搜档网
当前位置:搜档网 › PI3K/AKT信号通路与心力衰竭

PI3K/AKT信号通路与心力衰竭

PI3K/AKT信号通路与心力衰竭
PI3K/AKT信号通路与心力衰竭

PI3K/AKT信号通路与心力衰竭

摘要:丝氨酸/苏氨酸激酶(serine/threoninekinase,AKT)是真核细胞中参与细胞信号转导的关键分子目前已经证实PI3K(phosphatidylinositol-3-kinase,PI3K)/AKT信号通路在人类肿瘤、代谢紊乱、肾脏疾病以及精神障碍等疾病中发挥着重要的作用。近年来的研究还发现P13K/AKT信号通路的激活会对心肌细胞的生长、代谢以及凋亡等活动产生影响,且该通路及其中的很多受体、激酶被证实与心力衰竭关系密切,这使该信号通路在心力衰竭的发病机制、诊断及治疗等方面的研究日益受到重视。总结PI3K/AKT的结构特点、相关信号转导机制及其与心力衰竭的关系将有利于更好地理解心力衰竭的发病机制。

关键词:心力衰竭;磷脂酰肌醇3-激酶(PI3K);丝氨酸/苏氨酸激酶(AKT);信号通路

ThePI3K/AKTSignalingPathwayandHeartFailure

FANLiang-liang1,MALi-ning2,PENGYuan-liang1,XIANGRong1*

(1.DepartmentofCellBiology,SchoolofLifeSciences,CentralSouthUniversity,Changsha410013,Hunan,China;2.HainanGeneralHospital,Haikou570311,Hainan,China)

Abstract:Serine/threoninekinase(AKT)isakeymoleculewhichparticipatesinthecellularsignaltrans?ductionofeukaryoticcells.No withasbeenconfirmedthatthePI3K(phosphatidylinositol-3-kinase,PI3K)/AKTsignalingpathwayplaysanimportantroleinhumandiseases,suchasswelling,metabolicdisorders,kidneydiseasesandmentaldisorders.Researchinrecentyearshasalsodiscoveredthattheacti vationofPI3K/AKTsignalpathwaywouldhaveeffectonthegrowth,metabolismandapoptosisofmyocardialcell.Be?sides,thissignalingpathway,togetherwithmanyofitsreceptorsandkinaseshasbeenprovedtohavecloserelationwithhear tfailure.Becauseofallthesemechanisms,peoplearepayingmoreattentiontotheroleofthispathwayinresearchaboutthepathogenesis,diagnosisandtreatmentofheartfailure.Tosummarizethestructurecharacteristicsandtherel atedsignaltransductionpathwayofPI3K/AKTwillhelpusunderstandthemechanismandrel ationshipofPI3K/AKTpathwayandheartfailure.

Keywords:heartfailure;PI3K(phosphatidylinositol-3-kinase);AKT (serine/threoninekinase);signalingpathway

(LifeScienceResearch,2015,19(1):085?090)

心力衰竭(heartfailure,HF)是指各种原因造成的心肌受损,使心脏收缩和(或)舒张功能出现障碍,心脏泵血功能下降,在足够的充盈压下不能射出相应

【信号通路解析】Hippo信号通路

Hippo信号通路 一、Hippo信号通路概述 Hippo 信号通路,也称为Salvador / Warts / Hippo(SWH)通路,命名主要源于果蝇中的蛋白激酶Hippo(Hpo),是通路中的关键调控因子。该通路由一系列保守激酶组成,主要是通过调控细胞增殖和凋亡来控制器官大小。 Hippo信号通路是一条抑制细胞生长的通路。哺乳动物中,Hippo信号通路上游膜蛋白受体作为胞外生长抑制信号的感受器,一旦感受到胞外生长抑制信号,就会激活一系列激酶级联磷酸化反应,最终磷酸化下游效应因子YAP和TAZ。而细胞骨架蛋白会与磷酸化后的YAP和TAZ结合,使它滞留在细胞质内,降低其细胞核活性,从而实现对器官大小和体积的调控。 二、Hippo信号通路家族成员 虽然Hippo信号通路在各个物种中保守性很高,但是相同功能的调控因子或效应因子在不同物种间还是存在着差异,下表中我们对比了果蝇与哺乳动物中Hippo信号通路相同功能的关键因子[1]。

