搜档网
当前位置:搜档网 › 基于FLUENT的某微型面包车外流场数值仿真分析

基于FLUENT的某微型面包车外流场数值仿真分析

基于FLUENT的某微型面包车外流场数值仿真分析
基于FLUENT的某微型面包车外流场数值仿真分析

基于FLUENT的某微型面包车外流场数值仿真分析

摘要:利用UG对某微型轿车进行三维实体建模,将其导入前处理软件ANSYS ICEM中,建立计算域后网格化。用CFD 软件FLUENT对汽车模型的外流场进行三维稳态流动数值模拟,得出汽车周围流场的气流速度和压力分布,并通过计算得到了该车的阻力系数,该仿真分析的数据为进行汽车气动特性分析提供基础,可进一步指导汽车的设计开发。

关键字:汽车空气动力学;计算流体动力学;FLUENT;外流场

ABSTRACT:The 3D model of a mini car is carried out by UG, and then it is introduced into the

pre-processing software ANSYS ICEM to establish the computational domain grid. By using the software of CFD FLUENT is to the automobile model flow field numerical simulation of three-dimensional steady flow, flow velocity and pressure distribution of the flow field around the car, the car and the drag coefficient is obtained by calculating, the simulation data for automobile gas analysis provide the basic dynamic characteristics, design and development can further guide the car.

Keywords: Automobile aerodynamics;CFD;FLUENT;Outflow field

引言

空气动力学特性是汽车的重要特性之一。汽车行驶时与空气产生复杂的相互作用,承受着强大的气动力,对汽车的行驶状态有着重大影响;汽车行驶时受到的空气阻力与汽车速度平方成正比,汽车克服空气阻力所消耗的功率和燃料与车速的三次方成正比。因此,对汽车外流场空气动力学的研究,不仅可以提高汽车动力性和安全性,还可以提高汽车的燃料经济性。

目前,汽车空气动力学的研究主要有三种方法,即风洞实验、理论分析和计算流体动力学(Computational Fluid Dynamics,CFD)分析。随着计算机技术的发展,计算流体动力学相对于实验和理论计算具有成本低、周期短等特点,因此受到越来越广泛的应用。CFD方法对于预测和改进汽车的气动性能,指导汽车产品设计具有重要意义[1-2]。故本文采用大型商业化CFD 软件的FLUENT对某微型汽车的外流场进行数值仿真分析。

1 汽车空气动力学特性与CFD 理论基础1.1 汽车空气动力学特性

在正常道路行驶过程中的汽车,通常受到两种力的作用,这两种力分别为路面与汽车之间的相互作用力和来自空气的力与力矩。其中,前者主要由汽车自身的物理属性和轮胎的滚动阻力系数等决定;另一种则是来自空气作用的力和力矩,取决于汽车的外形设计、行驶速度以及横摆角[3-4]。

气流作用于汽车上分相互垂直的三个方向的力和绕三个轴的力矩,如图1 所示;在图示坐标系中,X 方向是汽车直线行驶方向,通常的气动阻力就是指来流沿X 方向的作用力;Y 轴方向为汽车的侧向力,还有沿Z 轴方向趋于抬起汽车的升力。汽车在道路行驶过程中这三个方向的空气作用力同时存在,相互影响。除上述三个方向的力外,还有绕三个轴方向的力矩,分别为绕X 轴方向的侧倾力矩、绕Y 轴方向的俯仰力矩以及绕Z 轴方向的横摆力矩。

图1 作用在汽车上的力和力矩

汽车的气动力、力矩和正面投影面积A、气流动压、轴距a 的关系见表1。其中v 为汽车迎面来流和侧风合成流速,S 为沿Y 轴方向垂直与车身对称面的侧向气动阻力;L 为垂直于地面沿Z 轴方向的气动升力;D 为沿X 轴方向的气动阻力;PM、RM、YM 分别为绕Y 轴的纵倾力矩、绕X 轴的侧倾力矩以及绕Z 轴的横摆力矩。

1.2 CFD理论基础

计算流体动力学(Computational Fluid Dynamics , CFD )是近代流体力学、数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。

计算流体力学在最近20年中得到飞速的发展,除了计算机硬件工业的发展给它提供了坚实的物质基础外,还主要因为无论分析的方法或实验的方法都有较大的限制,例如由于问题的复杂性,既无法作分析解,也因费用昂贵而无力进行实验确定,而CFD 的方法正具有成本低和能模拟较复杂或较理想的过程等优点[5]。经过一定考核的CFD 软件可以拓宽实验研究的范围,减少成本昂贵的实验工作量。

CFD软件分析的整体工作分析流程[6],可以概括为如下:

1)建立控制方程。分析研究的物理问题,概括出其数学模型;

2)确定其初始条件及边界条件。初始条件为所研究的对象在过程开始时刻求解变量空间分布情况,边界条件是指在运动边界上方程组解应该满足的条件;

3)确定计算区域,划分计算网格,生成计算节点。将控制方程离散的空间区域(所计算的区域),网格划分过程就是将控制方程离散的过程;

4)建立离散方程,对初始条件和边界条件离散化。此过程也是根据不同的离散化方法建立方程组的过程,把连续型的初始条件和边界条件转化为特定节点上的值;

5)离散初始条件和边界条件,给定求解控制参数;

6)求解离散方程。给定合适的流体参数和湍流模型,通过数值方法求解方程;

7)判断解是否收敛。当达到指定收敛精度后才结束求解过程;

8)显示和输出计算结果。对所计算的结果通过压力云图、矢量图、流线图等以合适的方式表达出来并显示相应结果。

以FLUENT公司开发的大型CFD软件FLUENT为例,它可计算从不可压缩(低亚音速)到轻度可压缩(跨音速)直达高度可压缩(超音速)流体的复杂流动问题。FLUENT本身所带的物理模型可以准确地预测层流、过渡流和湍流多种方式的传热和传质,化学反应,多相流和其它复杂现象。它可以灵活地产生非结构网格,以适应复杂结构,并且能根据初步计算结果调速网格。

