搜档网
当前位置:搜档网 › 高中物理奥赛模拟试题解析

高中物理奥赛模拟试题解析

高中物理奥赛模拟试题解析
高中物理奥赛模拟试题解析

答图2

R 1. (10分)1961年有人从高度H=22.5m 的大楼上向地面发射频率为υ0的光子,并在地面上测量接收到的频率为υ,测得υ与υ0不同,与理论预计一致,试从理论上求出0

υυυ-的值。 解:光子的重力势能转化为光子的能量而使其频率变大,有

mgH=h(υ-υ0)

而根据爱因斯坦的光子说和质能方程,对光子有

h υ0=mc 2

解以上两式得:

152

8200105.2)

103(5

.2210-?=??==-c gH υυυ 2. (15分)底边为a ,高度为b 的匀质长方体物块置于斜面上,斜面和物块之间的静摩擦因数为μ,斜面的倾角为θ,当θ较小时,物块静止于斜面上(图1),如果逐渐增大θ,当θ达到某个临界值θ0时,物块将开始滑动或翻倒。试分别求出发生滑动和翻倒时的θ,并说明在什么条件下出现的是滑动情况,在什么条件下出现的是翻倒情况。 解:刚开始发生滑动时,

mgsin θ0=μmgcos θ0

tan θ0=μ,即θ0=arctan μ

刚开始发生翻倒时,如答图1所示,有θ1=φ,

tan φ=

b a ,φ=arctan b

a 即θ1≥arctan b

a

时,发生翻倒。

综上所述,可知:

当μ>b a 时,θ增大至arctan b a

开始翻倒;

当μ<b

a

时,θ增大至arctan μ开始滑动。

3. (15分)一个灯泡的电阻R 0=2Ω,正常工作电压U 0=

4.5V ,由电动势U =6V 、内阻可忽略的电池供电。利用一滑线变阻器将灯泡与电池相连,使系统的效率不低于η=0.6。试计算滑线变阻器的阻值及它应承受的最大电流。求出效率最大的条件并计算最大效率。

解:如答图2所示,流过灯泡的电流为I 0=U 0/R 0=2.25A ,其功率为P 0= U 0I 0=U 02

/R 0=10.125W 。

用R 1和R 2表示变阻器两个部分的电阻值。系统的总电流为I 1,消耗的总功率为P 1= U I 1,

效率为1

02

10I UR U P P ==η………………………①

因U 0、U 和R 0的数值已给定,所以不难看出,效率与

电流I 1成反比。

答图1

答图3 ω 若效率为0.6,则有A UR U I 81.202

1==η

………………②

变阻器的上面部分应承受这一电流。利用欧姆定律,有

Ω=-=

53.01

2I U U R ………………③ 变阻器下面部分的阻值为Ω=-=

80

10

1I I U R ………………④

变阻器的总电阻为8.53Ω。

式①表明,本题中效率仅决定于电流I 1。当I 1最小,即I 1=0时效率最大,此时R 1=∞(变阻器下面部分与电路断开连接),在此情形下,我们得到串联电阻为

Ω=-=

67.00

2I U U R , 效率为75.0002

0002

0====U

U

UU U I UR U η

4. (20分)如图2,用手握着一绳端在水平桌面上做半径为r 的匀速圆周运动,圆心为O ,角速度为ω。绳长为l ,方向与圆相切,质量可以忽略。绳的另一端系着一个质量为m 的小球,恰好也沿着一个以O 点为圆心的大圆在桌面上运动,小球和桌面之间有摩擦,试求: ⑴ 手对细绳做功的功率P ;

⑵ 小球与桌面之间的动摩擦因数μ。

解:⑴ 设大圆为R 。由答图3分析可知R=22l r +

设绳中张力为T ,则 Tcos φ=m R ω2

,cos φ=

R

l 故T=l

R m 2

2ω,

P=T ·V=l

l r r m r l R m )

(22322+=??ωωω ⑵ f =μmg=Tsin φ

T=l

l r m l R m )

(22222+=ωω sin φ=

2

2

l

r r R

r +=

图3

所以,μ=

gl

l r r 2

22+ω

5. (20分)如图3所示,长为L 的光滑平台固定在地面上,平台中间放有小物体A 和B ,两者彼此接触。A 的上表面是半径为R 的半圆形轨道,轨道顶端距台面的高度为h 处,有一个小物体C ,A 、B 、C 的质量均为m 。在系统静止时释放C A 、C 始

终接触,试求:

⑴ 物体A 和B 刚分离时,B 的速度;

⑵ 物体A 和B 分离后,C 所能达到的距台面的最大高度;

⑶ 试判断A 从平台的哪边落地,并估算A 从与B 分离到落地所经历的时间。

解:⑴ 当C 运动到半圆形轨道的最低点时,A 、B 将开始分开。在此以前的过程中,由A 、B 、

C 三个物体组成的系统水平方向的动量守恒和机械能守恒,可得: mV A +mV B +mV C =0

mgR=

21mV A 2+21mV B 2+2

1mV C 2

而V A =V B 可解得:V B =

gR 33

1

⑵ A 、B 分开后,A 、C 两物体水平方向的动量和机械能都守恒。C 到最高点时,A 、C 速度都是V ,C 能到达的距台面的最大高度为l ,则 m V B =2m V

mg (l +R -h )+

21(2m )V 2=21m V A 2

+2

1m V C 2 可解得:l =h -

4

R

⑶ 很明显,A 、C 从平台左边落地。

因为L>>R ,所以可将A 、C 看成一个质点,速度为2

1

V B ,落下平台的时间L gR

t B V L 32

2=

=

6. (20分)如图4所示,PR 是一块长L 的绝缘平板,整个空间有一平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B 。一个质量为m 、带电量为q 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =4

L

,物体与平板间的动摩擦因数为μ。求: ⑴ 物体与挡板碰撞前后的速度V 1和V 2; ⑵ 磁感强度B 的大小;

图4

⑶ 电场强度E 的大小和方向。

解:物体碰挡板后在磁场中做匀速运动,可判断物体带的是正电荷,电场方向向右。

⑴ 物体进入磁场前,在水平方向上受到电场力和摩擦力的作用,由静止匀加速至V 1。

2

12

12)(mV L mg qE =?

