搜档网
当前位置:搜档网 › 偏导数 全导数

偏导数 全导数

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数

偏导数与全导数-偏微分与全微分的关联

1。偏导数 代数意义 偏导数是对一个变量求导,另一个变量当做数 对x求偏导的话y就看作一个数,描述的是x方向上的变化率 对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义 对x求偏导是曲面z=f(x,y)在x方向上的切线 对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分 偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在detax趋进于0时偏增量的线性主要部分 detaz=fx(x,y)detax+o(detax) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分 这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分 全增量:x,y都增加时f(x,y)的增量 全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分

同样也有求全微分公式,也建立了全微分和偏导数的关系 dz=Adx+Bdy 其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数 全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。 u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数 如果z=f(x^2,2^x) 只有这种情况下dz/dx才是全导数!

基本函数求导公式

基本初等函数求导公式 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 (1)(2)(是常数) (3)(4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程 =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数在点的某一邻域内具有连续的偏导数,且,, ,则方程=0在点的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数,它满足条件,并有 (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数代入,得恒等式 , 其左端可以看作是的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 由于连续,且,所以存在(x0,y0)的一个邻域,在这个邻域内,于是得 如果的二阶偏导数也都连续,我们可以把等式(2)的两端看作的复合函数而再一次求导,即得 例1 验证方程在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当=0时,的隐函数,并求这函数的一阶和二阶导数在=0的值。

偏导数与全微分习题

偏导数与全微分习题 1. 设y x y x y x f arcsin )1(),(-+=,求)1,(x f x '。 2. 习题8 17题。 3. 设?? ??? =+≠++=0 001sin ),(22222 2 y x y x y x y y x f ,考察f (x , y )在点(0,0)的偏导数。 4. 考察?? ??? =+≠++=0 001sin ),(22222 2 y x y x y x xy y x f 在点 (0,0)处的可微性。 5. 证 明 函 数 ?? ???=+≠+++=0 001sin )(),(222 22 22 2y x y x y x y x y x f 在 点(0,0)连续且偏导数存在,但偏导数在(0,0)不连续,而f (x , y )在点(0,0)可微。 }

1. 设y x y x y x f arcsin )1(),(-+=,求)1,(x f x '。 y y x y x y y x f x 1) (2111 )1(1),(21 ??- -+='- ∴ 1)1,(='x f x 。 : &

2.习题8 17题。 17. 设22)()(ln b y a x z -+-=(a , b 为常数),证明 02 22 2=??+??y z x z 。 先化简函数 ))()ln((2 1 22b y a x z -+-=, , 2 222)()() ()()()(221b y a x a x b y a x a x x z -+--= -+--?=??, 2222) ()() ()()()(221b y a x b y b y a x b y y z -+--=-+--?=??, 2 22 2 222 2))()(()(2)()(b y a x a x b y a x x z -+----+-= ?? 2 22 22) )()(()()(b y a x a x b y -+----= , 2 222 222 2))()(()(2)()(b y a x b y b y a x y z -+----+-= ?? 2 2222) )()(()()(b y a x b y a x -+----= , ∴ 02 22 2=??+ ??y z x z 。 3. $

高等数学偏导数

授课单元7教案 课题1 偏导数 一、复习 x处的导数,y=f(x)的导数 一元函数y=f(x)在 二、偏导数的概念、 我们已经知道一元函数的导数是一个很重要的概念,是研究函数的有力工具,它反映了该点处函数随自变量变化的快慢程度。对于多元函数同样需要讨论它的变化率问题。虽然多元函数的自变量不止一个,但实际问题常常要求在其它自变量不变的条件下,只考虑函数对其中一个自变量的变化率。

例如,一定量的理想气体P ,体积V ,热力学温度T 的关系式为常数)R V RT P (,= (1)当温度不变时(等温过程),压强P 关于体积V 的变化率为2T V RT )(-=为常数dV dP (2)当体积V 不变时(等容过程),压强P 关于温度T 的变化率为 V R dT dP V = =常数)( . 这种变化率依然是一元函数的变化率问题,这就是偏导数概念,对此给出如下定义。 1、z=f(x,y)在),(00y x 处的偏导数 (1) z =f (x , y )在点(x 0, y 0)处对x 的偏导数 设函数z =f (x , y )在点(x 0, y 0)的某一邻域内有定义, 当y 固定在y 0而x 在x 0处有增量?x 时, 相应地函数有增量 f (x 0+?x , y 0)-f (x 0, y 0). 如果极限 x y x f y x x f x ?-?+→?) ,(),(lim 00000 存在, 则称此极限为函数z =f (x , y )在点(x 0, y 0)处对x 的偏导数, 记作 ),(00y x x z ??, ) ,(00y x x f ??, ) ,(00y x x z ' , 或),(00y x f x '. 即 x y x f y x x f y x f x x ?-?+=' →?) ,(),(lim ),(00000 00 (2)z =f (x , y )在点(x 0, y 0)处对y 的偏导数 ) ,(00y x y z ??= ) ,(00y x y f ??=) ,(00y x y z ' =),(00y x f y '=y y x f y y x f y ?-?+→?) ,(),(lim 00000 2、偏导函数(简称偏导数) (1)z =f (x , y )对自变量x 的偏导函数 如果函数z =f (x , y )在区域D 内每一点(x , y )处对x 的偏导数都存在, 那么这个偏导数就是x 、y 的函数, 它就称为函数z =f (x , y )对自变量x 的偏导函数, 记作 x z ??= x f ??= 'x z =),(y x f x 'x y x f y x x f x ?-?+=→?),(),(lim 0. (2) z =f (x , y )对y 的偏导函数 y z ??=y f ??= 'y z =),(y x f y '=y y x f y y x f y ?-?+→?),(),(lim 0 说明 (1)由偏导数的定义可知,求二元函数的偏导数并不需要新的方法求 x z ??时,把y 视为常数