Expanded(Ex) FRMD6/Willin 含有FERM结构域的蛋白,能与Kibra及Mer结合,调控Hippo信号通路的上游信号 Dachs(Dachs) 肌浆球蛋白myosin的一种,能结合Wts 并促进其降解 Kibra(Kibra) WWC1 含有WW结构域的蛋白,能与Ex及Mer 结合,调控Hippo信号通路的上游信号 Merlin(Mer) NF2 含有FERM结构域的蛋白,能与Kibra及Ex结合,调控Hippo信号通路的上游信号 Hippo(Hpo) MST1,MST2 Sterile-20-样激酶,磷酸化并激活Wts Salvador(Sav) WW45(SAV1) 含有WW结构域的蛋白,能起到一个脚手架蛋白的作用,易化Hippo对Warts的磷酸化 Warts(Wts)LATS1,LATS2 核内DBF-2相关激酶,能磷酸化Yki并使之失活 Mob as tumor suppressor(Mats) MOBKL1A,MOBKL1B 能与Wts结合的激酶,与Wts结合后能 促进Wts的催化活性 Yorkie(YKi) YAP,TAZ 转录共激活因子,能在非磷酸化的激活状态下与转录因子Sd结合,并激活下游靶基因的转录。这些受调控的下游靶基因主要参与了细胞的增殖、生长并抑制凋亡的发生 Scalloped(Sd) TEAD1,TEAD2,TEAD3, TEAD4 能与Yki结合的转录因子,与Yki共同 作用,调控靶基因的转录 三、Hippo信号通路的功能 近十年相关研究结果表明,无论是果蝇还是哺乳动物,Hippo信号通路都可以通过调节细胞增殖、凋亡和干细胞自我更新能力实现对器官大小的调控。Hippo信号通路异常会导致大量组织过度生长。此外,大量研究证实,Hippo信号通路在癌症发生、组织再生以及干细胞功能调控上发挥着重要功能[2][3][4]。 a.Hippo信号通路在器官大小控制中的作用 起初,关于Hippo信号通路的研究主要集中在器官大小的调控。大量研究表明,Hippo 途径主要通过抑制细胞增殖并促进细胞凋亡,继而实现对器官大小的调控。激酶级联反应是该信号传导的关键。Mst1/2激酶与SA V1形成复合物,然后磷酸化LATS1/2;活化后的LATS1/2激酶随即磷酸化Hippo信号通路下游关键效应分子——Y AP和TAZ,同时抑制了

心衰的信号

心衰的信号 四川省南充市高坪区螺溪镇卫生院 637133 心衰其实指的是心力衰竭,心衰属于其简称。为了引起人们对于心衰的重视,掌握心衰 的相关知识,了解新色的的具体症状,充分避免并控制心衰,降低心衰对于人体健康以及生 命的影响非常重要。而且从实践的情况来看有助于对症下药,及早诊治。本文总结了如下几 种心衰的信号,经过分析与解释,希望能够让更多的人看懂,并对心衰加以重视,发现问题 及时到医院全面检查,防止意外的发生。 1.气短。气短属于心衰常见的信号之一,气短经常出现在睡觉或躺下的时候,而且容 易被忽视,等到想起来又不会将其与心力衰竭联系在一起。此外很多心衰患者在半夜或早晨 起床的时候身体有着很不一样的状态,比如心衰患者可能会感觉无法深呼吸,甚至会出现喘 不过气来的情况。很多心衰患者在就医之后还反映当他们在日常生活中用力或躺下的时候, 身体的变化最为明显,比如大部分心衰患者发现胸口有压迫感,甚至存在无法深呼吸的症状。这种时候大部分的人都会坐起身,这样才能够正常的喘口气。一些患者的症状比较明显,一 般情况下无法用坐起身达到缓解,需要长时间保持垫高枕头的状态,或者选择在椅子上睡觉,尽管这样感觉更舒适些,但是一旦调换姿势气短的症状又会出现,对生活造成了非常负面的 影响。 2.胸口重压感,也被称之为“下沉感”。再从心衰的信号来看,胸口出现的重压感实际上可以算作是心衰的起初症状。但是由于并不是每一个人都会对这种重压感产生重视感,所以 当初次出现的时候很多人都会忽视,并且依靠时间环节。当然也存在很多患者初次出现这种 感觉的时候,患者不知如何处置的情况,但是又无法准确地向医生或者家属描述,使得这种 异常感觉只有患者自己能够感觉和领会。很多患者在面临胸口重压感的时候通常会有一种无 法呼吸的感觉,甚至深呼吸的时候还会有一种肺部充满液体的感觉,这种情况与溺水的情况 很像。与此同时临床实践发现很多心衰患者出现胸口重压感的时候还会出现胸痛的症状3.感觉衣物和鞋子过紧。这种心衰的信号当真属于很多人都会忽视的,所以存在很多 信号已经存在但是没有引起重视而出现了各类问题。比如很多心衰患者发现他们的衣服鞋子 莫名其妙变得很紧,这主要是心衰患者这时候已经出现了虚胖的情况,而虚胖当然伴随的就 是浮肿。可以说浮肿是心衰的早期症状之一,在很多时候浮肿往往难以识别,浮肿不仅会发 生在常见的手部、脸部、脚部,也可以发生在一些衣物掩盖的地方,即身体的其他部位,很 多人常常会没有观察到,导致心衰的问题没有得到及时的解决。若是日常生活中发现自己腰 围莫名突然增大,脸和脖子突然变得又圆又胖,都应当心心衰。 4.心悸或心跳不规则。无论是心跳过快还是心律不齐,抑或是心悸等症状,都属于心 力衰竭的常见症状。患者有了这一系列的症状之后,身体会有明显的感觉,比如心跳过快会 导致患者变得恐慌、紧张,会感觉心跳过快过猛。若是类似心律不齐、不规则问题,则还会 涉及到房颤和房扑,若是长期没有得到重视,缺少及时治疗的机会,则会引起十分危险的后果。 5.食欲不振。食欲不振可以说是心衰信号最容易被忽视和误解的,因为引起食欲不振 的因素有很多。很多人饭后很长时间仍然有饱腹感,感觉到食物在胃部没有得到很好的消化。与此同时还发现不仅食欲不佳,甚至伴有恶心、便秘等症状。有些反应比较强烈的患者可能 胃部的不适感还会增强,甚至出现腹痛的症状。胸腹部也会感觉到明显的压迫感,所以当摄 入食物之后明显感觉不适。当然讨论心衰的时候必然涉及到疲劳的问题,而疲劳属于促使心 衰患者食欲不振的重要原因。比如很多的心衰患者会反映咀嚼食物的时候整个人都会有一种 疲惫感。 6.头昏头晕。头昏以及头晕目眩作为心力衰竭常见的症状之一,属于能够被很多人重 视的症状。当然仍然存在很多的细节是心衰患者没有注意的,比如患者感觉整个世界都在转,当这种症状出现之后患者还会出现恶心或晕车感。若是没有及时处理对于患者的健康危害较大,例如在头昏头晕的时候很多心衰患者实际上已经出现了心悸或心律不齐的症状。所以为 了防止更大的问题,应及时就医。 7.焦虑不安。呼吸急促、思绪不停、手心出汗、心跳加快都是焦虑的迹象。有些患者