-μ…………………① 物体进入磁场后,做匀速直线运动,电场力与摩擦力相等

qE B qV mg =+)(1μ…………………②

在碰撞的瞬间,电场撤去,此后物体仍做匀速直线运动,速度为V 2,不再受摩擦力,在竖直方向上磁场力与重力平衡。

mg B qV =2…………………③

离开磁场后,物体在摩擦力的作用下做匀减速直线运动

2

22

1041mV L mg -=?-μ…………………④

由④式可得:2

22gL

V μ=

代入③式可得:L

g m qB μ/2=

…………………⑤

解以上各方程可得:gL V μ21=

⑵ 由③式得:L

q gL

m qV mg B μμ22=

= ⑶ 由②式可得:

q

mg

L q gL m gL q

mg

B V q

mg

E μμμμμμμμ3221=

?

?+=

+=

7. (20分)一只蚂蚁从蚂蚁洞沿直线爬出,已知爬出速度v 的大小与距蚂蚁洞中心的距离L 成反比,当蚂蚁到达距蚂蚁洞中心的距离L 1=1m 的A 点时,速度大小为v 1=20cm/s ,问当蚂蚁到达距蚂蚁洞中心的距离L 2=2m 的B 点时,其速度大小为v 2=? 蚂蚁从A 点到达B 点所用的时间t=?

解:由已知可得:蚂蚁在距离洞中心上处的速度v 为v =k

L

1

,代入已知得:k=vL=0.2×1m 2/s=0.2 m 2

/s ,所以当L 2=2m 时,其速度v 2=0.1m/s

由速度的定义得:蚂蚁从L 到L+ΔL 所需时间Δt 为

L L k

v L t ???=?=

?1

……………………①

类比初速度为零的匀加速直线运动的两个基本公式??

?=??=?at

v t v s

在t 到t+Δt 时刻所经位移Δs 为t t a s ???=?………………② 比较①、②两式可以看出两式的表述形式相同。

据此可得蚂蚁问题中的参量t 和L 分别类比为初速度为零的匀加速直线运动中的s 和t ,

k

1

相当于加速度a 。 于是,类比s=21a t 2

可得:在此蚂蚁问题中2121L k

t ??=

令t 1对应L 1,t 2对应L 2,则所求时间为??

???==2

2

221

12121L k t L k t

代入已知可得从A 到B 所用时间为: Δt =t 2-t 1=

s L L k )12(2

.021)(21222

122-?=- =7.5s 8. (20分)在倾角为30°的斜面上,固定两条足够长的光滑平行导轨,一个匀强磁场垂直于斜面向上,磁感强度B=0.4T ,导轨间距L=0.5m ,两根金属棒ab 、cd 水平地放在导轨上,金属棒质量m ab =0.1kg ,m cd =0.2kg ,两根金属棒总电阻r=0.2Ω,导轨电阻不计(如图5)。现使金属棒ab 以v =2.5m/s 的速度沿斜面向上匀速运动。求: ⑴ 金属棒cd 的最大速度;

⑵ 在cd 有最大速度时,作用在ab 上的外力做功的功率。

解:开始时,cd 棒速度为零,ab 棒有感应电动势,的电流,进而求出cd 棒所受到的安培力F(可判断出安培力方向沿斜面向上)。

如果F >m cd g sin30°,cd 将加速上升,产生一个跟电流方向相反的电动势,回路中的电流将减小,cd 棒所受到的安培力F 随之减小,直到F=m cd g sin30°。

如果F <m cd g sin30°,cd 将加速下滑,产生一个跟电流方向相同的电动势,回路中的电流将增大,cd 棒所受到的安培力F 随之增大,直到F=m cd g sin30°。 ⑴ 开始时,cd 棒速度为零,回路中的电流

A A r Blv I 5.22

.05

.25.04.0=??==

这时cd 棒受到平行斜面向上的安培力

F =I lB =2.5×0.5×0.4N=0.5N 而m cd g sin30°=0.2×10×0.5N=1N

故cd 将加速下滑。当cd 的下滑速度增大到v m 时,需要有安培力F =m cd g sin30° 此时回路中的电流r

v v Bl r Blv Blv I m m m )

(+=+=

cd 受到的安培力F=I m lB =m cd g sin30°

所以s m s m v l B r g m v cd m /5.2/)5.25.04.02

.01(30sin 2

222=-??=-??=

即金属棒cd 的最大速度为2.5m/s 。

⑵ 当cd 棒速度达到最大值v m 时。回路中的电流

A A r v v Bl I m m 52

.0)

5.25.2(5.04.0)(=+??=+=

作用在ab 棒上的外力

F=I m lB +m ab g sin30°=(5×0.5×0.4+0.1×10×0.5)N=1.5N 外力做功的功率P F =Fv=1.5×2.5W=3.75W

高中物理竞赛模拟试题三及答案

1、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2′ 沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大? 2.如图(a )所示,一滑块在光滑曲面轨道上由静止开始下滑h 高度后进入水平传送带,传送带的运行速度大小为v =4m/s ,方向如图。滑块离开传送带后在离地H 高处水平抛出,空气阻力不计,落地点与抛出点的水平位移为s 。改变h 的值测出对应的 s 值,得到如图(b )所示h ≥0.8m 范围内的s 2随h 的变化图线,由图线可知,抛出点离地高度为H =__________m ,图中h x =__________m 。 3 (12分)过山车质量均匀分布,从高为h 的平台上无动力冲下倾斜轨道并 进入水平轨道,然后进入竖直圆形轨道,如图所示,已知过山车的质量为M ,长为L ,每节车厢长为a ,竖直圆形轨道半径为R, L > 2πR ,且R >>a ,可以认为在圆形轨道最高点的车厢受到前后车厢的拉力沿水平方向,为了不出现脱轨的危险,h 至少为多少?(用R .L 表示,认为运动时各节车厢速度大小相等,且忽略一切摩擦力及空气阻力) 4.(20分)如图所示,物块A 的质量为M ,物块B 、C 的质量都是m ,并都可看作质点,且m <M <2m 。三物块用细线通过滑轮连接,物块B 与物块C 的距离和物块C 到地面的距离都是L 。现将物块A 下方的细线剪断,若物块A 距滑轮足够远且不计一切阻力,物块C 落地后不影响物块A 、B 的运动。求: (1)物块A 上升时的最大速度; (2)若B 不能着地,求m M 满足的条件; (3)若M =m ,求物块A 上升的最大高度。 5.(12分)如图所示,一平板车以某一速度v 0 匀速行驶,某时刻一货箱(可视为质点)无初速度地放置 s x (b )

