搜档网
当前位置:搜档网 › 第四章 振动光谱习题

第四章 振动光谱习题

第四章  振动光谱习题

第四章振动光谱作业

1.红外光区的划分?

2.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低?

3. 说明红外光谱产生的机理与条件?

4.红外光谱图的表示法?

5. 红外光谱图的四大特征(定性参数)是什么?

如何进行基团的定性分析?如何进行物相的定性分析?

6. 何谓拉曼效应?说明拉曼光谱产生的机理与条件?

7. 拉曼位移是什么?拉曼谱图的表示法?

8.比较拉曼光谱与红外光谱。

9.红外与拉曼活性判断规律?指出下列分子的振动方式哪些具有红外活性、哪些具有拉曼活性。为什么?

(1)O

2、H

2

(2)H

2

O的对称伸缩振动、反对称伸缩振动和弯曲振动。

10.由元素分析某化合物的分子式为C

4H

6

O

2

,测得红外光谱如下图,试推测其

结构。

机械振动习题集与答案

《机械振动噪声学》习题集 1-1 阐明下列概念,必要时可用插图。 (a) 振动; (b) 周期振动和周期; (c) 简谐振动。振幅、频率和相位角。 1-2 一简谐运动,振幅为 0.20 cm,周期为 0.15 s,求最大的速度和加速度。 1-3 一加速度计指示结构谐振在 82 Hz 时具有最大加速度 50 g,求其振动的振幅。 1-4 一简谐振动频率为 10 Hz,最大速度为 4.57 m/s,求其振幅、周期和最大加速度。1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。即: A cos n t + B cos (n t + ) = C cos (n t + ' ),并讨论=0、/2 和三种特例。 1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大? 1-7 计算两简谐运动x1 = X1 cos t和x2 = X2 cos ( + ) t之和。其中<< 。如发生拍的现象,求其振幅和拍频。 1-8 将下列复数写成指数A e i 形式: (a) 1 + i3 (b) 2 (c) 3 / (3 - i ) (d) 5 i (e) 3 / (3 - i ) 2 (f) (3 + i ) (3 + 4 i ) (g) (3 - i ) (3 - 4 i ) (h) ( 2 i ) 2 + 3 i + 8 2-1 钢结构桌子的周期=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。 已知周期的变化=0.1 s。求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。 2-2 如图2-2所示,长度为 L、质量为 m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。 2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面作纯滚动,它的圆心O 用刚度为k的弹簧相连,求系统的振动微分方程。 图2-1 图2-2 图2-3 2-4 如图2-4所示,质量为m、半径为R的圆柱体,可沿水平面作纯滚动,与圆心O距离为a 处用两根刚度为k的弹簧相连,求系统作微振动的微分方程。 2-5 求图2-5所示弹簧-质量-滑轮系统的振动微分方程。

机械振动习题及答案

机械振动 一、选择题 1. 下列4种运动(忽略阻力)中哪一种是简谐运动 ( C ) ()A 小球在地面上作完全弹性的上下运动 ()B 细线悬挂一小球在竖直平面上做大角度的来回摆动 ()C 浮在水里的一均匀矩形木块,把它部分按入水中,然后松开,使木块上下浮动 ()D 浮在水里的一均匀球形木块,把它部分按入水中,然后松开,使木块上下浮动 解析:A 小球不是做往复运动,故A 不是简谐振动。B 做大角度的来回摆动显然错误。D 由于球形是非线性形体,故D 错误。 2.如图1所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动。若从松手时开始计时,则该弹簧振子的初相位应为 图 一 ( D ) ()0A ()2 πB

()2 π-C ()πD 解析: 3.一质量为m 的物体挂在劲度系数为k 的轻质弹簧下面,其振动周期为T 。若将此轻质弹簧分割成3等份,将一质量为2m 的物体挂在分割后的一根弹簧上,则此弹簧振子的周期为 ( B ) ()63T A ()36T B ()T C 2 ()T D 6 解析:有题可知:分割后的弹簧的劲度系数变为k 3,且分割后的物体质量变为m 2。故由公式k m T π2=,可得此弹簧振子的周期为3 6T 4.两相同的轻质弹簧各系一物体(质量分别为21,m m )做简谐运动(振 幅分别为21,A A ),问下列哪一种情况两振动周期不同 ( B ) ()21m m A =,21A A =,一个在光滑水平面上振动,另一个在竖直方向上 振动 ()B 212m m =,212A A =,两个都在光滑的水平面上作水平振动 ()C 21m m =,212A A =,两个都在光滑的水平面上作水平振动 ()D 21m m =,21A A =,一个在地球上作竖直振动,另一个在月球上作 竖直振动