骨关节炎-中文综述

题目骨关节炎关节软骨研究进展 作者 摘要 归纳了。。。研究中的关键问题 指出了。。。及其。。。研究的主要进展 讨论了。。。的类型、影响因素、过程机理和描述方法 在此基础上,对。。。规律的研究前景进行了展望 关键词 前言 骨关节炎(OA)是受多因素影响的慢性进行性非炎症退行性的关节疾病,常会累及肌肉骨骼的疾病,以软骨、软骨下骨和滑膜的病理改变为主(1)。软骨细胞是关节软骨在OA病理生理中的关键细胞,也是软骨内骨化正常的骨骼发育、关节软骨的保护和关节运动功能的维持的关键因素。此外软骨细胞分泌细胞外基质,保护组织免受关节软骨的破坏。说明关节软骨与OA 的发生发展密切相关。目前对OA治疗主要是缓解疼痛,无明确有效的针对改善关节软骨病情和理想的消炎止痛药。因此,探讨关节软骨在OA中的病理机制将有巨大的临床价值。 正文 1.OA的病理生理 OA可由多种病因引起,尤其与高龄相关,继而导致骨和软骨的降解和修复的过程。然而,对于这些骨和软骨相互作用的变化是否有一个共同的通路,还需要研究者们不断探索。 1.1软骨细胞的调节 软骨细胞在OA中非常重要,与骨骼发育、关节软骨的保护与关节运动紧密相关。在原代人类软骨细胞,其中一个信号瀑布是由胶原II和其释放的细胞因子介导的,包括白介素(IL)-6,同时响应细胞因子产生基质金属蛋白酶(MMPs)。死亡的软骨细胞会减少软骨的细胞构成,剩余的软骨细胞被细胞因子和生长因子激活,促进分解和使细胞分化异常,如抑制IL-1导致细胞外基质(ECM)降解(18)。天然胶原主要包括MMP-1、MMP-8和MMO-13,其中MMP-13是软骨细胞终末分化的早期标志物。 1.2关节软骨的降解 刺激软骨细胞外基质的两个关键分子是II型胶原(如MMPs)和蛋白聚糖(如聚蛋白多糖酶,ADAMTS),由软骨细胞镶嵌在基质中,也被蛋白水解酶降解。它的降解导致关节软骨基质的丢失。蛋白聚糖被蛇毒去整合素和金属蛋白酶结构域调控,主要通过ADAMTS-4和ADAMTS-5实现。 MMPs和ADAMTS在软骨降解介导ECM丢失中可能是最重要的酶。此外,MMP-13和ADAMTS-5可通过促进分解信号使OA改变,同时也可以调节合成信号维持软骨内环境的稳定。 I型胶原是第一个被描述的人源化OA软骨中诱导的基质分子,可在OA中观察到其上调。 此外,DDR家族代表细胞表面酪氨酸激酶受体和一些纤维状胶原的交互,以两种形式存在,DDR1和DDR2。II型胶原更加特异性的与DDR2结合。DDR2是OA软骨降解中的中央调节分子,也与压力途径相关,通常包括IL-6,作为促炎细胞因子的原型,通过原代人类软骨细胞预处理再由II型胶原释放(28)。