高中物理奥林匹克竞赛专题4.动量和角动量习题

习题 4-1. 如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。在质点旋转一周的过程中,试求: (1)质点所受合外力的冲量I ; (2)质点所受张力T 的冲量I T 。 解: (1)根据冲量定理:???==t t P P d dt 00 ??P P F 其中动量的变化:0v v m m - 在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为0,冲量之和也为0,所以本题中质点所受合外力的冲量I 为零 (2)该质点受的外力有重力和拉力,且两者产生的冲量大小相等,方向相反。 重力产生的冲量=mgT=2πmg /ω;所以拉力产生的冲量2πmg /ω,方向为竖直向上。 4-2.一物体在多个外力作用下作匀速直线运动,速度=4m/s 。已知其中一力F 方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。求:

(1)力F 在1s 到3s 间所做的功; (2)其他力在1s 到s 间所做的功。 解: (1)由做功的定义可知: (2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F 做的功为125.6J 时,其他的力的功为-125.6J 。 4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为j i r t b t a ωωsin cos +=,求: (1)质点在任一时刻的动量; (2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。 解:(1)根据动量的定义:(sin cos )P mv m a t b t ωωωω==-+i j (2)从0=t 到ωπ/2=t 的时间内质点受到的冲量等于它在这段时间内动量的变化,因为动量没变,所以冲量为零。 4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。今有一质量为m =20g 的子弹

全国高中物理竞赛专题十三 电磁感应训练题解答

1、 如图所示为一椭圆形轨道,其方程为()22 2210x y a b a b +=>>,在中心处有一圆形区域, 圆心在O 点,半径为()r b <,圆形区域中有一均匀磁场1B ,方向垂直纸面向里,1B 以 1B t k ??=的速率增大,在圆外区域中另 有一匀强磁场2B ,方向与1B 相同,在初始时,A 点有一带正电q 的质量为m 的粒子, 粒子只能在轨道上运动,把粒子由静止释放,若要其通过C 点时对轨道无作用力,求2B 的大小。 解:由于r b a <<,故轨道上距O 为R 的某处,涡旋电场强度为 22122B r kr E R t R ?==? 方向垂直于R 且沿逆时针方向,故q 逆时针运动。 q 相对O 转过θ?角时,1B 对其做功为 2 2kr W F x Eq x q R R θ?=?=?=? 而2B 产生的洛伦兹力及轨道支持力不做功,故q 对O 转过θ角后,其动能为 2 2122 k kr E mv W q θ==?=∑ q 的速度大小为 2kr q v m θ = q 过C 时,()3 20,1,2,2 n n θππ=+= C 处轨道不受力的条件为 2 2mv qvB ρ = 其中ρ为C 处的曲率半径,可以证明:2 a b ρ=(证明略) A C 1 B 2 B O x y

将v 和θ的表达式代入上式可得 ()22 320,1,2,2br mk B n n a q ππ?? = += ??? 2、 两根长度相等,材料相同,电阻分别为R 和2R 的细导线,两者相接而围成一半径为a 的圆环,P Q 、为其两个接点,如图所示,在圆环所围成的区域内,存在垂直于图面、指向纸内的匀强磁场,磁感应强度的大小随时间增大的变化率为恒定值b 。已知圆环中感应电动势是均匀分布的,设M N 、为圆环上的两点,M N 、间的圆弧为半圆弧的一半,试求这两点间的电压()M N U U -。 解:根据法拉第定律,整个圆环中的感应电动势的大小 2E r b t π?Φ = =? (1) 按楞次定律判断其电流方向是逆时针的,电流大小为 23E E I R R R = =+ (2) 按题意,E 被均匀分布在整个圆环上,即?MN 的电动势为4E ,?NQPM 的电动势为34E ,现考虑?NQPM ,在这段电路上由于欧姆电阻所产生电势降落为()22I R R +,故 3242M N R U U E R I ? ?-=-+ ?? ? (3) 由(1)、(2)、(3)式可得 21 12 M N U U r b π-=- (4) 当然,也可采用另一条路径(?MTN 圆弧)求电势差 ()211 424321212 N M M N E R E E R U U I E r b U U R π-= -=-===--g g 与(4)式相符。 3、 如图所示,在边长为a 的等边三角形区域内有匀强磁场B ,其方向垂直纸面向外。一个边长也为a 的等边三角形导轨框架ABC ,在0t =时恰好与上述磁场区域的边界重合,而后以周期T 绕其中心在纸面内顺时针方向匀速转动,于是在框架ABC 中产生感应电流,规 R T M N P Q 2R S

全国高中物理竞赛模拟试题

2010年全国高中物理竞赛模拟试题 (全卷10题,共200分,做题时间120分钟) 1.(10分)正点电荷q1和负点电荷-q2(q2>0)固定在x轴上,分居于垂直x轴的光滑绝缘薄板的两侧,带正电的小球也处于x轴上且靠着板,如图所示,起初,板处于负电荷不远处,球处于平衡,板开始沿x轴缓慢平移扩大与负电荷的距离,当距离扩大到L/3时,小球从x轴“逃逸”,求比值q1/q2。物体对电场的影响忽略,重力也不计。 2.(18分)步行者想要在最短的时间内从田野A处出发到田野B处,A、B两处相距1300m,一条直路穿过田野,A处离道路600m,B处离道路100m,步行者沿田野步行速度为3km/h,沿道路步行速度为6km/h,问步行者应该选择什么样的路径?最短时间为多少?讨论A、B 两处位于道路同侧与异侧两种情况。

