 标准壁面函数 根据平均速度壁面法则,有: **1 ln()U Ey k = 4-1 其中,1/41/2 * /p p w U C k U μτρ ≡ ,1/41/2 * p p C k y y μρμ≡,并且 k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。 通常,在*30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*11.225y >。 当网格出来*11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。 根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。 温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。 1/41/2 * ()w p p P T T c C k T q μρ-≡ '' 4-2 =()1/41/2 *2*1/41/222 1Pr Pr 21Pr ln()1Pr Pr Pr 2p p t p t p t c C k y U q Ey P k C k U U q μμρρ?+?''? ????++???? ??????+-??''?? ** **()()T T y y y y <> 4-3

粘性流体力学一些概念

无量纲参数 2 02 00Re L V L V L V μρμρ= = ) (/)(00003 000020T T C L V L V T T C V Ec w p w p - =-= ρρ 热传递中流体压缩性的影响,也就是推进功与对流热之比。00 0Pr K C p μ= 表示流体的物性的影响,表征温度场和速度场的相似程度。边界层特征厚度dy u u h e e ?- =0 * )1(ρρδ 边界层的存在而使自由流流线向外推移的距离。 θ δ* =H 能够反映速度剖面的形状,H 值越小, 剖面越饱满。动量积分方程:不可压流二维 f e w e e C u dx du u H dt d ==++2)2(ρτθθ /2 普朗特方程的导出,相似解的概念,布拉休斯解的主要结论 ?????????????+??+??-=??+??+????+??+??-=??+??+??=??+ ??)(1)(1022222222y v x v y p y v v x v u t v y u x u x p y u v x u u t u y v x u νρνρ 将方程无量纲化: ./,/,/,/*2***L tU t u p p U u u L x x ====ρ ν/Re UL =,Re /1*≈δ ,/,/,,**L L y U u v L y u v δδ=?==?= 分析:当Re 趋于很大时,**y p ??是大量,则**y p ??=0,根据量纲分析,去掉小量化为有量纲形式则可得到普朗特边界层方程: ???? ?? ??? =????+??-=??+??+??=??+??01022y p y u x p y u v x u u t u y v x u υρ 相似解的概念:对不同x 截面上的速度剖面u(x,y)都可以通过调整速度u 和坐标y 的尺度因子,使他们重合在一起。外部势流速度Ue(x)作为u 的尺度因子,g(x)作为坐标y 的尺度因子。则无量纲坐标)(x g y ,无量纲速度)(x u u e ,则 对所有不同的x 截面其速度剖面的形状将会相 同。即= )(])(,[111x u x g y x u e ) (] ) (,[222x u x g y x u e 布拉修斯解(零攻角沿平板流动的解)的主要结论: x x Re 721.1* =δx x Re 664.0=θ 591.2/*==θδH 壁面切应力为: x y w U y u Re 1332.0)(2 0∞ ==??=ρμτ 壁面摩擦系数为:x w f u C Re 1664.022 ==∞ρτ 平均为:l l f Df dx C l C Re 1328.110? == 湍流的基本概念及主要特征,湍流脉动与分子随机运动之间的差别湍流是随机的,非定常的,三维的有旋流动,随机背后还存在拟序结构。特征:随机脉动耗散性,有涡性(大涡套小涡)。 湍流脉动:不断成长、分裂和消失的湍流微团;漩涡的裂变造成能量的传递;漩涡运动与边界条件有密切关系,漩涡的最小尺度必大于分子的自由程。分子随机运动:是稳定的个体;碰撞时发生能量交换;平均自由程λ与平均速度 和边界条件无关。层流稳定性的基本思想:在临界雷诺数以下时,流动本身使得流体质点在外力的作用下具有一定的稳定性,能抵抗微弱的扰动并使之消失,因而能保持层流;当雷诺数超过临界值后,流动无法保持稳定,只要存在微弱的扰动便会迅速发展,并逐渐过渡到湍流。平板边界层稳定性研究得到的主要结果:1.雷诺数达到临界雷诺数时流动开始不稳定,成为不稳定点,而转捩点则对应与更高的雷诺数。2.导致不稳定扰动最小波长 δ δλ65.17min ≈=*,可见不稳定波是一种 波长很长的扰动波,约为边界层厚度的6倍。3. 不稳定扰动波传播速度远小于边界层外部势流速度,其最大的扰动波传播速度 4.0/=∞U c r 。当雷诺数相当大时,中性稳定线的上下两股趋于水平轴。判别转捩的试验方法: 升华法(主要依据:湍流的剪切应力大小)热膜法(主要依据:层流和湍流边界层内 气流脉动和换热能力的差别)液晶法(主要依 据:湍流传热和层流传热能力之间的差异)湍流的两种统计理论:1. 湍流平均量的半经验分 析(做法:主要研究各个参数的平均量以及它们之间的相互关系,如平均速度,压力,附面层厚度等。2. 湍流相关函数的统计理论分析(做法;将流体视为连续介质,将各物理量如:流速,压力,温度等脉动值视为连续的随机函数, 并通过各脉动值的相关函数和谱函数来描述湍流结构。)耗散涡、含能涡的尺度耗散涡为小尺 度涡,它的尺度受粘性限制,但必大于分子自由行程。控制小尺度运动的参数包括单位质量的能量消耗量ε和运动粘性系数ν。因此,由 量纲分析,小涡各项尺度为:长度尺度 4/13)(ενη=时间尺度2/1)(εντ=速度尺度4/1)(νε=v 耗散雷诺数 1Re →=νη v d 可知:小尺度涡体的湍流 脉动是粘性主宰的耗散流动,因此这一尺度的 涡叫耗散涡。含能涡为大尺度涡,在各向同性湍流中,可以认为大尺度涡体由它所包含的湍动总能量k ,以及向小尺度传递的能量ε决定。 长度尺度ε2/3k l =时间尺度εk t =速度尺度k u =积分尺度雷诺数1Re →>>=ν ul d 可知在含能尺度范围 内,惯性主宰湍流运动,因此含能尺度范围又 称惯性区。均匀湍流:统计上任何湍流的性质与空间位置无关,或者说,任何湍动量的平均 值及它们的空间导数,在坐标做任何位移下不 变。特征:不论哪个区域,湍流的随机特性是相同的,理论上说,这种湍流在无界的流场中 才可能存在。各向同性湍流:任何统计平均量与方向无关,或者说,任何湍动量在各个方向 都一样,不存在任何特殊地位的方向。任何统计平均湍动量与参考坐标轴的位移、旋转和反 射无关。特征:各向同性湍流,必然是均匀湍 流,因为湍流的任何不均匀性都会带来特殊的方向性。在实际中,只存在局部各向同性湍流 和近似各向同性湍流。各向同性下,雷诺应力 由9个量减为3个量。 了解时均动能方程、湍动能方程中各项的物理意义和特点,及能量平衡时均动能方程: 流体微团内平均动能变化率;外力的作功;平均压 力梯度所作的功; 雷诺应力所作功的扩散;雷诺应力所作的变形功;时均流粘性应力所作功 的扩散;时均流动粘性的耗散,即粘性应力的 变形功。 湍动能方程:

壁面函数法的应用问题【转载】

壁面函数法的应用问题【转载】 转载声明:来自互联网,原地址已经不详,向原著者表示感谢 壁面函数法在湍流计算中经常使用,许多书和文章也写到了壁面函数法,但如何实现壁面 函数法?详细过程没有交待,需要编程者自己体会! 陶文铨老师的《数值传热学>>只介绍到Y+>11.6左右时如何计算,对于Y+<11.6时如何计 算只提到“在粘性支层中与壁面平行的速度与离开壁面的距离成线性关系”。另外。对于 采用了贴体坐标转换的壁面函数法处理起来更复杂,故请教! 壁面函数只在等雷诺应力层适用,即y+>11时,所以在划分网格时应当让第一个内节点满 足y+>11关系。 如果想计算粘性底层,可以采用两层模型,或低雷诺两方程模型! 程序中直接用层流计算即可,但由于在此区域湍流模型有问题,所以网格太密不见得结果好。还是尽量取在旺盛湍流区。 要准确求解壁面处的流动,需要很细的网格,用壁面函数就是为了避开这一点 采用的近似处理。壁面函数在很多书和PAPER里都提到过,但不同模型和不同的人相差 很远,而且没有完整的步骤。 我在编程中用到高雷诺数两方程模型,碰到了壁面函数的问题: 1)由初始的速度U,按对数律计算U+; 2)由U+计算出Y+; 3)判断Y+>11.5,第一内点P位于旺盛湍流区,符合对数律,求P点U,K,E以及壁面W 点的U,K,E 4)若Y+<11.5,第一内点P位于粘性支层,按U+=Y+计算。 以上谈到的是规则域的壁面函数法处理,对于贴体坐标转换的壁面函数法处理起来更复杂,因为与壁面平行的速度才满足对数律。