CFD在汽车领域中的绝大部分应用都集中于进行汽车外流场的数值模拟。目前,国内外已经发表了大量关于汽车外流场数值模拟的论文。通过CFD的模拟能够确定局部几何形体的改变对气动力的影响,并且能够直接比较不同车身设计的气动性能。

2 计算模型的建立与网格划分

2.1 计算模型建立

UG是一种在汽车行业里应用广泛的建模软件,其功能强大、建模方便、容易学习,选择UG实现对汽车的三维建模。

本文的研究重点是空气动力学对汽车的性能的影响,在仿真汽车外流场时,假设汽车内部流场与汽车外流场完全隔开互不影响,因此建立汽车模型时可不考虑其内部零件,仅对与外流场相接触的汽车部件进行建模[7]。为了抓住研究重点、节省计算机资源和计算时间,本文对汽车模型进行了一定的简化。本文参考某微型面包车,按照1:1的比例进行建模,如图2所示。

图2 UG三维模型

2.2 计算域的确定

将UG中所建立的汽车模型转化为prt格式导入ICEM-CFD软件中,依据汽车的三维模型尺寸建立外流场计算域。流场计算域在沿车上方向,前端取3倍车长,后端取8倍车长;流场计算域在沿车宽方向,左右各取2倍车宽;流场计算域在沿车高方向,上端取3倍车高,下端取2倍车高。在ICEM-CFD软件中,微型面包车和外流场计算域的模型图如下图3所示。

图3 微型面包车和外流场计算域的模型

2.3 网格划分

在汽车的CFD研究中,如何获得高质量的网格一直是研究重点,网格质量是决定整个研究过程进展的关键因素之一。目前很多汽车外流场的CFD 研究中使用了混合网格方案,如四面体与三棱柱混合、四面体与六面体混合等[8]。

在本次讨论中,网格划分采用四面体网格自动生成,其中Global Element Seed Size设置为1024mm,其他各边界表面最大尺寸设置为除车身表面网格最大为32mm外,其余项都设置为1024mm。

网格划分完毕后,总网格数为7117965个。网格质量如下图4所示,网格质量基本符合计算要求。

图4 网格质量

3 边界条件与模型求解

边界条件就是流体流动边界上控制方程应该满足的条件,通常会对数值计算产生较大的影响。用FLUENT进行仿真计算时,基本边界类型主要包括以下几种[9]:

(1)入口边界条件。入口边界条件是指定入口处流动变量的值。常见的入口边界条件有速度入口边界条件、压力入口边界条件和质量流量入口边界条件等。

(2)出口边界条件。出口边界条件就是指定出口处流动变量的值。常见的入口边界条件有压力出口边界,质量出口边界。

(3)固体壁面边界条件。对于粘性流动的问题,可以把壁面条件设置成无滑移边界条件,也可以指定壁面切向速度分量和壁面切应力,从而模拟壁面的滑移。

在本次讨论中,将ICEM-CFD中生成的网格模型导入Fluent中,viscous model选择k-w

湍流模型。

边界条件设置如下:进口inlet设置为velocity-inlet 条件,速度设置为30 m/s;出口outlet设置为pressure-outlet条件,出口相对压力设置为0;计算区域的两侧面和顶面为自由滑移壁面边界;汽车为无滑移壁面边界,地面为默认壁面边界(即为无滑移壁面边界)。

在模型求解设置中,初始化设为标准初始化,并设为从入口inlet开始计算,迭代步数设置为1000

步,进行计算求解。

4 仿真结果与分析

通过CFD-POST后处理软件,可对汽车外流场计算的结果进行可视化。如图5为汽车的外流场速度分布云图。

图5 外流场速度云图

由图5可知,气流在轿车最前端有一个驻点,由于来流速度与轿车车头部相遇,气流在汽车前部受到汽车的阻挡,使气流速度大大降低,气流速度接近于零。在汽车前部气流分为两部分,一部分沿着发动机罩向上流,一部分流向汽车的底部。汽车的底部速度明显小于汽车顶部气流速度,在汽车顶部出现了一个气流速度最大区域。但是,注意到车身顶部的气流比较均匀,流速也没有出现突变;而底部的气体流速波动较大,特别是在汽车底部前轴附近出现了流速最小值。

图6 外流场压力云图

图6给出了车身表面的压力图。由图中可以看到在汽车表面有两个高压区:车身前部、前视镜前端。表面压力在前端最高,然后沿变截面区域不断降低,并且在车身外表面压力几乎均为负值,因为车身外表面的气体相对速度较大,且越远离车身,因此压力越小。前部正压力较大,尾部负压值较大,其中正负压差是引起汽车运行阻力的重要因素。而汽车模型尾部的压力值与汽车前部的压力值之差就是压差阻力。汽车头部的表面压力最大,这是由于来流速度与车头相遇,气流遇到车头而受到阻滞,使气流速度降低,因而在车头形成正压区。车头上缘角出现负压区,这是由于上缘角曲率大,气流来不及转折而出现局部分离,这时气流速度也较大,因而在此处形成负压峰值(或称吸力峰)。如图所示,车身顶部出现了两处非常明显的负压区;而车身底部的负压区相对较小,因此汽车底部与汽车顶部的压力差形成升力。

图7 外流场湍流动能分布云图

图7给出了车身外流场的湍流动能分布图,由图可知,在汽车的尾部有一段尾流区存在,在尾流区气流的流动是非常复杂的,由于速度下降较为剧烈,再加上汽车底部和顶部的气流的影响,产生了比较严重的湍流和漩涡现象。于是在汽车后部形成大尺度的漩涡,快速而大量的能量消耗就在此发生,从而使尾流的压强减小引起了压差阻力。同时,在汽车底部,由于轮胎出的截面变化较大,导致底部气流也出现较大湍流。