3.(16分)滑轮、重物和绳组成如图所示系统,重物1和2的质量已知:m1=4kg、m2=6kg,应如何设置第三个重物的质量m3,才能使系统处于平衡。滑轮和绳无重,滑轮摩擦不计,不在滑轮上的绳均处于水平或竖直。 4.(20分)一根长金属丝烧成螺距为h、半径为R的螺旋线,螺旋线轴竖直放置,珠子沿螺旋线滑下,求珠子的稳定速度υ0,金属丝与珠子之间的摩擦因数为μ。

5.(20分)用长1m的不可伸长的弹性轻线系上两个同样小球,使它们静止在光滑水平面上,彼此相距50cm,现使其中一个球沿着垂直与两球心连线方向,以速度υ0=0.1m/s抛去,求经过3min后两球速度。 6.(30分)质量为M的航天站和对接上的质量为m的卫星一起沿着圆轨道绕地球运行,其轨道半径为地球半径R的n倍(n=1.25)某一时刻,卫星沿运动方向从航天站上射出后,沿椭圆轨道运行,其远地点到地心距离为8nR。当质量之比m/M为何值时,卫星刚好绕地球转一圈后再次回到航天站。(m<M)

高中物理竞赛专题训练

高中物理竞赛专题训练 1、一圆柱体的坚固容器,高为h,上底有一可以打开和关闭的密封阀门,现把此容器沉入深为H 的湖底,并打开阀门,让水充满容器,然后关闭阀门。设大气压强为P0, 湖水的密度为,则容器内部底面受到的向下的压强为_________,若将 此容器从湖底移动湖面上,这时容器内部底面上受到的向下的压强为 _________。(P 0+gH、P0+gH) 2、氢原子处于基态时,能量E=_________;当氢原子处于n=5的能量状态时,氢原子的能量为__________;当氢原子从n=5状态跃迁到n=1的基态时,辐射光子的能量是_________,是_________光线(红外线、可见或紫外线)。(—13.6 ev、—0.54ev 、13.06ev、紫外线) 3、质量为m的物体A置于质量为M、倾角为的斜面B上,A、B之间光滑接触,B的底面与水平地面也是光滑接触。设开始时A与B均为静止,而后A以某初速度沿B的斜面向上运动,如图所示,试问A在没有到达斜面顶部前是否会离开斜面?为什么?讨论中不必考虑B向前倾倒的可能性。(不会离开斜面,因为A与B的相互作用力为(mMcos g) / [M+m(sin)2],始终为正值) 4、一电荷Q1均匀分布在一半球面上,无数个点电荷、电量均为Q2位于通过球心的轴线上,且在半球面的下部。第k个电荷与球心的距离为,而k=1,2,3,4……,设球心处的电势为零,周围空间均为自由空间。若Q1已知求Q2。(—Q1/2)

5、一根长玻璃管,上端封闭,下端竖直插入水银中,露出水银面的玻璃管长为76 cm。水银充满管子的一部分。玻璃管的上端封闭有0.001mol的空气,如图所示。外界大气压强为76cmHg。空气的定容摩尔热容量为C V =20.5J/mol k。当玻璃管与管内空气的温度均降低100C时,试问管内空气放出多少热量?(0.247焦耳) 6、如图所示,折射率n=1.5的全反射棱镜上方6cm处放置一物体AB,棱镜直角边长为6cm,棱镜右侧10cm处放置一焦距f1=10cm的凸透镜,透镜右侧15cm处再放置一焦距f2=10cm的凹透镜,求该光学系统成像的位置和像放大率。(在凹透镜的右侧10cm处、放大率为2) 7、在边长为a的正方形四个顶点上分别固定电量均为Q的四个点电荷,在对角线交点上放一个质量为m,电量为q(与Q同号)的自由点电荷。若将q沿着对角线移动一个小的距离,它是否会做周期性振动?若会,其周期是多少?(会做周期性振动,周期为) 8、一匀质细导线圆环,总电阻为R,半径为a,圆环内充满方向垂直于 环面的匀强磁场,磁场以速率K均匀的随时间增强,环上的A、D、C三点位置对称。电流计G

高中物理竞赛复赛模拟试题(有答案)

复赛模拟试题一 1.光子火箭从地球起程时初始静止质量(包括燃料)为M 0,向相距为R=1.8×106 1.y.(光年)的远方仙女座星飞行。要求火箭在25年(火箭时间)后到达目的地。引力影响不计。 1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M 0ˊ,试问M 0/ M 0ˊ的最小值是多少? 分析:光子火箭是一种设想的飞行器,它利用“燃料”物质向后辐射定向光束,使火箭获得向前的动量。求解第1问,可先将火箭时间 a 250=τ(年)变换成地球时间τ,然后由距离 R 求出所需的火箭速度。火箭到达目的地时,比值00 M M '是不定的,所谓最小比值是指火箭刚 好能到达目的地,亦即火箭的终速度为零,所需“燃料”量最少。利用上题(本章题11)的结果即可求解第2问。 解:1)火箭加速和减速所需时间可略,故火箭以恒定速度υ飞越全程,走完全程所需火箭时间(本征时间)为 a 250=τ(年) 。利用时间膨胀公式,相应的地球时间为 22 1c υττ- = 因 υ τR = 故 22 1c R υτυ - = 解出 () 1022 022 20210 96.0111-?-=??? ? ??-≈+ = c R c c R c c ττυ 可见,火箭几乎应以光速飞行。 (2)、火箭从静止开始加速至上述速度υ,火箭的静止质量从M 0变为M ,然后作匀速运动,火 箭质量不变。最后火箭作减速运动,比值00 M M '最小时,到达目的地时的终速刚好为零,火箭 质量从M 变为最终质量0M '。加速阶段的质量变化可应用上题(本章题11)的(3)式求出。 因光子火箭喷射的是光子,以光速c 离开火箭,即u=c ,于是有 2 1011???? ??+-=ββM M (1)