肿瘤细胞信号转导

摘要 细胞信号转导的存在及其过程是近年细胞生物学、分子生物学和医学领域的研究热点之一。细胞信号转导异常与肿瘤等多种疾病的发生、发展和预后直接相关。综述与肿瘤发生相关的几条主要信号通路, 阐明它们的作用机制对于探索肿瘤发病机制并最终攻克肿瘤具有重要的意义。 关键词:肿瘤;细胞信号转导

Abstract The existence and the process of cell signal transduction is one of the hot topics in cell biology, molecular biology and medicine. Cell signal transduction is directly related to the occurrence, development and prognosis of many diseases, such as cancer. Summary of several major signaling pathways associated with tumor development, to clarify their role in the pathogenesis of cancer and to explore the ultimate tumor has important significance. Key word: tumor cell signal transduction

前言 信号转导(signal transduction)是20世纪90年代以来生命科学研究领域的热点问题和前沿。信号转导的基本概念是细胞外因子通过与受体(膜受体或核受体)结合,所引发细胞内的一系列生物化学反应,直至细胞生理反应所需基因的转录表达开始的过程[1]。随着癌基因和抑癌基因的发现,细胞信号转导通路的阐明,极大地丰富了人们对细胞癌变机制的认识。通过对癌基因产物(癌蛋白,oncopro- tein)功能的分析,发现许多癌蛋白位于正常细胞信号转导通路的不同部位,对促进细胞分裂增殖起着重要的作用。在肿瘤发生发展的过程中,由于正常的基因调控紊乱,可导致细胞信号传递网络的异常。与正常细胞相比,往往一些通路处于异常活跃状态, 而有一些通路却传递受阻。 1与肿瘤发生相关的几条主要信号通路 1.1 Hedgehog信号通路:Hedgehog信通路是近年来备受关注的一个调控胚胎发育的信号转导途径,而且与人类肿瘤的发生与发展紧密相关。Hedgehog信号通路的异常激活可以导致多种肿瘤的形成, 如基底细胞癌、髓母细胞瘤、肺小细胞癌、胰腺癌、前列腺癌、胃肠道恶性肿瘤等[2]。Hedgehog信号通路主要由3部分组成:Hh信号肽(Shh、Ihh、Dhh)、跨膜受体(Ptch、Smo)和下游转录因子(Gli)。在正常状态下,Hh蛋白由其经过自我裂解产生的N末端裂解物(Hh-N)与胆固醇或脂酰基结合, 附着于细胞模表面。Hh信号通路的激活是通过配体Hh与跨膜蛋白Ptch结合, 进而解除Ptch对另一跨膜蛋白Smo的抑制作用,Smo再通过下游转录 因子Gli来调控基因转录。Hedgehog信号通路成员Shh、Ptch、Smo和Gli-1在结肠癌、胰腺癌及结肠腺瘤细胞中有不同程度的表达, 环靶明(Smo受体特异性小分子抑制剂)对Smo高表达细胞的生长有明显抑制作用,从而说明Hedgehog信号通 路可能在部分消化道肿瘤细胞中被活化[3]。在肝癌组织和肝癌细胞系中,Ihh、Ptch、Smo、Gli基因的转录和蛋白表达可检测到差异,环靶明可使Hedgehog信号转导通路各成员的表达出现不同程度的降低,从而说明原发性肝癌中Hedgehog 信号转导通路是活化的,并且环靶明有阻断Hedgehog信号转导通路的作用[4]。 1.2 Wnt信号通路:Wnt信号通路是一条在进化上保守的信号途径,在胚胎发育和中枢神经系统的形成中起关键作用,可调控细胞的生长、迁移和分化。目前研究表明,在乳腺癌、结直肠癌、胃癌、肝癌、黑色素瘤及子宫内膜癌、卵巢癌中都存在Wnt信号通路异常[5]。Wnt信号通路主要分为3种类型:(1)经典的Wnt 信号途径:通过β-连环蛋白(β-catenin)核易位。激活靶基因的转录活性。(2)细胞平面极性途径:此途径涉及RhoA蛋白和Jun激酶,主要控制胚胎的发育时间和空间。在细胞水平上,此途径通过重排细胞骨架来调控细胞极性。(3)Wnt/Ca2+途径:此途径可诱导细胞内Ca2+浓度增加并激活Ca2+敏感的信号转导组分,如信赖钙调蛋白的蛋白激酶Ⅱ、钙调蛋白敏感的蛋白磷酸酶和活化T细胞核因子NF-AT。在Wnt通路中任何一步发生障碍都可致癌。一是组成Wnt信号途径的蛋白、转录因子或基因被破坏或变异导致该途径关闭或局部途径异常活跃;二是过多的Wnt