图8 迹线图

由图8的迹线图可知,在汽车行驶时,特别是在高速行驶工况下,车体尾部下漩涡较大,会把地面尘土等不停地卷到车体尾部,这样很容易导致后窗玻璃变脏,因此在后窗应设计有雨刮器。

根据上述分析,该车的车身应该做出如下改进:(1)前脸应该更加扁平一点,与发动机舱盖间的过渡应该更圆滑一点;(2)前脸两侧的过渡圆角应该更加更大一些;(3)汽车尾部增加后扰流装置,尾部采用带有一定倾角或圆弧的过渡,避免形成90度的直角。(4)前轴截面变化不合理,应使过度更为平稳,以减小湍流。

5 结论

应用CAD 软件和CFD 软件对汽车外流场进行建模和仿真模拟,是在新车型开发中一个快速而行之有效的方法,通过对汽车的仿真分析,可知道汽车的气动特性,减少进行风洞试验的次数,加快汽车开发的周期。总之,利用分析软件能够对汽车的外流场特性进行较精确的模拟,但是它依赖于理论模型模拟实际流场的精确度以及通过实验揭示出的空气运动真实的机理和规律,同时也依赖于相应的初始、边界条件和各数学模型中相关参数的处理等。因此在解决汽车空气动力学的实际问题中,需要风洞试验和CFD 相互补充和配合,风洞试验能更好地用于验证和完善理论上的论断,CFD 则能更有效地进行综合仿真。

参考文献

[1]陈焕明. 轿车外流场数值模拟的研究. 吉林大学

研究生毕业论文. 2003

[2]莫乃榕. 工程流体力学[M]. 武汉,华中科技大学

出版社, 2000.5.171-174

[3]傅立敏. 汽车空气动力学[M]. 北京,机械工业出

版社, 2006.8.22-32

[4]黄向东. 汽车空气动力学与车身造型[M]. 北京:

人民交通出版社,2000.

[5]王宏雁. 汽车车身设计基础[M]. 北京,北京大学

出版社, 2009.9.89-106

[6]王晓东. 计算流体力学从实践中学习[M]. 沈阳:

东北大学出版社,2009.

[7]张启桥. 汽车尾部外流场数值模拟[J]. 农业装备

与车辆工程. 2009, 19(10): 20-23.

[8]杨博. 轿车外流场网格生成策略及数值模拟[J].

农业机械学报. 2007, 38(4): 8-11.

[9]李华林,李万祥,皮特. 基于FLUENT的快背式

汽车外流场的三维数值模拟分析[J]. 兰州交通大

学学报

.2014.

FLUENT中文全教程1-250

FLUENT 教程 赵玉新 I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分: z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出

了一个可以在你自己计算机上运行的简单的算例。 z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。同时也提供了远程处理与批处理的一些方法。(请参考关于特定的文本界面命令的在线帮助) z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。 z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。 z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。本章还描述了非一致(nonconformal)网格的使用. z边界条件:本章描述了FLUENT 所提供的各种类型边界条件,如何使用它们,如何定义它们and how to define boundary profiles and volumetric sources. z物理特性:本章描述了如何定义流体的物理特性与方程。FLUENT 采用这些信息来处理你的输入信息。 第二部分: z基本物理模型:本章描述了FLUENT 计算流体流动和热传导所使用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)。以及在使用这些模型时你需要输入的数据,本章也包含了自定义标量的信息。 z湍流模型:本章描述了FLUENT 的湍流模型以及使用条件。 z辐射模型:本章描述了FLUENT 的热辐射模型以及使用条件。 z化学组分输运和反应流:本章描述了化学组分输运和反应流的模型及其使用方法。本章详细的叙述了prePDF 的使用方法。 z污染形成模型:本章描述了NOx 和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: z相变模拟:本章描述了FLUENT 的相变模型及其使用方法。 z离散相变模型:本章描述了FLUENT 的离散相变模型及其使用方法。 z多相流模型:本章描述了FLUENT 的多相流模型及其使用方法。 z Flows in Moving Zones(移动坐标系下的流动):本章描述了FLUENT 中单一旋转坐标系,多重移动坐标系,以及滑动网格的使用方法。 z Solver 的使用:本章描述了如何使用FLUENT 的解法器(solver)。 z网格适应:本章描述了explains the solution-adaptive mesh refinement feature in FLUENT and how to use it 第四部分: z显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data z图形和可视化:本章描述了检验FLUENT 解的图形工具 z Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 z流场函数的定义:本章描述了如何定义FLUENT 面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 z并行处理:本章描述了FLUENT 的并行处理特点以及使用方法 z自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT 软件。 如何使用该手册 z根据你对CFD 以及FLUENT 公司的熟悉,你可以通过各种途径使用该手册 对于初学者,建议如下:

Fluent雾化喷嘴数值仿真研究

F l u e n t雾化喷嘴数值 仿真研究 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

Fluent雾化喷嘴数值仿真研究 FLUENT提供五种雾化模型: ?平口喷嘴雾化(plain-orificeatomizer) ?压力-旋流雾化(pressure-swirlatomizer) ?转杯雾化模型(flat-fanatomizer) ?气体辅助雾化(air-blast/air-assistedatomizer) ?气泡雾化(effervescent/flashingatomizer) 所有的模型都是用喷嘴的物理及尺寸参数(例如喷口直径、质量流率)来计算初始颗粒尺寸、速度、位置。对于实际的喷嘴模拟来说,无论是颗粒的喷射角度还是其喷出时间都是随机分布的。但对FLUENT的非雾化喷射入口来说,液滴都是在初始时刻以一个固定的轨道喷射出去(到流场中去)。喷雾模型中使用随机选择模型得到液滴的随机分布。随机选择轨道表明初始液滴的喷射方向是随机的。所有的喷嘴模型中都要设第初始喷射角(范围),颗粒通过随机的方法在这个范围内得到一个初始喷射方向。这种方法提高了由喷射占主导地位流动的计算精度。在喷嘴附近,液滴在计算网格内的分布趋向于更加均匀,这样,通过气相作用于液滴上的曳力就加强了气相-液滴之间的耦合作用。 平口喷嘴雾化(plain-orificeatomizer)模型 平口喷嘴是最常见也是最简单的一种雾化器。但对于其内部与外部的流动机制却很复杂。液体在喷嘴内部得到加速,然后喷出,形成液滴。这个看似简单的过程实际却及其复杂。平口喷嘴可分为三个不同的工作区:单相区、空穴区、以及回流区(flipped。不同工作区的转变是个突然的过程,并且产生截然不同的喷雾状态。喷嘴内部区域决定了流体在喷嘴处的速度、初始颗粒尺寸、以及液滴分散角。每种喷雾机制如下图示(图1、2、3): 图1单相流雾化喷嘴流动(液体完全充满喷头内部) 图2空穴喷嘴流动(喷头倒角处产生了空穴) 图3返流型喷嘴流动(在喷头内,下游气体包裹了液体喷射区) 压力-旋流雾化喷嘴模型 另一种重要的喷嘴类型就是压力-旋流雾化喷嘴。气体透平工业的人把它称作单相喷嘴(simplexatomizer)。这种喷嘴,然后流体通过一个称作旋流片的喷头被加速后,进入中心旋流室。在旋流室内,旋转的液体被挤压到固壁,在流体中心形成空气柱,然后,液体以不稳定的薄膜状态从喷口喷出,破碎成丝状物及液滴。在气体透平、燃油炉、直接喷射点火式汽车内燃机的液体燃料燃烧中,压力-旋流雾化喷嘴使用很广泛。液体从内部流到完全雾化的过程可分为三个步骤:液膜形成、液膜破碎及雾滴形成。这个过程的示意图如下: 图4喷嘴内部流动转变为喷雾状态的理论步骤 转杯雾化模型(TheFlat-FanAtomizerModel) 转杯雾化喷嘴与压力-旋流雾化喷嘴很类似,只是它形成了液膜层,而不是旋流。液体从宽而薄的喷口出来后形成平面液膜,继而破碎成液滴。一般认为,它的雾化机理与压力-旋流雾化喷嘴类似。一些学者认为转杯雾化喷嘴(由冲击射流雾化而来)的雾化机理与平面液膜的雾化类似。在这种情况下,转杯雾化模型可以应用。只有在三维的情况下才可以使用这个模型。图5是一个转杯的三维示意图。此模型假定扇叶由一个虚点延长而成。用户必须设定虚点的位置,虚点就是扇叶的侧边的延长线的交点。用户还必须设定扇叶的弧边所对应的中心点。为了确定喷射的方向,FLUENT将由虚点和中心点的位置来确定一个向量。用户还必须设定扇叶弧的半顶角、喷口宽度(垂直方向)以及液体的质量流率。 图5平板扇叶喷嘴顶视图与侧视图 空气辅助雾化模型

数值分析之幂法及反幂法C语言程序实例

数值分析之幂法及反幂法C 语言程序实例 1、算法设计方案: ①求1λ、501λ和s λ的值: s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。 1λ、501λ:已知矩阵A 的特征值满足关系 1n λλ<< ,要求1λ、及501λ时,可 按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。 b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m B A I λ=+,对矩阵B 用反幂法 求得B 的按模最小特征值2m λ。 c . 321m m m λλλ=- 则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。 ②求和A 的与数5011 140 k k λλμλ-=+最接近的特征值 ik λ(k=0,1,…39): 求矩阵A 的特征值中与k μ最接近的特征值的大小,采用原点平移的方法: 先求矩阵 B=A-k μI 对应的按模最小特征值k β,则k β+k μ即为矩阵A 与k μ最接近的特征值。 重复以上过程39次即可求得ik λ(k=0,1,…39)的值。 ③求A 的(谱范数)条件数2cond()A 和行列式det A : 在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。 求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()s cond A λλ= ,max λ和s λ分别为模最大特征值与模最小特征值。

泰勒定理及其在数值分析中的应用

摘要 因为泰勒公式的形式简单易懂,由此,适用在很多学科。在计算机与物理等各个方面均有着极其广泛的应用,除此之外,也在数值分析、常微分方程、最优化理论这些数学分支中产生着至关重要的作用。可见,泰勒公式的用处很多,所以,更要弄清楚泰勒公式的概念和数学原理。这是数学中非常基础的东西,对学生今后的数学学习将起到非常好的作用。本论文的目的,主要是对泰勒定理在数值分析中的应用做研究,从利用泰勒公式近似计算函数值、利用泰勒公式近似计算导数值、泰勒公式在常微分方程数值求解中的应用等方面,对泰勒公式在数值分析方面的应用进行研究。泰勒公式在数值分析的各个方面都有着重要的应用,深入探讨泰勒公式的应用,对于我们解决一些复杂问题起到事半功倍的效果.只要在解题中注意分析并注重归纳总结,就能很好地运用泰勒公式.正确的应用泰勒公式使我们的证明和计算题变得简明快捷。 关键词:泰勒公式;数值分析;应用