大学物理第五章机械振动习题解答和分析要点

5-1 有一弹簧振子,振幅A=2.0?10-2m,周期T=1.0s,初相?=3π/4.试写出它的振动位移、速度和加速度方程。 分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。解:振动方程为:x=Acos[ωt+?]=Acos[ 3π 42πTt+?] 代入有关数据得:x=0.02cos[2πt+ 振子的速度和加速度分别是: v=dx/dt=-0.04πsin[2πt+3π 4 3π 4](SI) ](SI) a=dx/dt=-0.08πcos[2πt+222](SI) 5-2若简谐振动方程为x=0.1cos[20πt+π/4]m,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s时的位移、速度和加速度. 分析通过与简谐振动标准方程对比,得出特征参量。 解:(1)可用比较法求解.根据x=Acos[ωt+?]=0.1cos[20πt+π/4] 得:振幅A=0.1m,角频率ω=20πrad/s,频率ν=ω/2π=10s 周期T=1/ν=0.1s,?=π/4rad (2)t=2s时,振动相位为:?=20πt+π/4=(40π+π/4)rad 22 由x=Acos?,ν=-Aωsi n?,a=-Aωcos?=-ωx得 -1, x=0.0707m,ν=-4.44m/s,a=-279m/s 5-3质量为2kg的质点,按方程x=0.2sin[5t-(π/6)](SI)沿着x轴振动.求: (1)t=0时,作用于质点的力的大小; (2)作用于质点的力的最大值和此时质点的位置. 分析根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。2解:(1)跟据f=ma=-mωx,x=0.2sin[5t-(π/6)] 2 将t=0代入上式中,得:f=5.0N 2 (2)由f=-mωx可知,当x=-A=-0.2m时,质点受力最大,为f=10.0N 5-4为了测得一物体的质量m,将其挂到一弹簧上并让其自由振动,测得振动频率ν1=1.0Hz;而当将另一已知质量为m'的物体单独挂到该弹簧上时,测得频率为 ν2=2.0Hz.设振动均在弹簧的弹性限度内进行,求被测物体的质量. 分析根据简谐振动频率公式比较即可。解:由ν=1 2πk/m,对于同一弹簧(k相同)采用比较法可得:ν1 ν2=m'm 解得:m=4m'

第四章 振动光谱

第四章振动光谱 一、教学目的 理解掌握震动光谱分析的基本理论,掌握红外光谱图的分析处理,了解红外光谱实验技术。 二、重点、难点 重点:震动光谱分析的基本理论,红外光谱图的分析处理。 难点:震动光谱分析的基本理论。 三、教学手段 多媒体教学 四、学时分配 4学时 引言: ●1900~1910年间,科布伦茨(W.W.C。blentz)首先用红外光测量了一些有 机物液体的吸收光谱而建立起一种新的分析方法——红外光谱法。他发现分子中的一定原子群可以吸收特定的频率,这些特定的频率犹如人类的指纹,可以用来辨认分子中特定原子群的存在。 ●它主要可以用作分子结构的基础研究和物质化学组成(物相)的分析(包括定性和 定量)。红外光谱法作分子结构的研究可以测定分子的键长、键角大小,并推断分子的立体构型,或根据所得的力常数,间接得知化学键的强弱,也可以从正则振动频率来计算热力学函数等。 ●不过红外光谱法更多的用途是根据谱的吸收频率的位置和形状来判定本知物,并按 其吸收的强度来测定它们的含量。因此红外光谱法在目前已成为十分方便而有效的分析方法之一。 ●红外光谱法应用得较多的是在有机化学领域,对无机化合物和矿物的红外鉴定开始 较晚。红外光谱法对测定矿物的结构或组分虽不如X射线衍射分析那么成熟,却也有其独特长处。 所谓振动光谱是指物质因受光的作用,引起分子或原子基团的振动,从而产生对光的吸收。如果将透过物质的光辐射用单色器加以色散,使波长授长短依次排列,同时测量在不同波长处的辐射强度,得到的是吸收光谱。如果用的光源是红外光波,即0.78~1000μm,就是红外吸收光谱。如果用的是强单色光,例如激光,产生的是激光拉曼光谱。本章主要介绍红外光谱的原理及其在无机非金属材料中的应用,对拉曼光谱只作简单的介绍。