肿瘤常见信号通路

1 JAK-STAT 信号通路 1) JAK 与STAT 蛋白 JAK-STAT 信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体( tyrosine kinase associated receptor ) 许多细胞因子和生长因子通过JAK-STAT 信号通路来传导信号,这包括白介素2?7 (IL-2?7 )、GM-CSF (粒细胞/巨噬细胞集落刺激因子)、GH (生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN (干扰素)等等。这些细胞 因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK 的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK ( Janus kinase ) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体( receptor tyrosine kinase, RTK ),而JAK 却是一类非跨膜型的酪氨酸激酶。JAK 是英文Janus kinase 的缩写,Janus 在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定 SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH ),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT ( signal transducer and activator of transcription ) STAT 被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性 的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具 有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“ GTFLLRFSS ”。 2) JAK-STAT 信号通路 与其它信号通路相比,JAK-STAT 信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残 基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位

资深PI最新文章解析信号通路

资深PI最新文章解析信号通路 ------------------------------------------------------------------------------------------------------------------------------------ 摘要:来自新加坡分子与细胞生物学研究院,癌症与发育细胞生物学部的研究人员获得了YAP-TEAD4复合物在YAP因子N端结构域相互作用,以及在TEAD4 C端结构域与YAP相互作用的晶体结构,从中研究人员认为YAP中的PXXΦP片段是与TEAD4相互作用的关键结构,这为研究Hippo信号通路提供了重要的分子机理线索。这一研究成果公布在《Genes Development》杂志上。 生物通报道:来自新加坡分子与细胞生物学研究院,癌症与发育细胞生物学部的研究人员获得了YAP-TEAD4复合物在YAP因子N端结构域相互作用,以及在TEAD4 C端结构域与YAP相互作用的晶体结构,从中研究人员认为YAP中的PXXΦP片段是与TEAD4相互作用的关键结构,这为研究Hippo信号通路提供了重要的分子机理线索。这一研究成果公布在《Genes Development》杂志上。 领导这一研究的是新加坡分子与细胞生物学研究院宋海卫博士,其早年毕业于河南大学化学系,之后进入中科院生物物理研究院进行分子生物学方面的学习,1998年获得利兹大学(The University of Leeds)分子生物学专业博士学位。目前任新加坡分子与细胞生物学研究所资深研究员。 Hippo信号转导通路是几年前发现的一个信号转导通路。研究发现Hippo信号通路是参与调控器官大小发育的关键信号通路,这一观点首先在果蝇中被发现,后来的研究发现在哺乳动物的发育过程中Hippo有相同的功能。06年Cell发表的一篇文章证实Hippo 是一种细胞分裂和死亡的控制开关。Hippo信号转导通路通过促进细胞调亡和限制细胞

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

心力衰竭

定义:在各种到致病因素的作用下,心脏的收缩和/或舒张功能发生障碍,使心输出量绝对或相对下降,即心泵功能下降,以至不能满足机体代谢需要的病理生理过程或综合征称为心力衰竭(heart failure) 病因: 1、原发性心肌舒缩功能障碍:如病毒、阿霉素中毒、严重持久的缺血等均可直接造成心肌细胞死亡,使心肌的舒缩功能下降。临床上常见于冠心病、心肌炎、心肌病等。 2、心脏负荷过重:前负荷过重常见于主(肺)动脉瓣或二(三)尖瓣关闭不全、高动力循环状态等。后负荷过重常见于高血压、肺动脉高压、主动脉瓣狭窄等。 常见心力衰竭的病因 诱因:可在心力衰竭基本病因的基础上诱发心力衰竭。据统计约90%心力衰竭的病都有诱因的存在,它们通过不同途径和作用方式诱发心力衰竭。临床上常见的诱因是: 1.全身感染 2.酸碱平衡及电解质代谢紊乱 3.心律失常 4.妊娠与分娩 分类:心力衰竭有多种分类方法 按心力衰竭病性严重程度分:轻度心力衰竭,中度心力衰竭,重度心力衰竭 按心力衰竭起病及病程发展速度分为:急性心力衰竭,慢性心力衰竭 按心输出量的高低分为:低输出量性心力衰竭,高输出量性心力衰竭 按心力衰竭的发病部位分为:左心衰竭,右心衰竭,全心衰竭 按心肌收缩与舒张功能的障碍分为:收缩功能不全性心力衰竭(收缩性衰竭)、舒张功能不全性衰竭(舒张性衰竭) 心力衰竭的发生机制 一、心肌收缩性减弱 引起心肌收缩性减弱的的基本机制是:①与心肌收缩有关的蛋白(收缩蛋白、调节蛋白)被破坏;②心肌能量代谢紊乱;③心肌兴奋-收缩耦联障碍;④心肌肥大的不平衡生长。(一)收缩相关蛋白质的破坏 当心肌细胞死亡后与心肌收缩有关的蛋白质随即被分解破坏,心肌收缩力也随之下降。心肌