最简单的办法是用对第一个节点的K,E直接赋值。 5)由U+,Y+计算ut(摩擦速度) 6)K=ut*ut/sqrt(0.09) 7)E=ut**3/y/0.42 Y+<11.5时是应该层流处理,一般来说,层流底层Y+<5同对数领域Y+>30时数学模型同实验吻合较好,但是过渡区5

壁面函数的研究

Current Practice and Recent Developments in Wall Functions II (Advanced Approaches) Dr Hector Iacovides Department of Mechanical Aerospace and Manufacturing Engineering UMIST CONTENTS 1.Limitations of Conventional Wall Functions. 2.Refinements of the Conventional Wall Function. 3.Advanced wall functions. 3.1The Analytical Wall Function. 3.2The Numerical Wall Function. 4.Concluding Remarks. 1

1.Limitations of Conventional Wall Functions. The conventional wall functions introduced in the earlier lecture rely on the following assumptions: 1.Near-wall velocity obeys the log-law. 2.The total shear stress remain constant over the near-wall control volume. 3.Within the fully turbulent region of the near-wall control volume, the turbulent kinetic energy remains constant. 4.The dissipation rate is inversely proportional the wall distance over the inner region and constant across the viscous sub- layer. 5.In three-dimensional flows the velocity direction remains unchanged between the near-wall node and the wall. To appreciate how limiting these approximations are, it would be instructive to: 2

近壁面函数的简单理解

一个成功的湍流计算离不开好的网格。在许多的湍流中,空间的有效粘性系数不同,是平均动量和其它标量输运的主要决定因素。因此,如果需要有足够的精度,这就需要保证湍流量要比较精确求解。由于湍流与平均流动有较强的相互作用,因此求解湍流问题比求解层流时候更依赖网格。对于近壁网格而言,不同的近壁处理对网格要求也不同。下面对常见的几种近壁处理的网格要求做个说明。采用壁面函数时候的近壁网格:第一网格到壁面距离要在对数区内。对数区的y+ >30~60。FLUENT在y+ <时候采用层流(线性)准则,因此网格不必要太密,因为壁面函数在粘性底层更本不起作用。对数区与完全湍流的交界点随压力梯度和雷诺数变化。如果雷诺数增加,该点远离壁面。但在边界层里,必须有几个网格点。壁面函数处理时网格划分采用双层模型时近壁网格要求当采用双层模型时,网格衡量参数是y+ ,并非y* 。最理想的网格划分是需要第一网格在y+ =1位置。如果稍微大点,比如=4~5,只要位于粘性底层内,都是可以接收的。理想的网格划分需要在粘性影响的区域内(Rey<200 )至少有十个网格,以便可以计算粘性区域内的平均速度和湍流量。采用双层区模型时网格划分采用Spalart-Allmaras 模型时的近壁网格要求该模型属于低雷诺数模型。这就要求网格能满足求解粘性影响区域内的流动,引入了阻尼函数,用以削弱粘性底层的湍流粘性影响。因此,理想的近壁网格要求和采用双层模型时候的网格要求一致。采用大涡模拟的近壁网格要求对于大涡模拟,壁面条件采用了壁面法则,因此对近壁网格划分没有太多限制。但是,如果要得到比较好的结果,最好网格要细,最近网格距离壁面在 y+=1的量级上。 for Hexa mesh, ==>Y+是第一层高度一半和 viscous length scale 的比值 for Tetra mesh==>Y+是第一层高度1/3和 viscous length scale 的比值 y+就是Yplus,它跟你在湍流模型里采用的近壁面函数选取有关,若Yplus为个位数,选增强型壁面函数,若在两位数以上,选标准或非平衡的壁面函数。 y+的意思是底层网格必须划分在对数率成立的区域内。 一般应使y+的值为15~300,但是y+是模拟完成后才知道的。 而且同一个模型不同地方不同流速y+不一样,所以不是很精确。如果模拟传热应注意y+对结果的影响。