15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k ==ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-==t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π-=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

第5章-机械振动

第五章机械振动 5-1. 从运动学看什么是简谐振动?从动力学看什么是简谐振动?一个物体受到使它返回平 衡位置的力,它是否一定作简谐振动? 答:从运动学观点来看,物体在平衡位置做往复运动,运动变量(位移、角位移等)随 时间t 的变化规律可以用一个正(余)弦函数来表示,则该物体的运动就是简谐振动;从动 力学来看,如果物体受到的合外力(矩)与位移(角位移)的大小成正比,而且方向相反, 则该物体的运动就是简谐振动。由简谐振动的定义可看出,不一定作简谐振动。 5-2. 若物体的坐标x ,速度υ和时间t 分别具有下列关系,试判断哪些情况下物体的运动是 简谐振动?并确定它的周期。 (1)2sin x A Bt =; (2)2A Bx υ=- (3)5sin()2x t π π=+; (4)cos At x e t π-= (各式中A 、B 均为常数)。 答:只要物体的运动状态方程满足cos()x A t ω?=+或者sin()x A t ω?=+ ,或者满足2220d x x dt ω+=的形式,则均为简谐振动。由此可判定出 :(1)是简谐振动,振动周期T B π =;(2)是简谐振动,因为满足2220d x x dt ω+=的判椐。振动周期T = (3)是简谐振动,振动周期2T s =; (4)不是简谐振动。 5-3 刚度系数分别为k 1和k 2的两根轻质弹簧,与质量为m 的滑块相连,水平面光滑, 如图5-3所示。试证明其为简谐振动,并求出振动周期。 解:建立坐标并对物体m 进行受力分析。设初时物体处于坐 标原点O 的右侧x 处,初速度v 0,物体受左右弹簧力的合力为 12()F k k x =-+, 大小与x 成正比,方向与位移方向相反 , 满足简谐振动的动力学规律,故是简谐振动。 由牛顿第二定律可得: 22 12122()()0k k k k d x x m dt m ω++=+= ,即 习题5-3图 2122()0k k d x x dt m ++=,由此知园频率 212()k k m ω+=,周期为 2T = 5-4 质量为31.010-?kg 的小球与轻弹簧组成的系统,按3510cos(8)() 3x t m π π-=?+

机械原理习题答案 安子军

习题解答第一章绪论 1-1 答: 1 )机构是实现传递机械运动和动力的构件组合体。如齿轮机构、连杆机构、凸轮机构、螺旋机构等。 2 )机器是在组成它的实物间进行确定的相对运动时,完成能量转换或做功的多件实物的组合体。如电动机、内燃机、起重机、汽车等。 3 )机械是机器和机构的总称。 4 ) a. 同一台机器可由一个或多个机构组成。 b. 同一个机构可以派生出多种性能、用途、外型完全不同的机器。 c. 机构可以独立存在并加以应用。 1-2 答:机构和机器,二者都是人为的实物组合体,各实物之间都具有确定的相对运动。但后者可以实现能量的转换而前者不具备此作用。 1-3 答: 1 )机构的分析:包括结构分析、运动分析、动力学分析。 2 )机构的综合:包括常用机构设计、传动系统设计。 1-4 略

习题解答第二章平面机构的机构分析 2-1 ~ 2-5 (答案略) 2-6 (a) 自由度 F=1 (b) 自由度 F=1 (c) 自由度 F=1 2-7 题 2 - 7 图 F = 3 × 7 - 2 × 9 - 2 = 1