肿瘤常见信通路

1 JAK-STAT信号通路 1) JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF (表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK(Janus kinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。(3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2) JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK

细胞常见信号通路图片合集

目录 actin肌丝 (5) Wnt/LRP6 信号 (7) WNT信号转导 (7) West Nile 西尼罗河病毒 (8) Vitamin C 维生素C在大脑中的作用 (10) 视觉信号转导 (11) VEGF,低氧 (13) TSP-1诱导细胞凋亡 (15) Trka信号转导 (16) dbpb调节mRNA (17) CARM1甲基化 (19) CREB转录因子 (20) TPO信号通路 (21) Toll-Like 受体 (22) TNFR2 信号通路 (24) TNFR1信号通路 (25) IGF-1受体 (26) TNF/Stress相关信号 (27) 共刺激信号 (29) Th1/Th2 细胞分化 (30) TGF beta 信号转导 (32) 端粒、端粒酶与衰老 (33) TACI和BCMA调节B细胞免疫 (35) T辅助细胞的表面受体 (36) T细胞受体信号通路 (37) T细胞受体和CD3复合物 (38) Cardiolipin的合成 (40) Synaptic突触连接中的蛋白 (42) HSP在应激中的调节的作用 (43) Stat3 信号通路 (45) SREBP控制脂质合成 (46) 酪氨酸激酶的调节 (48) Sonic Hedgehog (SHH)受体ptc1调节细胞周期 (51) Sonic Hedgehog (Shh) 信号 (53) SODD/TNFR1信号 (56) AKT/mTOR在骨骼肌肥大中的作用 (58) G蛋白信号转导 (59) IL1受体信号转导 (60) acetyl从线粒体到胞浆过程 (62) 趋化因子chemokine在T细胞极化中的选择性表达 (63) SARS冠状病毒蛋白酶 (65) SARS冠状病毒蛋白酶 (67) Parkin在泛素-蛋白酶体中的作用 (69)

骨性关节炎软骨和软骨下骨之间信号通路_赵晋

基金项目:国家自然科学基金面上项目(81572218);上海市自然科学基金(13ZR1439100);上海市卫生局局级课题面上项目科研基金(20124303) 作者单位: 1.006300唐山,华北理工大学附属医院血液科;2.200090上海,同济大学附属杨浦医院骨科通信作者:闫振宇,E- mail :hbyzy2011@163.com ;张立智,E-mail :zhanglizhi001@sohu.com DOI :10.3969/j.issn.1674-2591.2016.02.015 ·综述· 骨性关节炎软骨和软骨下骨之间信号通路 赵晋1,闫振宇1,张立智 2 [摘要]骨性关节炎(osteoarthritis ,OA )的发生和发展离不开软骨和软骨下骨共同病变的过程。信号 通路的异常在调控OA 软骨下骨和软骨的病变中起重要作用。Wnt 、转化生长因子β(transforming growth factor β,TGF β)/骨形态发生蛋白(bone morphogenetic protein ,BMP )、丝裂原活化蛋白激酶(mitogen-activa-ted protein kinases ,MAPK )信号通路对骨和软骨正常生长发育和代谢有着重要的调控作用,维持了关节的健康和平衡。研究显示,在OA 中,这些信号通路的改变不仅可使OA 软骨下骨和软骨的细胞表型和分子功能失衡,细胞外基质的合成破坏,软骨下骨骨重塑,还可通过破坏组织细胞的代谢进一步改变骨和软骨的结构及应力承担能力。因此,本文围绕骨关节炎病变中Wnt 、TGF β/BMP 、MAPK 信号交流在OA 中软骨下骨和软骨病变中的作用和机制进行综述,以期为OA 和其他骨关节疾病的研究和治疗提供新的方法和思路。 [关键词] 骨关节炎;Wnt 信号通路;TGF β/BMP 信号通路;MAPK 信号通路 中图分类号:R681 文献标志码:A Signal pathway between cartilage and subchondral bonein osteoarthritis ZHAO Jin 1,YAN Zhen-yu 1,ZHANG Li-zhi 2 1.Department of Hematology ,North China University of Science and Technology Affiliated Hospital ,Tangshan 006300,China ; 2.Department of Orthopedic Surgery ,Yangpu Hospital Affiliated to Tongji University ,Shanghai 200090,China [Abstract ] The occurrence and development of osteoarthritis (OA )can not be separated from the common patho- logical changes of cartilage and subchondral bone.Abnormal signal pathway plays an important role in the regulation of bone and cartilage lesions in OA.Wnt 、TGF β(transforming growth factor β)/BMP (bone morphogenetic protein )、MAPK (mitogen-activated protein kinases )signaling pathway plays an important role in the normal growth and metabo-lism of bone and cartilage ,maintaining the health and balance of the joints.Studies have shown that in the lesions of os-teoarthritis ,these signals can not only make the cell phenotype and molecular function imbalance of OA subchondral bone and cartilage ,the synthesis of extracellular matrix distroyed ,subchondral bone remodeling ,but also destrog the metabo-lism of tissue cells and further change the structure and bear ability of stress of bone and cartilage.Therefore ,this review summarizes the role and mechanism of Wnt ,TGF /BMP ,MAPK signaling of OA on communication between cartilage and subchondral bone ,in order to provide new methods and ideas for the research and study of osteoarthritis and other bone diseases. [Key words ] osteoarthritis ;Wnt signaling pathway ;TGF /BMP signaling pathway ;MAPK signaling pathway 骨关节炎(osteoarthritis ,OA )是一种以软骨和软骨下骨发生退行性改变为特征的关节疾 病[1] 。软骨下骨和软骨是关节内应力和生物学作 用的主要载体,由于软骨下骨和软骨间有共同的 · 391·CHIN J OSTEOPOROSIS &BONE MINERRES Vol.9No.2June 20,2016