第三章_湍流模型

第三章 湍流模型 第一节 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 Direct Numerical Simulation 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

FLUENT中壁面函数和近壁面模型

FLUENT中壁面函数和近壁面模型 技术邻作者:Jessica_4643 文章所包含相关领域及技术点:壁面函数、近壁面模型、fluent 在数值模拟中,如何有效处理固体壁面附近的流场一直是一个比较棘手的问题。一个稍复杂一点算例,简单更换一下壁面处理方法对计算结果都有较显著的影响,在缺少实验数据验证和流场涉及多种流动形态时,如何选择行之有效和经济合理的算法是一个艰难的考验,一般需要仔细考察流场与算法机理之间的契合度。 边界层分为层流边界层和湍流边界层,层流边界层为最靠近壁面或者层流流动时的边界层,对于一般湍流流动,两种边界层都有。按参数分布规律划分时,边界层分为内区和外区,内区分为: 粘性底层,Laminar sublayer(y+<5,Amano的三层模型),粘性起主导作用,在粘性支层中与壁面平行的速度与离开壁面的距离成线性关系(陶文铨,《数值传热学》); 过渡层,Buffer region(5

图1边界层结构(引自中科大Fluent讲稿) FLUENT中有两种方法处理近壁面区域: A.壁面函数法。不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wall function”的半经验方法去计算壁面与充分发展湍流区域之间的粘性影响区域。采用壁面函数法,省去了为壁面的存在而修改湍流模型。Fluent中的standard wa ll functions,scalable wall functions,Non-Equilibrium wall functions和En hanced wall treatment都属于壁面函数法的模型。 B.近壁模型法。修改湍流模型以使其能够求解近壁粘性影响区域,包括粘性底层。此处使用的方法即近壁模型。(近壁模型不需要使用壁面函数,如一些低雷诺数模型,K-W湍流模型是一种典型的近壁湍流模型)。 所有壁面函数(除scalable壁面函数外)的最主要缺点在于:沿壁面法向细化网格时,会导致数值结果恶化。当y+小于15时,将会在壁面剪切力及热传递方面逐渐导致产生无界错误。然而这是若干年前的工业标准,如今ANSYS FLUENT采取了措施提供了更高级的壁面格式,以允许网格细化而不产生结果恶化。而y+无关的格式是默认的基于w方程的低湍流模型,其采用网格求解的方式计算近壁面粘性区域。对于基于epsil on方程的模型,增强壁面函数(EWT)提供了相同的功能。这一选项同样是SA模型所默认的,该选项允许用户使其模型与近壁面y+求解无关。

壁面函数

FLUENT壁面函数的选择 2011-10-09 10:22:05| 分类:默认分类|举报|字号订阅 壁面函数问题 1、无论是标准k—ε模型、RNGk—ε模型,还是Realizable k—ε模型,都是针对充分发展的湍流才有效的,也就是说,这些模型均是高Re数的湍流模型。它们只能用于求解处于湍流核心区的流动。而壁面函数是对近壁区的半经验描述,是对某些湍流模型的补充(近壁区对整体流动影响较大和低雷诺数Re的情况),通过壁面函数法和低Re数k—ε模型与标准k—ε模型和RNGk—ε模型配合,成功解决整个整个管道的流动计算问题。 2、在壁面区,流动情况变化很大。 解决这个问题目前有两个途径: 一、是不对粘性影响比较明显的区域(粘性底层和过渡层)进行求解,而是用一组半经验的公式(即壁面函数)将壁面上的物理量与湍流核心区内的相应物理量联系起来。这就是壁面函数法。在划分网格的时候,不需要在壁面区加密,只需要把第一个节点布置在对数律成立的区域内,即配置在湍流充分发展区域。 如果要用到壁面函数的话,在define---modle--viscous面板里有near wall treatment一项。可以选择标准壁面函数、不平衡壁面函数等。 二、是采用低Re数的k—ε模型来求解粘性底层和过渡层,此时需要在壁面区划分比较细密的网格,越靠近壁面,网格越细。当局部湍流的Re数小于150时,就应该使用低Re数的k—ε模型。 总结:相对于低Re数的k—ε模型,壁面函数法计算效率高,工程实用性强。但当流动分离过大或近壁面流动处于高压之下时,不是很理想。在划分网格的时候,需要在壁面的位置设置边界层网格,原因也是如此。 ====================================================== ============================================ 为什么要用壁面函数??就是因为,k-epsilon模型中,k的boundary condition已知,在壁面上为零,而epsilon的boundary condition 在壁面上为一未知的非零量,如此如何来解两方程模型???所以,我们就需要壁面函数来确定至少第一内节点上的值,当然也包括壁面上的值。实