2 -8 a) n =7 =10 =0 F =3×7-2×10 =1 b) B 局部自由度 n =3 = 3 =2 F=3×3 -2×3-2=1 c) B 、D 局部自由度 n =3 =3 =2 F=3×3 -2×3-2 =1 d) D( 或 C) 处为虚约束 n =3 =4 F=3×3 - 2×4=1 e) n =5 =7 F=3×5-2×7=1 f) A 、 B 、 C 、E 复合铰链 n =7 =10 F =3×7-2×10 =1 g) A 处为复合铰链 n =10 =14 F =3×10 - 2×14=2 h) B 局部自由度 n = 8 = 11 = 1 F =3×8-2×11-1 =1 i) B 、 J 虚约束 C 处局部自由度 n = 6 = 8 = 1 F =3×6 - 2×8-1=1 j) BB' 处虚约束 A 、 C 、 D 复合铰链 n =7 =10 F =3×7-2×10=1 k) C 、 D 处复合铰链 n=5 =6 =2F =3×5-2×6-2 =1 l) n = 8 = 11 F = 3×8-2×11 = 2 m) B 局部自由度 I 虚约束 4 杆和 DG 虚约束 n = 6 = 8 = 1 F =3×6-2×8-1 =1 2-9 a) n = 3 = 4 = 1 F = 3 × 3 - 2 × 8 - 1 = 0 不能动。 b) n = 5 = 6 F = 3 × 5 - 2 × 6 = 3 自由度数与原动件不等 , 运动不确定。

6.机械振动习题及答案

一、 选择题 1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A ) 6π (B) 56π (C) 56π- (D) 6π- (E) 23 π- 2、已知一质点沿y 轴作简谐振动,如图所示。其振动方程为3cos()4 y A t π ω=+,与之对应的振动曲线为 [ B ] 3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大 振幅 2A 处需最短时间为 [ B ] (A );4T (B) ;6T (C) ;8 T (D) .12T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体, 此三个系统振动周期之比为 (A);2 1 : 2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4 1 :2:1

5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为 (A);1s (B) ;32s (C) ;34 s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分, 且21nl l =,则相应的劲度系数1k ,2k 为 [ C ] (A );)1(,121k n k k n n k +=+= (B );11,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1 1 ,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的 [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。 8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为 A 2 1 ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

机械振动课后习题和答案第三章习题和答案

如图所示扭转系统。设12122;t t I I k k == 1.写出系统的刚度矩阵和质量矩阵; 2.写出系统的频率方程并求出固有频率和振型,画出振型图。 解:1)以静平衡位置为原点,设12,I I 的转角12,θθ为广义坐标,画出12,I I 隔离体,根据牛顿第二定律得到运动微分方程: 111121222221()0()0t t t I k k I k θθθθθθθ?++-=?? +-=??,即:1112122222122()0 t t t t t I k k k I k k θθθθθθ?++-=??-+=?? 所以:[][]12 21 2220,0t t t t t k k k I M K k k I +-?? ??==????-???? 系统运动微分方程可写为:[][]11220M K θθθθ?????? +=????????? ? ………… (a) 或者采用能量法:系统的动能和势能分别为 θθ= +22112211 22T E I I θθθθθθθ=+-=++-222211212121221121111 ()()2222t t t t t t U k k k k k k

求偏导也可以得到[][],M K 由于12122;t t I I k k ==,所以[][]212021,0111t M I K k -???? ==????-???? 2)设系统固有振动的解为: 1122cos u t u θωθ???? =????????,代入(a )可得: [][]12 2()0u K M u ω?? -=???? ………… (b) 得到频率方程:22 12 1 2 1 12 22()0t t t t k I k k k I ωωω--= =-- 即:224 222 121() 240t t I k I k ωωω=-+= 解得:2 1 1,22 2 (22t k I ω±= = 所以:1ω= 2ω =………… (c) 将(c )代入(b )可得: 1 121 2 121112 2(22)22 20(22t t t t t t k k I k I u u k k k I I ?? ±--?? ????=????????--?? ??

机械振动习题及答案

第一章 概述 1.一简谐振动,振幅为0、20cm,周期为0、15s,求最大速度与加速度。 解: max max max 1*2***2***8.37/x w x f x A cm s T ππ==== .. 2222max max max 1*(2**)*(2**)*350.56/x w x f x A cm s T ππ==== 2.一加速度计指示结构谐振在80HZ 时具有最大加速度50g,求振动的振幅。(g=10m/s2) 解:.. 22max max max *(2**)*x w x f x π== ..22max max /(2**)(50*10)/(2*3.14*80) 1.98x x f mm π=== 3.一简谐振动,频率为10Hz,最大速度为4、57m/s,求谐振动的振幅、周期、最大加速度。 解: .max max /(2**) 4.57/(2*3.14*10)72.77x x f mm π=== 110.110T s f = == .. 2max max max *2***2*3.14*10*4.57287.00/x w x f x m s π==== 4、 机械振动按激励输入类型分为哪几类?按自由度分为哪几类? 答:按激励输入类型分为自由振动、强迫振动、自激振动 按自由度分为单自由度系统、多自由度系统、连续系统振动