T细胞受体信号转导通路的动力学分析

收稿日期:2008 07 01 作者简介:刘顺会(1971 ),男,湖北荆州市人,博士,主要从事生物信息学研究。 基金项目:国家自然科学基金(30572124)、广东省科技厅(2004B31201001)、教育部科学技术研究重点项目(205116)、广东省自然科学基金(5002855)联合资助。 *广东药学院临床医学院 文章编号:1004 4337(2008)06 0641 06 中图分类号:R392 4 文献标识码:A 医学数学模型探讨 T 细胞受体信号转导通路的动力学分析 刘顺会 肖兰凤 * 黄树林 (广东药学院生命科学与生物制药学院 广州510006) 摘 要: 目的:建立T 细胞受体信号转导途径的动力学模型,通过模型仿真揭示T 细胞受体信号途径各分子间的动态调控过程,简要分析模型的动力学特性。方法:根据数据库KEGG 及相关中英文文献,提取T 细胞受体信号转导各条通路相关分子作用的方式及数量关系,利用M atlab 7.0的S imulin k 工具箱构建信号途径的动力学模型并仿真。结果:模型仿真结果与文献符合得较好,能够从数量上反映T 细胞受体信号转导途径中各分子间复杂的调控关系,并能通过模型仿真发现和验证该信号途径中的关键节点分子。结论:模型基本反映了T 细胞受体信号转导途径的动力学特征,可以作为后续的精确定量关系研究的基础。 关键词: T 细胞受体; 信号转导; 动力学模型 T 细胞特异性抗原或T CR/CD3的特异性抗体可引起T 细胞跨膜受体以及膜附近的其它信号分子的活化,并引起T 细胞形态改变、细胞因子分泌、细胞粘附性改变等免疫应答,从而调节T 细胞的增殖、分化或凋亡,该过程涉及一系列下游信号转导和基因表达调控。T 细胞活化时信号传递由T 细胞表面抗原识别受体(T cell receptor ,T CR)介导,外来信号经受体及相关蛋白传递给胞内的蛋白酪氨酸激酶,此后启动三条下游信号途径:一为磷脂酶C 1(Phospholipase C 1,PL C 1)介导的信号途径,二为Ras M A PK 途径,三为共刺激分子介导的磷酸肌醇激酶 3(PI3K)辅助信号途径。同时,为保持免疫应答的平衡,避免过度活化,T 细胞的活化过程还受到抑制性信号通路的调节,这些通路彼此交织,构成一个十分复杂的T 细胞活化调控网络[1]。 随着各种复杂的信号转导网络中各个分子通道的确定,如何从系统水平上定量地分析各信号转导网络的动态特征就成为当前系统生物学的研究重点。除各种并行、高通量的实验技术外,数学建模和仿真是另外一种研究复杂生化网络的强有力手段,比如在细胞代谢研究领域已经很广泛地利用数学模型分析具有多个调控环的代谢网络[2]。实践表明,通过建立生化网络的数学模型并进行计算机仿真能够拟合现有的实验数据,解释实验中观测到的现象,预测一些不能通过当前实验手段获得的结果,减少实验的强度和数量,并验证实验提出的可能机制。 本研究建立了T 细胞受体信号转导途径的动力学模型,通过模型仿真揭示了T 细胞受体信号途径各分子间的动态调控过程,并对模型的动力学特性进行了简要分析。1 材料与方法 1 1 T 细胞受体信号转导途径 T 细胞受体信号转导途径(图1)摘自K EG G 数据库(ht tp://ww w.g eno me.jp/keg g/)。本研究根据相关中英文文献,对图中涉及的信号转导相关分子之间的作用方式及数量关系进行了详细研究和确证,并据此定义整个信号转导途径的变量(包括自变量和因变量)和变量之间的关系。1 2 动力学建模 本研究采用S 系统方程(S system equations )[2]来描述信号转导的生化级联反应过程。对于含有n 个因变量X 1,X 2,!,X n (其数量随时间而变化)和m 个自变量X n +1 ,X n +2,!, X n +m (一般设定为某些不变常量)的生化级联反应系统,其动 力学时变方程可以表达为: d X i /d t =V +i -V -i i =1,2,!,n (1) 式中X i 的生产函数V i +=V i +(X 1,!,X n ,X n +1,!,X n +m )和消耗函数V i -=V i -(X 1,!,X n ,X n +1,!,X n +m )是所有变量的函数,式(1)用S 系统方程可表达为: d X i /d t = i n +m j =1 X g ij j - i n +m j =1 X h ij j i =1,2,!,n (2) 式(2)中 i 和 i ( i 、 i >0)分别表示生产函数和消耗函数的速率常数,g ij 和h ij 分别表示变量X j 在因变量X i 的生产和消耗过程中的动力学阶,其中g ij 或h ij >0表示X j 在X i 的生产或消耗过程中起"正"调控作用,反之,如果g ij 或h ij <0则表示X j 在X i 的生产或消耗过程中起?负#调控作用,而当g ij 或h ij =0时则表示X j 在X i 的生产或消耗过程中不起任何调控作用。 641