ABSTRACT Because of the Taylor formula is very simple, so, can be applied to many subjects. In various physical and computer etc, have a very wide range of applications, in addition, also in the ordinary differential equations, numerical analysis, optimization theory, the branch of mathematics plays an extremely important role. Therefore, a lot of, Taylor formula. So, to clarify concepts and mathematical principle of Taylor formula. This is the very basis of mathematics of mathematics learning things, the students will play a very good role. The purpose of this thesis, mainly to do research on the application of Taylor theorem in numerical analysis, calculating the function value, using the Taylor formula to calculate the value of Taylor formula, the numerical solution of ordinary differential equation application, from using Taylor's formula approximation, the Taylor formula is analyzed in terms of the application in the numerical study. Taylor formula has important applications in the numerical analysis, in-depth study of the application of Taylor formula, for us to solve some complex problems play a multiplier effect. As long as the attention and focus on solving problems of the summary, will be able to use Taylor formula. Using Taylor formula to correct the proof and calculation problems we became fast and simple. Key words: Taylor formula; numerical analysis; application

演讲稿数值分析应用实例.doc

非线性方程求根 问题:在相距100m的两座建筑物(高度相等的点)之间悬挂一根电缆,仅允许电缆在中间最多下垂1m,试计算所需电缆的长度。 设空中电缆的曲线(悬链线)方程为 ] , [ , ) ( 50 50 2 - ∈ + = - x e e a y a x a x (1) 由题设知曲线的最低点)) ( , (0 0y与最高点)) ( , (50 50y之间的高度差为1m,所以有 1 2 50 50 + = +- a e e a a a) ( (2) 由上述方程解出a后,电缆长度可用下式计算: ) ( ) (a a a x a x L e e a dx e e dx x y ds L 50 50 50 50 50 2 1- - - - = ? ? ? ? ? ? + = ' + = =? ? ?(3) 相关Matlab命令: 1、描绘函数] , [ , ) ( ) (1500 500 1 2 50 50 ∈ - - + = - a a e e a a y a a 的图形;

2、用fzero 命令求方程在1250=a 附近的根的近似值x ,并计算)(x y 的函数值; 3、编写二分法程序,用二分法求0=)(a y 在],[13001200内的根,误差不超过310-,并给出对分次数; 4、编写Newton 迭代法程序,并求0=)(a y 在],[13001200内的根,误差不超过310-,并给出迭代次数。 5、编写Newton 割线法程序,并求0=)(a y 在],[13001200内的根,误差不超过310-,并给出迭代次数。

线性方程组求解应用实例 问题:投入产出分析 国民经济各个部门之间存在相互依存的关系,每个部门在运转中将其他部门的产品或半成品(称为投入)经过加工变为自己的产品(称为产出),如何根据各部门间的投入产出关系,确定各部门的产出水平,以满足社会需求,是投入产出分析中研究的课题。考虑下面的例子: 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、外部需求、初始投入等如表1所示(数字表示产值)。 表1 国民经济三个部门间的关系单位:亿元 假定总投入等于总产出,并且每个部门的产出与它的投入成正比,由上表可以确定三个部门的投入产出表:如表2所示。 表2 三个部门的投入产出表

非线性方程数值解法及其应用

非线性方程数值解法及其应用 摘要:数值计算方法主要研究如何运用计算机去获得数学问题的数值解的理论和算法。 本文主要介绍非线性方程的数值解法以及它在各个领域的应用。是直接从方程出发,逐步缩小根的存在区间,或逐步将根的近似值精确化,直到满足问题对精度的要求。我将从二分法、Steffensen 加速收敛法、Newton 迭代法、弦截法来分析非线性方程的解法及应用。 关键字:非线性方程;二分法;Steffensen 加速收敛法;代数Newton 法;弦截法 一、前言 随着科技技术的飞速发展,科学计算越来越显示出其重要性。科学计算的应用之广已遍及各行各业,例如气象资料的分析图像,飞机、汽车及轮船的外形设计,高科技研究等都离不开科学计算。因此经常需要求非线性方程 f(x) = O 的根。方程f(x) = O 的根叫做函数f(x)的零点。由连续函数的特性知:若f(x)在闭区间[a ,b]上连续,且f(a)·f(b)

(完整版)《FLUENT中文手册(简化版)》

FLUENT中文手册(简化版) 本手册介绍FLUENT的使用方法,并附带了相关的算例。下面是本教程各部分各章节的简略概括。 第一部分: ?开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中给出了一个简单的算例。 ?使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。?读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。 ?单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。 ?使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。还描述了非一致(nonconformal)网格的使用. ?边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等 ?物理特性:描述了如何定义流体的物理特性与方程。FLUENT采用这些信息来处理你的输入信息。 第二部分: ?基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。 ?湍流模型:描述了FLUENT的湍流模型以及使用条件。 ?辐射模型:描述了FLUENT的热辐射模型以及使用条件。 ?化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。 ?污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: ?相变模拟:描述了FLUENT的相变模型及其使用方法。 ?离散相变模型:描述了FLUENT的离散相变模型及其使用方法。 ?多相流模型:描述了FLUENT的多相流模型及其使用方法。 ?移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。 ?解法器(solver)的使用:描述了如何使用FLUENT的解法器。 ?网格适应:描述了如何优化网格以适应计算需求。 第四部分: ?显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data ?图形和可视化:本章描述了检验FLUENT解的图形工具 ?Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 ?流场函数的定义:本章描述了如何定义FLUENT面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 ?并行处理:本章描述了FLUENT的并行处理特点以及使用方法 ?自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT软件。 如何使用该手册 对于初学者,建议从阅读“开始”这一章起步。 对于有经验的使用者,有三种不同的方法供你使用该手册:按照特定程序的步骤从按程序顺序排列的目录列表和主题列表中查找相关资料;从命令索引查找特定的面板和文本命令的使用方法;从分类索引查找特定类别信息(在线帮助中没有此类索引,只能在印刷手册中找到它)。 什么时候使用Support Engineer:Support Engineer能帮你计划CFD模拟工程并解决在使用FLUENT 中所遇到的困难。在遇到困难时我们建议你使用Support Engineer。但是在使用之前有以下几个注意事项:●仔细阅读手册中关于你使用并产生问题的命令的信息 ●回忆导致你产生问题的每一步 ●如果可能的话,请记下所出现的错误信息 ●对于特别困难的问题,保存FLUENT出现问题时的日志以及手稿。在解决问题时,它是最好的资源。