5、 什么就是线性振动?什么就是非 线性振动?其中哪种振动满足叠加原理? 答:描述系统的方程为线性微分方程的为线性振动系统,如00I mga θθ+= 描述系统的方程为非线性微分方程的为非线性振动系统0sin 0I mga θθ+= 线性系统满足线性叠加原理 6、 请画出同一方向的两个运动:1()2sin(4)x t t π=,2()4sin(4)x t t π=合成的的振动波形 7、请画出互相垂直的两个运动:1()2sin(4)x t t π=,2()2sin(4)x t t π=合成的结果。 如果就是1()2sin(4/2)x t t ππ=+,2()2sin(4)x t t π=

大学物理第五章机械振动习题解答和分析

5-1 有一弹簧振子,振幅m A 2 100.2-?=,周期s T 0.1=,初相.4/3π?=试写出它的振动位移、速度和加速度方程。 分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。 解:振动方程为:]2cos[]cos[ ?π ?ω+=+=t T A t A x 代入有关数据得:30.02cos[2]()4 x t SI π π=+ 振子的速度和加速度分别是: 3/0.04sin[2]()4 v dx dt t SI π ππ==-+ 2223/0.08cos[2]()4 a d x dt t SI π ππ==-+ 5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度. 分析 通过与简谐振动标准方程对比,得出特征参量。 解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππ?ω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1 /210s νωπ-==, 周期1/0.1T s ν==,/4rad ?π= (2)2t s =时,振动相位为:20/4(40/4)t rad ?ππππ=+=+ 由cos x A ?=,sin A νω?=-,2 2 cos a A x ω?ω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=- 5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小; (2)作用于质点的力的最大值和此时质点的位置. 分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。 解:(1)跟据x m ma f 2 ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N = (2)由x m f 2 ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N =

机械振动 课后习题和答案 第二章 习题和答案

精选范本 2.1 弹簧下悬挂一物体,弹簧静伸长为δ。设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。 解:设物体质量为m ,弹簧刚度为k ,则: mg k δ= ,即:n ω== 取系统静平衡位置为原点0x =,系统运动方程为: δ ?+=? =??=?&&&00 020mx kx x x (参考教材P14) 解得:δω=()2cos n x t t

精选范本 2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。 解:由题可知:弹簧的静伸长0.850.650.2()m =-=V 所以:7(/)n rad s ω= == 取系统的平衡位置为原点,得到: 系统的运动微分方程为:20n x x ω+=& & 其中,初始条件:(0)0.2 (0)0x x =-??=?& (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=- 弹簧力为:()()cos ()k n mg F kx t x t t N ω== =-V 因此:振幅为0.2m 、周期为2()7 s π 、弹簧力最大值为1N 。

精选范本 2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。 解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2 121()2T E m m x =+& 212 U kx = 由()0T d E U +=可知:12()0m m x kx ++=&& 即:12/()n k m m ω=+ 系统的初始条件为:?=??=-?+?&202012 2m g x k m x gh m m (能量守恒得:2 21201()2 m gh m m x = +&) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+ 其中:ω?==??==-?+? &200 2112 2n m g A x k x m g ghk A k m m