高中物理竞赛模拟试题四

高中物理竞赛模拟试题四 一. 如图11-16所示,两个木块A 和B ,质量的的别为m A 和m B ,紧挨着并排放在水平桌面上,A ,B 间的接触面垂直于图面而且与水平成θ角。A ,B 间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦系数和滑动摩擦系数均为μ。开始时A ,B 都静止,现施一水平推力 F 于A ,要使A ,B 向右加速运动,且A ,B 间不发生相对滑动,则 1.μ的数值应满足什么条件? 2.推力的最大值不能超过多少?(只考虑平动,不考虑转动问题) 解:1)、令N 表示A ,B 间的相互作用力,垂直 于接触面,如图11-17所示。若A 相对于B 发生滑动,则A 在竖直方向必有加速度。现要使A 相对于B 不滑动,则A 受的力N 在竖直方向的分力必须小 于或等于A 的重力。所以要使B 向右加速运动而同时A 相对于B 不滑动,必须同时满足下列二式: ,0)cos (sin >=+-a m N g m N B A θμθ (1) .cos g m N A ≤θ (2) 由(1),(2)二式可解得 . tan θμB A A m m m +< (3) 2)、当满足(3)式时,又由于A 的水平方向的加速度和B 相同,即 ()(), cos sin sin cos B A A A m N g m N m N N g m F θμθθθμ+-=--- (4) 由(2),(4)二式可解得 ).(tan )(μθ-+≤ g m m m m F B A B A (5) 二.有两根长度均为50cm 的金属丝A 和B 牢固地焊在一起,另两端固定在牢固的支架上(如图21-3)。其线胀系数分别为αA =1.1×10-5 /℃,αB =1.9×10-5 /℃,倔强系数分别为K A =2×106 N/m ,K B =1×106 N/m ;金属丝A 受到450N 的拉力时就会被拉断,金属丝B 受到520N 的拉力时才断, 假定支架的间距不随温度改变。问:温度由+30°C 下降至-20°C 时,会出现什么情况?(A 、B 丝都不断呢,还是A 断或者B 断呢,还是两丝都断呢?)不计金属丝的重量,在温度为30°C 时它们被拉直但张力为零。 解:金属A 和B 从自由状态降温,当温度降低t ?时的总缩短为 图11-16 图11-17 图21-3

高中物理奥赛专题十三 磁场

专题十三 磁场 【拓展知识】 1.几种磁感应强度的计算公式 (1)定义式:IL F B = 通电导线与磁场方向垂直。 (2)真空中长直导线电流周围的磁感应强度:r I K r I B ==πμ20 (πμ20=K )。 式中r 为场点到导线间的距离,I 为通过导线的电流,μ0为真空中的磁导率,大小为4π×10-7H/m 。 (3)长度为L 的有限长直线电流I 外的P 处磁感应强度:)cos (cos 4210θθπμ-= r I B 。 (4)长直通电螺线管内部的磁感应强度:B=μ0nI 。 式中n 为单位长度螺线管的线圈的匝数。 2.均匀磁场中的载流线圈的磁力矩公式:M=NBISsin θ。 式中N 为线圈的匝数,S 为线圈的面积,θ为线圈平面与磁场方向的夹角。 3.洛伦兹力 F =qvBsin θ (θ是v 、B 之间的夹角) 当θ=0°时,带电粒子不受磁场力的作用。 当θ=90°时,带电粒子做匀速圆周运动。 当0°<θ<时90°,带电粒子做等距螺旋线运动,回旋半径、螺距和回旋周期分别为 qB mv R θsin =; qB mv h θπcos 2= ; qB m T π2= ; 4.霍尔效应 将一载流导体放在磁场中,由于洛伦兹力的作用,会在磁场和电流两者垂直的方向上出现横向电势差,这一现象称为霍尔效应,这电势差称为霍尔电势差。

【典型例题】 1.如图所示,将均匀细导线做成的环上的任意两点A和B与固定电源连接起来,总电流为I,计算由环上电流引起的环中心的磁感应强度。 2.如图所示,倾角为θ的粗糙斜面上放一木制圆柱,其质量为m = 0.2kg,半径为r,长为l =0.1m,圆柱上顺着轴线绕有N =10匝线圈,线圈平面与斜面平行,斜面处于竖直向上的匀强磁场中,磁感应强度为B =0.5T,当通入多大电流时,圆柱才不致往下滚动? 3.如图所示,S为一离子源,它能各方向会均等地持续地大量发射正离子,离子的质量皆为m、电量皆为q,速率皆为v0。在离子源的右侧有一半径为R的圆屏,图中OOˊ是通过圆屏的圆心并垂直于屏面的轴线,S位于轴线上,离子源和圆屏所在的空间有一范围足够大的匀强磁场,磁感应强度的大小为B,方向垂直于圆屏向右。在发射的离子中,有的离子不管S的距离如何变化,总能打到圆屏面上,求这类离子的数目与总发射离子数之比,不考虑离

全国中学生物理竞赛模拟题(程稼夫)

竞赛模拟题 1. 如右图所示,平行四边形机械中,121211 22 O A O B O O AB l == ==,已知O 1A 以匀角速度ω转动,并通过AB 上套筒C 带动CD 杆在铅垂槽内平动。如以O 1A 杆为动参照系, 在图示位置时,O 1A 、O 2B 为铅垂,AB 为水平,C 在AB 之中点,试分析此瞬时套筒上销钉C 点的运动,试求:(1)C 点的牵连速度的大小V e ;(2)C 点的相对速度的大小V r ;(3)C 点的牵连加速度的大小a e ;(4) C 点的相对加速度的大小a r ;(提示:C 点绝对加 速度a e r c a a a a =++ ) (5)C 点的科里奥利加速度的大小a c ;(提示:2c r a v ω=? ) 2. 如右图所示,水平面内光滑直角槽中有两个质量均为m 的滑块A 和B ,它们由长为L 的 轻刚性杆铰链连接,初始静止,OAB α∠=,今在OA 方向给滑块A 作用一冲量I ,证 明:经过时间2sin ml t I πα = 后,A 和B 回到他们的初始状态。又证明:杆中张力在整个运 动期间保持常值,并求出它的大小。 3. 如右图所示,气枪有一气室V 及直径3mm 的球形钢弹B ,气室中空气的初态为900kP a 、 21C ? ,当阀门迅速打开时,气室中的气体压力使钢弹飞离枪管,若要求钢弹离开枪管 时有100m/s 的速度,问最小容积V 及枪管长度L 应为多少?已知空气C v =0.716kJ/(kg.k),R 空气 =0.287kJ/(kg.k),大气压P b =100kP a ,钢的密度3 7770/kg m ρ=。设枪管内径也为