流体力学

第三章计算流体力学基础 §3.1流体力学的基本方程 流体运动的规律滿足三大守恒定律,即质量守恒定律,动量守恒定律和能量守恒定律[24]。 (一)连续方程 (3-1) 式中ρ-流体密度 u-流体速度分量 (二)动量方程(x方向) 对于不可压流体(即) (3-2) 式中γ-运动粘性系数 p-压力 对于可压缩流体 (3-3) 式中等号后前两项是粘性力 y,z方向上的动量方程可类似推出。 (三)能量方程 (3-4) 其中 式中等号左边第一项是瞬变项,第二项是对流项,等号右边第一项是扩散项,第二、三项是源项。

所以,流体力学基本方程组为: (3-5)

§3.2紊流模式理论概况 §3.2.1基本方程 在自然界中,真实的流体都具有粘性。粘性流体存在两种不同的运动方式和流态,即层流和紊流。而在自然界和工农业生产中所遇见的流体流动大部分都是紊流。 复杂的流场(例如有回流、分离流)一般都是三维粘性紊流,一个多世纪以来,人们从紊流的实验研究与理论研究中认识到描述紊流运动的主要困难是质点运动参数在时间和空间上的随机性,描述其流动的数学模型是非线性偏微分方程,数字方法求解很困难;加之流动边界极不规则,更增加了数值求解的难度。从60年代起,一直在进行水轮机流道、泵进出口流道等的数值计算研究,为了能够求解,对流动作一定的假设来简化,归结起来有:定常流动—认为流道内的水流运动是定常的;无粘运动—忽略水流的粘性,并辅之于其它的假设,将流动简化为二维无粘、准三维无粘、三维无粘,这些简化的计算模型,虽然计算得以大大的简化,但假设与实际流动均有不同程度的差距;到80年代,随着计算机运算能力的提高与计算方法的发展,开始了粘性流动计算的研究。 粘性流动计算的方法可分为:一是边界层方法—利用微积分或积分法求解三维边界层方程;二是抛物化法—假设流动存在一个明显的主流方向(在此方向上无回流),沿主流方向的动量、质量等的扩散与对流相比可以忽略不计,下游的压力场对上游流动无影响;三是Navier-Stokes方程(简称N-S方程)解法求解三维的N-S方程。 三维的N-S方程是目前描述粘性流体运动较为理想的模型,其优点一是应用范围广,在空气、水流、传热等方面均用N-S方程描述;二是对于有分离、旋涡等情况的复杂三维流动更为适用。 三维直角坐标下的N-S方程[17] [25],即不可压缩粘性流体的动量方程式为: (3-6) 不可压缩流体的连续性方程为:

大涡模拟简单介绍

《粘性流体力学》小论文 题目:浅谈大涡模拟 学生姓名:丁普贤 学生学号:103911018 完成时间:2010/12/16

浅谈大涡模拟 丁普贤 (中南大学,能源科学与工程学院,湖南省长沙市,410083) 摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有三种:直接数值模拟、大涡模拟和雷诺平均模型。本文主要是介绍大涡模拟,大涡模拟的思路是:直接数值模拟大尺度紊流运动,而利用亚格子模型模拟小尺度紊流运动对大尺度紊流运动的影响。大涡模拟在计算时间和计算费用方面是优于直接数值模拟的,在信息完整性方面优于雷诺平均模型。本文还介绍了对N-S方程过滤的过滤函数和一些广泛使用的亚格子模型,最后简单对一些大涡模拟的应用进行了阐述。 关键词:计算流体力学;湍流;大涡模拟;亚格子模型