数值分析在生活中的应用举例及Matlab实现

Matlab 实验报告 学院:数学与信息科学学院班级:信息班 学号:20135034027 姓名:马永杉

最小二乘法,用MATLAB实现 1.数值实例 下面给定的是郑州最近1个月早晨7:00左右的天气预报所得到的温度,按照数据找出任意次曲线拟合方程和它的图像。下面用MATLAB编程对上述数据进行最小二乘拟合。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9 ,7,6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1=polyval(a1,x) b2=polyval(a2,x) b3=polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 2.流程图

4.数值结果分析 不同次数多项式拟合误差平方和为: r1=67.6659 r2=20.1060 r3=3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。 5、拟合曲线如下图

fluent炉膛仿真教程文档

炉膛仿真过程及其其中的问题 一、(Gambit)几何建模部分 1.大体尺寸 在本次设计中,(实际标高-5=图中的标高)锅炉的尺寸为:锅炉高度为26890mm,宽度为7570mm,深度为7570mm。 燃烧器的高度为2.105m,最底层的燃烧器低端距冷灰斗距离为2.1775m。 采用四角切圆(顺时针切圆,假想切圆直径0.8m)的均等配风燃烧方式。其中一次风2层,二次风3层。由低到高燃烧器风口布置依次为二、一、二、一、二。燃烧器宽度为0.4m,一次风口高度0.2405m,二次风口高度0.352/0.315m,风口间距为0.21/0.12/0.155m。

2.简化处理 将水冷壁简化成一个恒温平面; 将燃烧器简化成一个平面,各次风口为平面中的一个矩形区域,作为速度入口; 忽略屏式过热器,将折焰角上方与水平烟道相连结的平面作为出口(outflow)。 3.几何建模过程及网格划分 为了方便锅炉的网格划分,我们将整个计算域划分为5个区域:冷灰斗下端至燃烧区域下端、燃烧区域、燃烧区上端至折焰角下端、折焰角区域、折焰角上端至炉膛出口。 3.1点线面的生成 几何建模的方法通常可以是自下而上的,即先生成体的各个点(通过坐标确定位置);将生成的点依次连接成线;将线围成体的各个面;最后将面组合成一个实体。 当然建模时也可以通过设置实体(面)的长宽高(长宽)直接生成。 3.2实体分割 块的划分方法如下: 先产生一个面,并将该面平移至该实体要切割的位置,split volume选卡中,split with

选择face(real),然后选中要切割的实体(对应split volume中的volume)以及用来切割这个体的面(对应face栏)(注意:在切割时需要选中Connected,保证切割产生的两个体之间的面是公共面,而不是两个重合的面。因为公共面可以通过物质和能量,而重合的面不加定义时是wall),最后点击APPL Y确定。 根据这种方法,我们可以在Z方向将燃烧区分为很多层,方便以后设置一、二次风入口的边界条件。同时,在xy平面内燃烧区被分为8份,如图所示: 3.3网格划分

数值分析课程设计学生题目

《数值分析》课程设计

本课程设计的内容为:每个小组的同学均应完成以下五个案例; 目标:能将数值分析课程中所学的算法知识熟练应用于实际问题中。 案例1 土木工程和环境工程师在设计一条排水渠道时必须考虑渠道的各种参数(如宽度,深度,渠道内壁光滑度)及水流速度、流量、水深等物理量之间的关系。 假设修一条横断面为矩形的水渠,其宽度为B ,假定水流是定常的,也就是说水流速度不随时间而变化。 根据质量守恒定律可以得到 Q=UBH (1.1) 其中Q 是水的流量(s m /3 ),U 是流速(s m /),H 是水的深度(m )。 在水工学中应用的有关流速的公式是 3 /23 /22/1)2()(1H B BH S n U += (1.2) 这里n 是Manning 粗糙系数,它是一个与水渠内壁材料的光滑性有关的无量纲量;S 是水渠 的斜度系数,也是一个无量纲量,它代表水渠底每米内的落差。 把(1.2)代入(1.1)就得到 3 /23 /52/1)2()(1H B BH S n U += (1.3) 为了不同的工业目的(比如说要把污染物稀释到一定的浓度以下,或者为某工厂输入一定量 的水),需要指定流量Q 和B ,求出水的深度。这样,就需要求解 0) 2()(1)(3 /23 /52/1=-+=Q H B BH S n H f (1.4) 一个具体的案例是 s m Q S n m B /5 ,0002.0 ,03.0 ,203==== 求出渠道中水的深度H 。 所涉及的知识——非线性方程解法。 案例2 在化学工程中常常研究在一个封闭系统中同时进行的两种可逆反应 C D A C B A ?+?+2 其中A ,B ,C 和D 代表不同的物质。反应达到平衡是有如下的平衡关系: d a c b a c C C C k C C C k == 22 1 , 其中2 24 1107.3 ,104--?=?=k k 称为平衡常数,),,,(d c b a n C n =代表平衡状态时该物质的浓度。假定反应开始时各种物质的浓度为:

数值分析简述及求解应用

数值分析简述及求解应用 摘要:数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,本文主要介绍了数值分析的一些求解方法的原理和过程,并应用在电流回路和单晶硅提拉过程中的,进一步体现数值分析的实际应用。 关键字:解方程组插值法牛顿法 一、引言 随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。有可靠的理论分析,要有数值实验,并对计算的结果进行误差分析。数值分析的主要内容包括插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。运用数值分析解决问题的过程包括: 实际问题→数学建模→数值计算方法→程序设计→上机计算求出结果。 在自然科学研究和工程技术中有许多问题可归结为求解方程组的问题,方程组求解是科学计算中最常遇到的问题。如在应力分析、电路分析、分子结构、测量学中都会遇到解方程组问题。在很多广泛应用的数学问题的数值方法中,如三次样条、最小二乘法、微分方程边值问题的差分法与有限元法也都涉及到求解方程组。 在工程中常会遇到求解线性方程组的问题,解线性方程组的方法有直接法和迭代法,直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。将方程组的解看作是某极限过程的极限值,且计算这一极限值的每一步是利用前一步所得结果施行相同的演算步骤而进行。迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。迭代法包括Jacobi法SOR法、SSOR法等多种方法。非线性是实际问题中经常用到出现的并在科学和工程中的低位也越来越重要,很多线性模型都是在一定条件下由非线性简化得到的。所以往往需要非线性的研究。非线性的数值解法有牛顿法,迭代收敛的加速解法,弦解法和抛物线法等。还有很多问题都可用常微分方程的定解来描述,主要有处置问题和边值问题。常微分方程是描述连续变化的数学语言,微分方程的求解是确定满足给定方程的可微函数y(x)。下面就数值分析中常用的一些方法和实例进行阐述。 二、数值分析中的一些方法 1、插值法 许多实际问题都用y=f(x)来表示,有的函数虽然有解析式,但由于计算复杂实用不方便,为了找一个既能反映函数的特性又便于计算的函数,我们利用插值法可以得到这个简单函数,插值法包括拉格朗日插值,牛顿插值,Hermite插值等多种方法。 拉格朗日插值是n次多项式插值,其成功地用构造插值基函数的方法解决了

fluent学习笔记

fluent技术基础与应用实例 4.2.2 fluent数值模拟步骤简介 主要步骤: 1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。 2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件) 3、检查网格(Grid→Check)。如果网格最小体积为负值,就要重新 进行网格划分。 4、选择计算模型。 5、确定流体物理性质(Define→Material)。 6、定义操作环境(Define→operating condition) 7、制定边界条件(Define→Boundary Conditions) 8、求解方法的设置及其控制。 9、流场初始化(Solve→Initialize) 10、迭代求解(Solve→Iterate) 11、检查结果。 12、保存结果,后处理等。 具体操作步骤: 1、fluent2d或3d求解器的选择。 2、网格的相关操作 (1)、读入网格文件 (2)、检查网格文件 文件读入后,一定要对网格进行检查。上述的操作可以得到网格信息,从中看出几何区域的大小。另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划 分网格。 (3)、设置计算区域 在gambit中画出的图形是没有单位的,它是一个纯数量的模型。故 在进行实际计算的时候,要根据实际将模型放大或缩小。方法是改变fluent总求解器的单位。 (4)、显示网格。 Display→Grid 3、选择计算模型

(1)、基本求解器的定义 Define→Models→Solver Fluent中提供了三种求解方法: ·非耦合求解 segregated ·耦合隐式求解 coupled implicit ·耦合显示求解 coupled explicit 非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。 耦合求解方法用在高速可压缩流体 fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建 议采用耦合隐式求解方法。耦合能量和动量方程,可以较快的得到收敛值。耦合隐式求解的短板:运行所需要的存比较大。若果必须要耦合求解而机器存不够用,可以考虑采用耦合显示求解方法。盖求解方法也耦合了动量,能量和组分方程,但是存却比隐式求解方法要小。 需要指出的是,非耦合求解器的一些模型在耦合求解器里并不一定都有。耦合求解器里没有的模型包括:多相流模型、混合分数/PDF燃烧模型、预混燃烧模型。污染物生成模型、相变模型、Rosseland辐射模型、确定质量流率的周期性流动模型和周期性换热模型。 %%%有点重复,但是可以看看加深理解 Fluent提供三种不同的求解方法;分离解、隐式耦合解、显示耦合解。分理解和耦合解的主要区别在于:连续方程、动量方程、能量方程和 组分方程解的步骤不同。 分离解按照顺序解,耦合解是同时解。两种解法都是最后解附加的标量方程。隐式解和显示解的区别在于线性耦合方程的方式不同。 Fluent默认使用分离求解器,但是对于高速可压流动,强体积力导致 的强烈耦合流动(流体流动耦合流体换热耦合流体的混合,三者相互耦合的过程—文档整理者注)(浮力或者旋转力),或者在非常精细的网格上的流动,需要考虑隐式解。这一解法耦合了流动和能量方程, 收敛很快。%%% (2)、其他求解器的选择 在实际问题中,除了要计算流场,有时还要计算温度场或者浓度场等,因此还需要其他的模型。主要的模型有: Multiphase(多相流动)viscous(层流或湍流)energy(是否考虑传热)species(反应及其传热相关) (3)操作环境的设置 Define→operation→condition

泛函分析在数值分析中的应用

泛函分析在数值分析中 的应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

泛函分析在数值分析中的应用 刘肖廷工程力学 一、数学概述 数学是一门从集合概念角度去研究物质世界数量关系与空间形式的基础的自 然学科。它从应用的角度可以分为基础数学与应用数学两大范畴,而基础数学 又可以划分为纯数学和基础应用数学两大范畴。其中,纯数学是建立在基础应 用数学基础上进行的单纯的数学研究。可见基础应用数学是数学学科的基础。 基础应用数学以代数学,几何学,分析学与拓扑学为基础研究物质世界的数 学关系与空间形式。分而言之,代数学主要是从集合概念角度去研究物质世界 的数量关系;几何学主要是从集合概念的角度去研究物质世界的空间形式;分 析学则主要研究集合间的映射关系及其运算;而拓扑学则包含点集拓扑,代数 拓扑,微分拓扑,辛拓普等几个分支,融合与代数学与几何学之中。 应用数学则是以基础数学的基本方法(代数,几何,分析)为基础,去探讨 物质世界不同类型的数量关系与空间形式的。它主要包括三角学,概率论,数 理统计,随机过程,积分变换,运筹学,微分方程,积分方程,模糊数学,数 值分析,数值代数,矩阵论,测度论,李群与李代数等领域。当然,我们同样 不能忽视应用数学对基础数学在理论上的支持与贡献。 由此可见,集合概念是数学的核心概念,代数、几何与分析是是数学的三大 基本方法,代数学、几何学、分析学与拓扑学是支撑数学大厦的四根最紧要的 支柱,此四者同时又是相互联系,不可分割的。这一点印证了一句名言,数学 的魅力正在于其中各个分支之间的相互联系。 泛函分析的基本内容和基本特征 (一)度量空间和赋范线性空间 1、度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的抽 象空间。19 世纪末,德国数学家G.康托尔创立了集合论,为各种抽象空间的 建立奠定了基础。20 世纪初期,法国数学家M. R. 弗雷歇发现许多分析学的 成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度盘空间的 d?→。若对于任何x, 概念。定义:设x 为一个集合,一个映射: X X R y,z属于x,有(1) (正定性)(x,y)0 d=。当且仅当x y d≥,且(x,y)0 =; (2)