高中物理奥赛复赛专项训练(全12套)每日两题

物理竞赛真题专项(1) 静力学平衡 1.〔26届复赛〕二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。已知桌腿受力后将产生弹性微小形变。现于桌面中心点 O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令 c OA OP ,求桌面对桌腿1的压力F 1。 A

设桌面对四条腿的作用力皆为压力,分别为1F 、2F 、3F 、4F .因轻质刚性的桌面处 在平衡状态,可推得1234F F F F F +++= (1)由于对称性,24F F =. (2) 考察对桌面对角线BD 的力矩,由力矩平衡条件可得13F cF F =+. (3) 根据题意, 10≤≤c ,c =0对应于力F 的作用点在O 点,c =1对应于F 作用点在A 点. 设桌腿的劲度系数为k , 在力F 的作用下,腿1的形变为1F k ,腿2和4的形变均为 2F k ,腿3的形变为3F k .依题意,桌面上四个角在同一平面上,因此满足132 12F F F k k k ??+= ???, 即 1322F F F +=. (4) 由(1)、(2)、(3)、(4)式,可得 1214c F F += , (5) 3124 c F F -=, (6) 当1 2 c ≥ 时,03≤F .30F =,表示腿3无形变;30F <,表示腿3受到桌面的作用力为拉力,这是不可能的,故应视30F =.此时(2)式(3)式仍成立.由(3)式,可得1F cF = (7) 综合以上讨论得F c F 4121+=, 1 02c ≤≤ . (8) cF F =1,12 1≤≤c . (9) 评分标准:本题20分. (1)式1分,(2)式1分,(3)式2分,(4)式7分,得到由(8)式 表示的结果得4分,得到由(9)式表示的结果得5分. 2.〔20届复赛〕五、(22分)有一半径为R 的圆柱A ,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A 相同,半径为r 的较细圆柱B ,用手扶着圆 柱A ,将B 放在A 的上面,并使之与墙面相接触,如图所示,然后放手. 己知圆柱A 与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B 与墙面间的静摩擦系数和圆柱B 的半径r 的值各应满足什么条件?

高中物理竞赛模拟试题及参考答案

物理竞赛模拟试题及参考答案 1.在听磁带录音机的录音磁带时发觉,带轴于带卷的半径经过时间t1=20 min减小一半.问此后半径又减小一半需要多少时间? 2.一质量为m、电荷量为q的小球,从O点以和水平方向成α角的初速 度v0抛出,当达到最高点A时,恰进入一匀强电场中,如图,经过一段 时间后,小球从A点沿水平直线运动到与A相距为S的A`点后又折返 回到A点,紧接着沿原来斜上抛运动的轨迹逆方向运动又落回原抛出点, 求(1)该匀强电场的场强E的大小和方向;(即求出图中的θ角,并在 图中标明E的方向) (2)从O点抛出又落回O点所需的时间。 3.两个正点电荷Q1=Q和Q2=4Q分别置于固定在光滑绝缘水平面上的A、 B两点,A、B两点相距L,且A、B两点正好位于水平放置的光滑绝缘半 圆细管两个端点的出口处,如图所示。 (1)现将另一正点电荷置于A、B连线上靠近A处静止释放,求它在 AB连线上运动过程中达到最大速度时的位置离A点的距离。 (2)若把该点电荷放于绝缘管内靠近A点处由静止释放,已知它在管内运动过程中速度为最大时的位置在P处。试求出图中P A和AB连线的夹角θ。 4.(16分)如图所示,AB为光滑的水平 面,BC是倾角为α的足够长的光滑斜 面(斜面体固定不动)。AB、BC间用一小 段光滑圆弧轨道相连。一条长为L的均 匀柔软链条开始时静止的放在ABC面 上,其一端D至B的距离为L-a。现自由释放链条,则: ⑴链条下滑过程中,系统的机械能是否守恒?简述理由; ⑵链条的D端滑到B点时,链条的速率为多大?

5.(22分)一传送带装置示意图,其中传送带经过 AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速度为零,经传送带运送到D 处,D 和A 的高度差为h 。稳定工作时传送带速度不变,CD 段 上各箱等距排列,相邻两箱的距离为L 。每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段的微小滑动)。已知在一段相当长的时间T 内,共运送小货箱的数目N 个。这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均功率 。 6.(10分)如图所示,横截面为 1 4 圆(半径为R )的柱体放在水 平地面上,一根匀质木棒OA 长为3R ,重为G 。木棒的O 端与地面上的铰链连接,木棒搁在柱体上,各处摩擦均不计。现用一水平推力F 作用在柱体竖直面上,使柱体沿着水平地面向左缓慢移动。问:(1)当木棒与地面的夹角θ = 30°时,柱体对木棒的弹力多大? (2)当木棒与地面的夹角θ = 30°时,水平推力F 多大? 7.(12分)如图所示,ABC 为一吊桥。BC 为桥板,可绕B 轴转动。AC 为悬起吊索,通过转动轮轴A 而将吊桥收起或放下。放下时,BC 保持水平,A 在B 的正上方。已知AB 距离h ;桥板BC 的长度为L ,质量为M ,桥板的重心在板的中央,求此时吊索受的力F 。

奥赛高中物理压轴题训练专题测试

高中物理竞赛题训练专题 命题人: 张国辉 审核人: 马茹冰 编写时间:2017.12.26 【学习目标】 1.理解与掌握物理学基本知识,能够对问题进行分析求解。 2.可以灵活运用物理知识的综合与具体问题的分析,以及掌握压轴题做题方法。 3.能够准确的对复杂的物理问题进行解答,以及对物理过程进行分析。 【训练范围】物理必修1,物理必修2,物理选修3-1. 1(20分)如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ, 则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 3. (20分)如图,足够长的水平传送带始终以大小为v =3m/s 的速度向左运动,传送带上有一质量为M =2kg 的小木盒A ,A 与传送带之间的动摩擦因数为μ=0.3,开始时,A 与传送带之间保持相对静止。先后相隔△t =3s 有两个光滑的质量为m =1kg 的小球B 自传送带的左端出发,以v 0=15m/s 的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t 1=1s/3而与木盒相遇。求(取g =10m/s 2) (1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大? (2)第1个球出发后经过多长时间与木盒相遇? (3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少? 图 12