第三章 振动光谱作业

第二章振动光谱作业 1.红外光区的划分? 红外光按波长不同划分为三个区域:近红外区域(1-2.5微米)/中红外区域(2.5-25微米)/远红外区域(25-1000微米) 2.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低? 振动光谱有红外吸收光谱和激光拉曼光谱两种类型。 价键或基团的振动有伸缩振动和弯曲振动。其中伸缩振动分为对称伸缩振动和非对称伸缩振动;弯曲振动则分为面内弯曲振动(剪式振动、面内摇摆振动)和面外弯曲振动(扭曲振动、面外摇摆振动)。 伸缩振动频率较高,弯曲振动频率较低。(键长的改变比键角的改变需要更大的能量)非对称伸缩振动的频率高于对称伸缩振动。 3. 说明红外光谱产生的机理与条件? 产生机理: 当用红外光波长范围的光源照射物质时,物质因受光的作用,引起分子或原子基团的振动,若振动频率恰与红外光波段的某一频率相等时就引起共振吸收,使光的透射强度减弱,使通过试样的红外光在一些波长范围内变弱,在另一些范围内则较强,用光波波长(或波数)对光的透过率作图,便可得到红外光谱 产生条件: 1)辐射应具有能满足物质产生振动-转动跃迁所需的能量,即振动的频率与红外光谱谱段的某频率相等。 2)辐射与物质间有相互偶合作用,即振动中要有偶极矩变化 4.红外光谱图的表示法? 红外光谱图的表示法:横坐标:波数cm-1或者波长μm 纵坐标:透过率%或者吸光度A 5. 红外光谱图的四大特征(定性参数)是什么? 如何进行基团的定性分析?如何进行物相的定性分析? 四大特征:谱带(或者说是吸收峰)的数目、位置、形状和强度。 进行基团的定性分析时,首先,观察特征频率区,根据基团的伸缩振动来判断官能团。 进行物相的定性分析: 进行物相的定性分析: 对于已知物: a、,观察特征频率区,判断官能团,以确定所属化合物的类型 b、观察指纹频率区,进一步确定基团的结合方式 c、对照标准谱图进行比对,若被测物质的与已知物的谱图峰位置和相对强度完全一致,则可确认为一种物质。 对于未知物:A、做好准备工作。了解试样的来源,纯度、熔点、沸点点各种信息,如果是混合物,尽量用各种化学、物理的方法分离 B、按照鉴定已知化合物的方法进行 6. 何谓拉曼效应?说明拉曼光谱产生的机理与条件? 光子与试样分子发生非弹性碰撞,也就是说在光子与分子相互作用中有能量的交换,产生了频率的变化,且方向改变叫拉曼效应。 产生的机理: 斯托克斯线产生机理:处于振动基态的分子在光子作用下,激发到较高的不稳定的能态(虚

第五章机械振动自测题

一.自测题 12-1.一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上试判断下面哪种情况是正确的 (A)竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B)竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C)两种情况都可作简谐振动; (D)两种情况都不能作简谐振动。 12-2.一质点在x轴上作谐振动,振幅4cm A=,周期2s T=,取平衡位置为坐标原点,若0 = t时刻质点第一次通过2cm x=-处,且向x轴正方向运动,则质点第二次通过2cm x=-处的时刻 (A) 1s;(B) 4 s 3 ;(C) 2 s 3 ;(D)2s。 12-3.一弹簧振子作简谐振动,总能量为E1,如果谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量变为 (A)E 1 4 ;(B) E 1 2 ;(C)4 1 E;(D)2 1 E。 150

151 12-4.用余弦函数描述一简谐振动。已知振幅为A ,周期为T ,初相π?3 1-=,则振动曲线为 12-5.已知某简谐振动的振动曲线如图所示,则此简谐振 动的振动方程为 (A) ??? ??+=3232cos 2ππt x ;(B) ?? ? ??-=332c o s 2ππt x ; 2 1 -2 o 1 x (m) t (s) o 2 T x (m ) t (s ) 2A - 2 A (A) o 2 T x (m ) t (s ) 2A - 2 A (B) o 2T x (m ) t (s ) 2A - 2A (C) o 2 T x (m ) t (s ) 2A - 2 A (D)

红外光谱特征吸收峰

物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C 等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 一、基团频率区和指纹区 (一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之 间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域: (1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 因此,可能会对O-H伸缩振动有干扰C-H的伸缩振动可分为饱和和不饱和的两种。饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;-

机械振动习题及答案

第一章 概述 1.一简谐振动,振幅为,周期为,求最大速度和加速度。 解: max max max 1 *2***2** *8.37/x w x f x A cm s T ππ==== .. 2222max max max 1 *(2**)*(2**)*350.56/x w x f x A cm s T ππ==== 2.一加速度计指示结构谐振在80HZ 时具有最大加速度50g ,求振动的振幅。(g=10m/s2) 解:.. 22 max max max *(2**)*x w x f x π== .. 22max max /(2**)(50*10)/(2*3.14*80) 1.98x x f mm π=== 3.一简谐振动,频率为10Hz ,最大速度为s ,求谐振动的振幅、周期、最大加速度。 解: . max max /(2**) 4.57/(2*3.14*10)72.77x x f mm π=== 110.110 T s f = == .. 2max max max *2***2*3.14*10*4.57287.00/x w x f x m s π==== 4. 机械振动按激励输入类型分为哪几类按自由度分为哪几类 答:按激励输入类型分为自由振动、强迫振动、自激振动 按自由度分为单自由度系统、多自由度系统、连续系统振动