fluent中文简明教程

第一章Fluent 软件的介绍 fluent 软件的组成: 软件功能介绍: GAMBIT 专用的CFD 前置处理器(几何/网格生成) Fluent4.5 基于结构化网格的通用CFD 求解器 Fluent6.0 基于非结构化网格的通用CFD 求解器 Fidap 基于有限元方法的通用CFD 求解器 Polyflow 针对粘弹性流动的专用CFD 求解器 Mixsim 针对搅拌混合问题的专用CFD 软件 Icepak 专用的热控分析CFD 软件 软件安装步骤: 前 处 理 gambit 软 件 Fluent6.0 Fluent5.5&4.5 Fidap Polyflow Mixsim Icepack 通用软件 专用软件

step 1: 首先安装exceed软件,推荐是exceed6.2版本,再装exceed3d,按提示步骤完成即可,提问设定密码等,可忽略或随便填写。 step 2: 点击gambit文件夹的setup.exe,按步骤安装; step 3: FLUENT和GAMBIT需要把相应license.dat文件拷贝到FLUENT.INC/license目录下; step 4:安装完之后,把x:\FLUENT.INC\ntbin\ntx86\gambit.exe命令符拖到桌面(x为安装的盘符); step 5: 点击fluent源文件夹的setup.exe,按步骤安装; step 6: 从程序里找到fluent应用程序,发到桌面上。 注:安装可能出现的几个问题: 1.出错信息“unable find/open license.dat",第三步没执行; 2.gambit在使用过程中出现非正常退出时可能会产生*.lok文件,下次使用不能打开该工作文件时,进入x:\FLUENT.INC\ntbin\ntx86\,把*.lok文件删除即可; 3.安装好FLUENT和GAMBIT最好设置一下用户默认路径,推荐设置办法,在非系统分区建一个目录,如d:\users a)win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件 修改本地路径为d:\users,重起到该用户运行命令提示符,检查用户路径是否修改; b)xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式在快捷方式-起始位置加入D:\users,重起检查。 几种主要文件形式: jou文件-日志文档,可以编辑运行; dbs文件-gambit工作文件; msh文件-从gambit输出得网格文件; cas文件-经fluent定义后的文件; dat文件-经fluent计算数据结果文件。 第二章专用的CFD前置处理器——Gambit GAMBIT软件是面向CFD的前处理器软件,它包含全面的几何建模能力和功能强大的网格划分工具,可以划分出包含边界层等CFD特殊要求的高质量的网格。GAMBIT可以生成FLUENT5、FLUENT4.5、FIDAP、POL YFLOW等求解器所需要的网格。Gambit软件将功能强大的几何建模能力和灵活易用的网格生成技术集成在一起。使用Gambit软件,将大大减小CFD应用过程中,建立几何模型和流场和划分网格所需要的时间。用户可以直接使用Gambit软件建立复杂的实体模型,也可以从主流的CAD/CAE系统中直接读入数据。Gambit软件高度自动化,所生成的网格可以是非结构化的,也可以是多种类型组成的混合网格。 一. Gambit图形用户界面:

数值计算实例

数值计算 插值 假设需要得到x 坐标每改变0.1 时的y 坐标, 用三次插值方法对机翼断面下缘轮廓线上的部分数据加细, 并作出插值函数的图形. 程序: clear, close all x=[0,3,5,7,9,11,12,13,14,15]; y=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]; plot(x,y); xi=0:0.1:15; yi_cubic=interp1(x,y,xi,'cubic'); plot(x,y,'ro',xi,yi_cubic); pp=csape(x,y,'second'); v=ppval(pp,xi); v; T=(ppval(pp,0.1)-ppval(pp,0))/0.1; angle=atan(T)*180/pi; s=v(130:151); ss=min(s); 图形: 最小二乘拟合

已知空气温度与动力粘度关系如下,进行最小二乘拟合 0℃170.8×10^-4mPa.s 40℃190.4×10^-4mPa.s 74 ℃210.2×10^-4mPa.s 229 ℃263.8×10^-4mPa.s 334℃312.3×10^-4mPa.s 409℃341.3×10^-4mPa.s 481℃358.3×10^-4mPa.s 565℃375.0×10^-4mPa.s 638℃401.4×10^-4mPa.s 750 ℃426.3×10^-4mPa.s 810 ℃441.9×10^-4mPa.s 程序: >> x=[0 40 74 229 334 409 481 565 638 750 810]; >> y=[170.8 190.4 210.2 263.8 312.3 341.3 358.3 375.0 401.4 426.3 441.9]; >> p=polyfit(x,y,2) p = -0.0002 0.4652 172.5460 >> xi=[0:2:810]; >> yi=polyval(p,xi); >> plot(x,y,'ko-',xi,yi,'k--') 解线性方程组的直接法

相关主题