高中物理奥林匹克竞赛模拟题及答案

高中物理奥赛模拟试题一 1. (10分)1961年有人从高度H=2 2.5m的大楼上向地面发射频率为υ0的光子,并在地面上测 量接收到的频率为υ,测得υ与υ0不同,与理论预计一致,试从理论上求出 00 υυ υ- 的值。 2. (15分)底边为a,高度为b的匀质长方体物块置于斜面上,斜面和物块之间的静摩擦因数为μ,斜面的倾角为θ,当θ较小时,物块静止于斜面上(图1),如果逐渐增大θ,当θ达到某个临界值θ0时,物块将开始滑动或翻倒。试分别求出发生滑动和翻倒时的θ,并说明在什么条件下出现的是滑动情况,在什么条件下出现的是翻倒情况。 3. (15分)一个灯泡的电阻R0=2Ω,正常工作电压U0= 4.5V,由电动势U=6V、内阻可忽略的电池供电。利用一滑线变阻器将灯泡与电池相连,使系统的效率不低于η=0.6。试计算滑线变阻器的阻值及它应承受的最大电流。求出效率最大的条件并计算最大效率。 4. (20分)如图2,用手握着一绳端在水平桌面上做半径为r的匀速圆周运动,圆心为O,角速度为ω。绳长为l,方向与圆相切,质量可以忽略。绳的另一端系着一个质量为m的小球,恰好也沿着一个以O点为圆心的大圆在桌面上运动,小球和桌面之间有摩擦,试求: ⑴手对细绳做功的功率P; ⑵小球与桌面之间的动摩擦因数μ。 5. (20分)如图3所示,长为L的光滑平台固定在地面上,平台中间放有小物体A和B,两者彼此接触。A的上表面是半径为R的半圆形轨道,轨道顶端距台面的高度为h处,有一个小物体C,A、B、C的质量均为m。在系统静止时释放C,已知在运动过程中,A、C始终接触,试求: ⑴物体A和B刚分离时,B的速度; ⑵物体A和B分离后,C所能达到的距台面的最大高度; ⑶试判断A从平台的哪边落地,并估算A从与B分离到落地所经历的时间。 6. (20分)如图4所示,PR是一块长L的绝缘平板,整个空间有一平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B。一个质量为m、带电量为q的物体,

高中物理奥赛讲义全套

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23)

专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场 (33) 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40) 中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic

Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。 第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。

07高中物理竞赛模拟试题二及答案

最新高物理竞赛试题 1.图一(a)所示,质量相等的两木块A、B用一轻弹簧相连接,竖直于水平面上处于 平衡状态。一力F竖直向上作用于A,使A做匀加速直线运动。图一(b)中的(A)、 (B)、(C)、(D)分别用来表示力F从开始作用,到B将离开地面期间,力F和A的 位移x之间的关系图,其中正确的是() 2 .图五所示,质量为m的小球悬挂在质量为M的半圆形光滑轨道的顶端,台秤 的示数为(M+m)g。忽略台秤秤量时的延迟因素,则从烧断悬线开始,到小 球滚到半圆形光滑轨道底部这段时间内,台秤的示数为() (A)一直小于(M+m)g (B)一直大于(M+m)g (C)先小于(M+m)g后大于(M+m)g (D)先大于(M+m)g后小于(M+m)g 3.图十所示,半径为R、内径均匀的圆形弯管水平放置,小球在管内以足够大 的初速度v0做圆周运动,小球与管壁间的动摩擦因数为 。设小球从A到B和 从B到A的连续一周内,摩擦力对小球做功的大小分别为W1和W2,在一周内 摩擦力所做总功在大小为W3,则下列关系式中正确的是() (A)W1>W2(B)W1=W2 (C)W3=0 (D)W3=W1+W2 4.如右图所示,在足够大的光滑水平面上放有两个质量相等的物块,其中,物块A连接一个轻弹簧并处于静止状态,物块B以初速度v0向着物块A运动,当物块B与物 块A上的弹簧发生相互作用时,两物块保持在一条直线上运动。若分别用实线和虚线表示物块B和物块A的v—t图像,则两物块在相互作用过程中,正确的v—t图像是() 5.如图所示,木块M可以分别从固定斜面的顶端 沿左边或右边由静止开始滑下,且滑到A点或B点停下。 假定木块M和斜面及水平面间有相同的动摩擦因数, 斜 图十 v 图一(b) v

(完整版)高中物理会考模拟试题

高中物理会考模拟试题及答案 说明:本卷计算中g取10m/s2. 一、单解选择题(本题为所有考生必做.有16小题,每题2分,共32分.不选、多选、错选均 不给分) 1.关于布朗运动,下列说法正确的是() A.布朗运动是液体分子的无规则运动 B.布朗运动是悬浮微粒分子的无规则运动 C.悬浮颗粒越大,布朗运动越明显 D.液体温度越高,布朗运动越不明显 2.下列有关热力学第二定律的说法不.正确的是()A.不可能使热量由低温物体传递到高温物体,而不引起其他变化 B.不能可从单一热源吸收热量并把它全部用来做功,而不引起其他变化 C.第二类永动机是不可能制成的 D.热传导的可以由低温物体向高温物体方向进行 3.如图所示,以下说法正确的是() A.这是直流电 C.这是交流电,电压的有效值为1002V D.这是交流电,周期为2s 4.A、B两物体的动量之比为2:1,动能的大小之比为1:3,则它们的质量之比为()A.2:1 B.1:3 C.2:3 D.4:3 5.关于运动和力的关系,下列说法正确的是() A.当物体所受合外力不变时,运动状态一定不变 B.当物体所受合外力为零时,速度大小一定不变 C.当物体运动轨迹为直线时,所受合外力一定为零 D.当物体速度为零时,所受合外力一定为零 6.关于摩擦力,以下说法中正确的是()