PI3K信号通路详解

磷脂酰肌醇3-激酶(PI3Ks)信号通路 磷脂酰肌醇3-激酶(PI3Ks)信号通路相关 磷脂酰肌醇3-激酶(PI3Ks)蛋白家族参与细胞增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节。PI3K活性的增加常与多种癌症相关。PI3K磷酸化磷脂酰肌醇PI(一种膜磷脂)肌醇环的第3位碳 原子。PI在细胞膜组分中所占比例较小,比磷脂酰胆碱、磷脂酰乙醇胺和磷脂酰丝氨酸含量少。但在脑细胞膜中,含量较为丰富,达磷脂总量的10%。 PI的肌醇环上有5个可被磷酸化的位点,多种激酶可磷酸化PI肌醇环上的4th和5th位点,因而通常在这两位点之一或两位点发生磷酸化修饰,尤其发生在质膜内侧。通常,PI-4,5-二磷酸(PIP2)在磷脂酶C的作用下,产生二酰甘油(DAG)和肌醇-1,4,5-三磷酸。PI3K转移一个磷酸基团至位点3, 形成的产物对细胞的功能具有重要的影响。譬如,单磷酸化的PI-3-磷酸,能刺激细胞迁移(cell trafficking),而未磷酸化的则不能。PI-3,4-二磷酸则可促进细胞的增殖(生长)和增强对凋亡的抗性,而其前体分子 PI-4-磷酸则不然。PIP2转换为PI-3,4,5-三磷酸,可调节细胞的黏附、生长和存活。 PI3K的活化 PI3K可分为3类,其结构与功能各异。其中研究最广泛的为I类PI3K, 此类PI3K为异源二聚体,由一个调节亚基和一个催化亚基组成。调节亚基含有SH2和SH3结构域,与含有相应结合位点的靶蛋白相作用。该亚基通常称为 p85, 参考于第一个被发现的亚型(isotype),然而目前已知的6种调节亚基,大小从50至110kDa不等。催化亚基有4种,即p110α, β,δ,γ,而δ仅限于白细胞,其余则广泛分布于各种细胞中。 PI3K的活化很大程度上参与到靠近其质膜内侧的底物。多种生长因子和信号传导复合物,包括成纤维细胞生长因子(FGF)、血管内皮生长因子(VEGF)、人生长因子(HGF)、血管位蛋白I(Ang1)和胰岛素都能启始PI3K的激活过程。这些因子激活受体酪氨酸激酶(RTK),从而引起自磷酸化。受体上磷酸化的

相关主题