A simple study of Large Eddy Simulation DING Puxian (Central South University, School of Energy Science and Power Engineering, Changsha, Hunan, 410083) Abstract:Turbulent flow is a very complex flow, and numerical simulation is the main means to study it. There are three numerical simulation methods: direct numerical simulation, large eddy simulation,Reynolds averaged Navier-Stokes method. Large eddy simulation (LES) is mainly introduced in this paper. The main idea of LES is that large eddies are resolved directly and the effect of the small eddies on the large eddies is modeled by subgrid scale model. Large eddy simulation calculation in computing time and cost is superior to direct numerical simulation, and obtain more information than Reynolds averaged Navier-Stokes method. The Navier-Stokes equations filtering filter function and some extensive use of the subgrid scale model are simply discussed in this paper. Finally, some simple applications of large eddy simulation are told. Key words:computational fluid dynamics; turbulence; large eddy simulation; subgrid scale model

FLUENT壁面函数的选择

FLUENT壁面函数的选择 壁面函数问题 1、无论是标准k—ε模型、RNGk—ε模型,还是Realizable k—ε模型,都是针对充分发展的湍流才有效的,也就是说,这些模型均是高Re数的湍流模型。它们只能用于求解处于湍流核心区的流动。而壁面函数是对近壁区的半经验描述,是对某些湍流模型的补充(近壁区对整体流动影响较大和低雷诺数Re的情况),通过壁面函数法和低Re数k—ε模型与标准k—ε模型和RNGk—ε模型配合,成功解决整个整个管道的流动计算问题。 2、在壁面区,流动情况变化很大。 解决这个问题目前有两个途径: 一、是不对粘性影响比较明显的区域(粘性底层和过渡层)进行求解,而是用一组半经验的公式(即壁面函数)将壁面上的物理量与湍流核心区内的相应物理量联系起来。这就是壁面函数法。在划分网格的时候,不需要在壁面区加密,只需要把第一个节点布置在对数律成立的区域内,即配置在湍流充分发展区域。 如果要用到壁面函数的话,在define---modle--viscous面板里有near wall treatment一项。可以选择标准壁面函数、不平衡壁面函数等。 二、是采用低Re数的k—ε模型来求解粘性底层和过渡层,此时需要在壁面区划分比较细密的网格,越靠近壁面,网格越细。当局部湍流的Re数小于150时,就应该使用低Re数的k—ε模型。 总结:相对于低Re数的k—ε模型,壁面函数法计算效率高,工程实用性强。但当流动分离过大或近壁面流动处于高压之下时,不是很理想。在划分网格的时候,需要在壁面的位置设置边界层网格,原因也是如此。 为什么要用壁面函数??就是因为,k-epsilon模型中,k的boundary condition已知,在壁面上为零,而epsilon的boundary condition 在壁面上为一未知的非零量,如此如何来解两方程模型???所以,我们就需要壁面函数来确定至少第一内节点上的值,当然也包括壁面上的值。实际上就是把epsilon方程的boundary condition放到了流体内部。至于壁面函数的应用范围,要看它是如何获得的,简单说,他们都是由于,靠近壁面,雷诺应力在粘性底层内基本消失,所以,navier-stokes变为可解,而求得。所以,凡是应用壁面函数求得的节点,都应设置在粘性底层(y+<5-8)或者至少为线性底层(y+<30?具体数值忘记了),当然你放得越低,精度越高,但是网格越小。我在matlab内自己写的code,在y+<5-8内放10层,fluent应该可以更高。放在fully developed region是完全错误的。 -------这短话理解得有问题 为什么要使用壁面函数呢? 首先,在CFD中应用湍流模型并不一定需要使用壁面函数,在粘性支层中可以对N-S方程

FLUENT知识点(吐血推荐)