5. 什么是线性振动什么是非 线性振动其中哪种振动满足叠加原理 答:描述系统的方程为线性微分方程的为线性振动系统,如00I mga θθ+= 描述系统的方程为非线性微分方程的为非线性振动系统0sin 0I mga θθ+= 线性系统满足线性叠加原理 6. 请画出同一方向的两个运动:1()2sin(4)x t t π=,2()4sin(4)x t t π=合成的的振动波形 7.请画出互相垂直的两个运动: 1()2sin(4)x t t π=,2()2sin(4)x t t π=合成的结果。 如果是1()2sin(4/2)x t t ππ=+,2()2sin(4)x t t π=

机械振动习题集与答案解析

第一章 概述 1.一简谐振动,振幅为0.20cm ,周期为0.15s ,求最大速度和加速度。 解: max max max 1 *2***2** *8.37/x w x f x A cm s T ππ==== .. 2222max max max 1 *(2**)*(2**)*350.56/x w x f x A cm s T ππ==== 2.一加速度计指示结构谐振在80HZ 时具有最大加速度50g ,求振动的振幅。(g=10m/s2) 解:.. 22 max max max *(2**)*x w x f x π== .. 22max max /(2**)(50*10)/(2*3.14*80) 1.98x x f mm π=== 3.一简谐振动,频率为10Hz ,最大速度为4.57m/s ,求谐振动的振幅、周期、最大加速度。 解: . max max /(2**) 4.57/(2*3.14*10)72.77x x f mm π=== 11 0.110 T s f = == .. 2max max max *2***2*3.14*10*4.57287.00/x w x f x m s π==== 4. 机械振动按激励输入类型分为哪几类?按自由度分为哪几类? 答:按激励输入类型分为自由振动、强迫振动、自激振动 按自由度分为单自由度系统、多自由度系统、连续系统振动 5. 什么是线性振动?什么是非 线性振动?其中哪种振动满足叠加原理?

答:描述系统的方程为线性微分方程的为线性振动系统,如00I mga θθ+= 描述系统的方程为非线性微分方程的为非线性振动系统0sin 0I mga θθ+= 线性系统满足线性叠加原理 6. 请画出同一方向的两个运动:1()2sin(4)x t t π=,2()4sin(4)x t t π=合成的的振动波形 7.请画出互相垂直的两个运动: 1()2sin(4)x t t π=,2()2sin(4)x t t π=合成的结果。 如果是1()2sin(4/2)x t t ππ=+,2()2sin(4)x t t π=

基础物理学上册习题解答和分析_第五章机械振动习题解答和分析[1]

习题五 5-1 有一弹簧振子,振幅m A 2 100.2-?=,周期s T 0.1=,初相.4/3π?=试写出它的振 动位移、速度和加速度方程。 分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。 解:振动方程为:]2cos[]cos[?π ?ω+=+=t T A t A x 代入有关数据得:30.02cos[2]()4 x t SI π π=+ 振子的速度和加速度分别是: 3/0.04sin[2]()4 v dx dt t SI π ππ==-+ 2223/0.08cos[2]()4 a d x dt t SI π ππ==-+ 5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度. 分析 通过与简谐振动标准方程对比,得出特征参量。 解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππ?ω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1 /210s νωπ-==, 周期1/0.1T s ν==,/4rad ?π= (2)2t s =时,振动相位为:20/4(40/4)t rad ?ππππ=+=+ 由cos x A ?=,sin A νω?=-,22cos a A x ω?ω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=- 5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小; (2)作用于质点的力的最大值和此时质点的位置. 分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。 解:(1)跟据x m ma f 2 ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =

第六章 振动光谱作业

第六章振动光谱作业 1.红外光区的划分? 2.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低? 3. 说明红外光谱产生的机理与条件? 4.红外光谱图的表示法? 5. 红外光谱图的四大特征(定性参数)是什么? 如何进行基团的定性分析?如何进行物质的定性分析? 6. 何谓拉曼效应?说明拉曼光谱产生的机理与条件? 7. 拉曼位移是什么?拉曼谱图的表示法? 8.比较拉曼光谱与红外光谱。 9.某一化合物的分子式是C 4H 8 0,其红外光谱图如下,请推断其结构。 1381 29632824 2722 1728 1467 1160 10. .下图为线型聚乙烯(······—CH 2—CH 2 —CH 2 —CH 2 ······)的 红外光谱图(a)和激光拉曼光谱图(b),根据聚乙烯分子的结构特征,说明两张图谱有何不同,并解释出现明显差异的原因。(解释2张图谱中4个箭头处的异同,并说明原因。)