A.运动的物体只可能受到滑动摩擦力 B.静止的物体有可能受到滑动摩擦力 C.滑动摩擦力的方向总是与运动方向相反 D.滑动摩擦力的方向不可能与运动方向一致 7.下列关于电容器的说法,正确的是 ( ) A .电容器带电量越多,电容越大 B .电容器两板电势差越小,电容越大 C .电容器的电容与带电量成正比,与电势差成反比 D .随着电容器电量的增加,电容器两极板间的电势差也增大 8.沿x 正方向传播的横波的波速为v =20米/秒,在t =0时刻的波动图如图所示,则下列说法正确 的是 ( ) A .该波的波长为4m ,频率为80Hz B .该波的波长为8m ,频率为2.5Hz C .x =4m 的质点正在向右运动 D .x =4m 的质点正在向上运动 9.A 、B 两个物体在同一直线上做匀变速直线运动,它们的速度图象如图所示,则 ( ) A .A 、 B 两物体运动方向一定相反 B .开头4s 内A 、B 两物体的位移相同 C .t =4s 时,A 、B 两物体的速度相同 D .A 物体的加速度比B 物体的加速度大 10.如果人造卫星进入地面附近的轨道速度大于7.9km/s ,而小于 11.2km/s ,它绕地球运动的轨迹是 ( ) A .圆 B .椭圆 C .双曲线中一支 D .抛物线 11.对于一定质量的气体,下列有关气体的压强、体积、温度之间关系的说法正确的是( ) A .如果保持气体的体积不变,温度升高,压强减小 B .如果保持气体的体积不变,温度降低,压强增大 m ) /s 第9题图

物理竞赛模拟试题7

试题Ⅶ 班级__________姓名__________ (全卷10题,共160分) 1.(10分)正点电荷q1和负点电荷-q2(-q2>0)固定在x轴上,分居于垂直x轴的光滑绝缘薄板的两侧,带正电的小球也处于x轴上且靠着板,如图所示,起初,板处于负电荷不远处,球处于平衡,板开始沿x轴缓慢平移扩大与负电荷的距离,当距离扩大到L/3时,小球从x轴“逃逸”,求q1与q2电量之比。物体对电场的影响忽略,重力也不计。 2.(18分)步行者想要在最短的时间内从田野A处出发到田野B处,A、B两处相距1300m,一条直路穿过田野,A处离道路600m,B处离道路100m,步行者沿田野步行速度为3km/h,沿道路步行速度为6km/h,问步行者应该选择什么样的路径?最短时间为多少?讨论A、B 两处位于道路同侧与异侧两种情况。 3.(16分)滑轮、重物和绳组成如图所示系统,重物1和2的质量已知:m1=4kg、m2=6kg,应如何设置第三个重物的质量m3,才能使系统处于平衡。滑轮和绳无重,滑轮摩擦不计,不在滑轮上的绳均处于水平或竖直。

4.(15分)一根长金属丝烧成螺距为h、半径为R的螺旋线,螺旋线轴竖直放置,珠子沿螺旋线滑下,求珠子的稳定速度v0,金属丝与珠子之间的摩擦因数为μ。 5.(20分)用长1m的不可伸长的弹性轻线系上两个同样小球,使它们静止在光滑水平面上,彼此相距50cm,现使其中一个球沿着垂直与两球心连线方向,以速度v0=0.1m/s抛去,求经过3min后两球速度。 6.(20分)质量为M的航天站和对接上的质量为m的卫星一起沿着圆轨道绕地球运行,其轨道半径为地球半径R的n倍(n=1.25)某一时刻,卫星沿运动方向从航天站上射出后,沿椭圆轨道运行,其远地点到地心距离为8nR。当m和M的比值为何值时,卫星刚好绕地球转一圈后再次回到航天站。(m

2020高中物理竞赛复赛模拟试题

2020高中物理竞赛复赛模拟试题及答案 1.(40分)如下图所示的一盘绳圈竖直静立着水平地面上,且盘外的绳子一端被固定住,此时盘的半 径为R0,质量面密度为σ,绳带厚度为b(即绳盘上相邻两白线圈之间距离,b<

由于t=0时s=0,于是有: s=πR02 b [1?(1? 13bv0t 6πR02 ) 6 13 ? ] 其中: v0= 2I 3σπR02

2.(40分)能量损耗是电路问题中的一个常见问题。我们考虑一个由电容、电阻和电源串联而成的简 单电路,研究从电路接通直至电路达到稳态前的能量损耗问题。电容值为C且初始不带电,电阻值为R。记电路接通时t=0,请求出下列两种情况下由于暂态电流电源做的功W。 (1)电源是电压大小为ε的直流稳压电源。 (2)电源是交流电源,可以表示为εcos(ωt+θ)。 解: (1):稳定时电容上电量为Cε,易得电源做功为:Cε2 (2):接通电路之后,回路的电压方程可以写为: 这是一个一阶线性微分方程,普通形式是: 其解为: 其中C为常数,由函数的初始条件决定。 于是可以解出回路电压方程: 由于初始不带电,可得: 电流为: 第一项指数衰减项i′(t)即为暂态电流项,电源做功为: ∞ W=∫εcos(ωt+θ)?i′(t)?t 也即: 此即由于暂态电流电源做的功。

高中物理奥林匹克竞赛专题--5.刚体力学基础习题(有答案)

习题 5-1. 如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2 m r ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。 解:受力分析如图 ma T mg 222=- (1) ma mg T =-1 (2) βJ r T T =-)(12 (3) βJ r T T =-)(1 (4) βr a = (5) 联立 g a 41= , mg T 811= 5-2. 如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 (1) 设杆的线l m =λ,在杆上取一小质元 dx dm λ= gdx dmg df μλμ== gxdx dM μλ= 考虑对称

mgl gxdx M l μμλ?==204 12 (2) 根据转动定律d M J J dt ωβ== ??=-t w Jd Mdt 00 0ω 0212 141ωμml mglt -=- 所以 g l t μω30= 5-3. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M 、半径为R ,其转动惯量为2/2 MR ,试求该物体由静止开始下落的过程中,下落速度与时间的关系。 dt dv m ma T mg ==- βJ TR = βR dt dv = 整理 mg dt dv M m =+ )21( gdt M m m dv t v ??+=0021 2M m mgt v +=

相关主题