一、基本设置 1.Double Precision的选择 启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。然而对于以下一些特定的问题,使用双精度求解器可能更有利[1]。 a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。 b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动(如渐缩渐扩管的无粘与可压缩流动模拟)。 c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。 2.网格光顺化 用光滑和交换的方式改善网格:通过Mesh下的Smooth/Swap来实现,可用来提高网格质量,一般用于三角形或四边形网格,不过质量提高的效果一般般,影响较小,网格质量的提高主要还是在网格生成软件里面实现,所以这里不再用光滑和交换的方式改善网格,其原理可参考《FLUENT全攻略》(已下载)。 3.Pressure-based与Density-based 求解器设置如图。下面说一说Pressure-based和Density-based的区别: Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也是Pressure-Based Solver的两种处理方法; Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比较 [1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:114-116

第四章 湍流流动的近壁处理

第四章,湍流流动的近壁处理 壁面对湍流有明显影响。在很靠近壁面的地方,粘性阻尼减少了切向速度脉动,壁面也阻止了法向的速度脉动。离开壁面稍微远点的地方,由于平均速度梯度的增加,湍动能产生迅速变大,因而湍流增强。因此近壁的处理明显影响数值模拟的结果,因为壁面是涡量和湍流的主要来源。 实验研究表明,近壁区域可以分为三层,最近壁面的地方被称为粘性底层,流动是层流状态,分子粘性对于动量、热量和质量输运起到决定作用。外区域成为完全湍流层,湍流起决定作用。在完全湍流与层流底层之间底区域为混合区域(Blending region),该区域内分子粘性与湍流都起着相当的作用。近壁区域划分见图4-1。 图4-1,边界层结构 第一节,壁面函数与近壁模型 近壁处理方法有两类:第一类是不求解层流底层和混合区,采用半经验公式(壁面函数)来求解层流底层与完全湍流之间的区域。采用壁面函数的方法可以避免改进模型就可以直接模拟壁面存在对湍流的影响。第二类是改进湍流模型,粘性影响的近壁区域,包括层流底层都可以求解。 对于多数高雷诺数流动问题,采用壁面函数的方法可以节约计算资源。这是因为在近壁区域,求解的变量变化梯度较大,改进模型的方法计算量比较大。由于可以减少计算量并具有一定的精度,壁面函数得到了比较多的应用。对于许多的工程实际流动问题,采用壁面函数处理近壁区域是很好的选择。

如果我们研究的问题是低雷诺数的流动问题,那么采用壁面函数方法处理近壁区域就不合适了,而且壁面函数处理的前提假设条件也不满足。这就需要一个合适的模型,可以一直求解到壁面。FLUENT 提供了壁面函数和近壁模型两种方法,以便供用户根据自己的计算问题选择。 4.1.1壁面函数 FLUENT 提供的壁面函数包括:1,标准壁面函数;2,非平衡壁面函数两类。标准壁面函数是采用Launder and Spalding [L93]的近壁处理方法。该方法在很多工程实际流动中有较好的模拟效果。 4.1.1.1 标准壁面函数 根据平均速度壁面法则,有: **1ln()U Ey k = 4-1 其中,1/41/2*/p p w U C k U μτρ≡,1/41/2* p p C k y y μρμ≡,并且 k =0.42,是V on Karman 常数;E =9.81,是实验常数;p U 是P 点的流体平均速度;p k 是P 点的湍动能;p y 是P 点到壁面的距离;μ是流体的动力粘性系数。 通常,在* 30~60y >区域,平均速度满足对数率分布。在FLUENT 程序中,这一条件改变为*11.225y >。 当网格出来*11.225y <的区域时候,FLUENT 中采用层流应力应变关系,即:**U y =。这里需要指出的是FLUENT 中采用针对平均速度和温度的壁面法则中,采用了*y ,而不是y +(/u y τρμ≡)。对于平衡湍流边界层流动问题,这两个量几乎相等。 根据雷诺相似,我们可以根据平均速度的对数分布,同样给出平均温度的类似分布。FLUENT 提供的平均温度壁面法则有两种:1,导热占据主要地位的热导子层的线性率分布;2,湍流影响超过导热影响的湍流区域的对数分布。 温度边界层中的热导子层厚度与动量边界层中的层流底层厚度通常都不相同,并且随流体介质种类变化而变化。例如,高普朗特数流体(油)的热导子层厚度比其粘性底层厚度小很多;对于低普朗特数的流体(液态金属)相反,热导子层厚度比粘性底层厚度大很多。 1/41/2* ()w p p P T T c C k T q μρ-≡''& 4-2

相关主题