综合分析题 若要进行下列测试分析项目,从你所学过的现代测试方法中挑选出一种最佳方法,并简述理由。 1.多晶转变温度的检测; 2.尺寸小于5μ的颗粒的显微形貌观察; 3.物质晶体结构的研究; 4.断口上粒状夹杂物的形貌及化学成分分析; 5.被缴获毒品的种类鉴定; 6.酸腐蚀后金属表面的结构分析; 7.材料晶界条纹或晶体缺陷(如位错、层错等)的观察分析; 8. 陶瓷釉料的成分分析; 9.玻璃中包裹体的分析; 10. 高分子材料玻璃化转变温度的测量。 各分析方法的英文缩写: X射线衍射:;X射线荧光光谱: X射线光电子能谱:;等离子发射光谱: 原子吸收光谱:;透射电镜:

3机械振动练习与答案

第三次 机 械 振 动练习 班 级 ___________________ 姓 名 ___________________ 班内序号 ___________________ 一.选择题 1.一质点做简谐振动,如振动方程为: ) cos(?ω+=t A x ,周期为T ,则当 2/ T t =时,质点的速度为: [ ] A .?ωsin A - B .?ωsin A C .?ωcos A - D .?ωcos A 2.图示为一单摆装置,把小球从平衡位置 b ,拉开一小角度 0θ至 a 点, 在 0 =t 时刻松手让其摆动,摆动规律用余弦函数表示,则在 c a →的摆动中, 下列哪个说法是正确的? [ ] A .a 处动能最小,相位为0θ; B .b 处动能最大,相位为2/π; C .c 处动能为零,相位为0θ-; D .c b a ..三处能量相同,相位依次减少。 3.如简谐振动在 0 =t 时, 0 ,0 <>v x ,则表示该简谐振动的旋转矢量图 应该是: [ ] 4.质点沿X 轴作简谐振动,振动方程为) 2( cos 104 2ππ+?=-t x (SI),从0=t 时刻起,到质点位置为cm x 2-=处、且向 X 轴正方向运动的最短时间间隔为: A .s /21 B .s /41 C .s /61 D .s /81 [ ] 5.质点作简谐振动,运动速度与时间 )( 1-?s m v [ ] 的曲线如图所示,若质点的运动规律用余 v 弦函数描述,则其初相位是: v 5.0 A .6/π B .6/5π C .6/π- D .6/5π- )

二.填空题 1. 简谐振动的三个基本特征量为___________、___________ 和 ___________; 它们分别取决于 _______________ 、______________ 和 ______________ 。 2. 两个同频率、同方向简谐振动的合振动为__________________,合振动的 振幅取决于_____________________________________ ,两个相互垂直的同频率的 简谐振动,其合振动的运动轨迹一般为 ______________________ ,若两分振动的频率为简单整数比... ,则合成运动的轨迹为 _______________________ 。 3.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表 示,若 0 =t 时; (1)振子在正的最大位移处,则初相位为_____________; (2)振子在平衡位置向负方向运动,则初相位为_____________; (3)振子在位移为 A 5.0 处,且向正方向运动,则初相位为_____________。 4. 物块悬挂在弹簧下方作简谐振动,如物块在受力平衡位置时,弹簧的长度 比原来长l ?,则系统的周期 =T _________;当这物块的位移等于振幅的一半时, 其动能是总能量的__________(以物块的受力平衡位置为各种势能的零势能点)。 5. 一质量为 m 的物体,上端与两根倔强系数分别为 1k 和 2k 的轻弹簧相连, 如下图所示,则当物体被拉离平衡位置而释放时,物体将作简谐振动,其圆频率 =ω_______________ 、周期 =T _______________ 。 6. 设作简谐振动物体的 ~t x 曲线如图所示,则其初相位=0 ?__________ ; 位移的绝对值达最大值的时刻为: t =_________________ ;速度为最大值的时刻 为: t =________________ ;弹性势能为最大值的时刻为: t =_______________ ; 动能为最大值的时刻为: t =_________________。 第5题图 第6题图

相关主题