导数及偏导数计算

第四讲导数及偏导数计算 实验目的 1.进一步理解导数概念及其几何意义. 2.学习matlab的求导命令与求导法. 实验内容 1.学习matlab命令. 建立符号变量命令sym和syms调用格式: x=sym('x'),建立符号变量x; syms x y z ,建立多个符号变量x,y,z; matlab求导命令diff调用格式: diff(函数) ,求的一阶导数; diff(函数, n) ,求的n阶导数(n是具体整数); diff(函数,变量名),求对的偏导数; diff(函数,变量名,n) ,求对的n阶偏导数; matlab求雅可比矩阵命令jacobian,调用格式: jacobian([函数;函数;函数], [])给出矩阵:

2.导数概念.

导数是函数的变化率,几何意义是曲线在一点处的切线斜率. (1)点导数是一个极限值. 例3.1.设,用定义计算. 解:在某一点的导数定义为极限: 我们记,输入命令: syms h;limit((exp(0+h)-exp(0))/h,h,0) 得结果:ans=1.可知 (2)导数的几何意义是曲线的切线斜率. 例 3.2.画出在处()的切线及若干条割线,观察割线的变化趋势. 解:在曲线上另取一点,则的方程是: .即 取,分别作出几条割线. h=[3,2,1,0.1,0.01];a=(exp(h)-1)./h;x=-1:0.1:3; plot(x,exp(x), 'r.');hold on for i=1:5;

plot(h(i),exp(h(i)),'r.') plot(x,a(i)*x+1) end

(完整版)4.2-偏导数的运算.doc

高等数学下册讲稿第四章数学分析教研室 第二节偏导数 教学目的: (1) 理解多元函数偏导数的概念; (2)掌握偏导数和高阶偏导数的求法的四则运算法则和复合函 数的求导法则 ; (3)了解混合偏导数与求导次序无关的充分条件。 教学重点:偏导数和高阶偏导数的求法 教学难点:偏导数存在性的讨论 教学方法:讲练结合 教学时数: 2 课时 一、偏导数的定义及其计算 在研究一元函数时,从研究函数的变化率引入了导数的概念,对于多元函数同样需要讨论它的变化率。由于多元函数不止一个自变量,研究起来要复杂得多。但是,我们可考虑多 元函数关于其中一个自变量的变化率,例如: 理想气体的体积:V k T , p 因此,我们引入下面的偏导数概念。 1、偏导数的定义 定义 2.1 设函数 z f (x, y) 在点 ( x0 , y0 ) 的某一邻域内有定义,当y固定在 y0,而 x 在 x0处有增量x 时,相应地函数有增量: f ( x0x, y0) f ( x0 , y0 ) , 如果 lim f ( x0 x, y0 ) f ( x , y ) 存在,则称此极限为函数z f (x, y) 在点 ( x0 , y0 ) 处对 x 0 x x的偏导数,记为 z, f x ( x0, y0)x , z x (x0 , y0 ) 或f x( x0, y0). ( x0 , y0 ) 即 f x ( x0 f ( x0 x, y0 ) f (x0 , y0 ) d f ( x, y0 ) x x。 , y0 ) lim x dx x 0 0 同理可定义函数 z f ( x, y) 在点 ( x0 , y0 ) 处对y的偏导数,为 lim f (x0 , y0 y) f ( x0 , y0 ) y 0 y

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。

十偏导数与全微分(学生用)

第十四章 偏导数与全微分 §1. 偏导数与全微分的概念 1.求下列函数的偏导数: (1) 2 2 2 ln()u x x y =+; (2) ()cos()u x y xy =+; (3) arctan x u y =; (4) sin()xy u xye =. 2.设22 22 221sin , 0,(,)0, 0.y x y x y f x y x y ?+≠?+=??+=? ,考察函数在(0,0)点的偏导数. 3 .证明函数u =(0,0)点连续但偏导数不存在. 4.求下列函数的全微分: (1) u = (2) yz x u xe e y -=++.

5.求下列函数在给定点的全微分: (1) u =在点(1,1,1); (2) (u x y =+-0,1). 6.证明函数22222 22, 0,(,) 0, 0.x y x y f x y x y x y ?+≠?=+??+=? 在(0,0)点连续且偏导数存在,但在此点不可微。 7 .证明:函数22 220(,)0, 0x y f x y x y +≠=+=?在点(0, 0)处偏导数存在,但不可微. 8.设,x y 很小,利用全微分推出下列式(1)(1)m n x y ++的近似公式:

9.求下列函数指定阶的偏导数: (1) 3 3 sin sin u x y y x =+,求633u x y ???; (2) ln()u ax by =+,求m n m n u x y +???. §2. 求复合函数偏导数的链式法则 1.求下列函数指定的偏导数: (1).设(,,),x y z Φ=Φ ,,,x u v y u v z uv =+=-=求, u v ?Φ?Φ ??. (2) 设),,22(xyz z y x f z --=求x z ?? 2. 求下列函数指定的偏导数(假定所有二阶偏导数都连续) (1) 2 2 (,)u f xy x y =,22u x ?? ; (2) (,)x y u f y z =,2u x y ???; (3) 2 2 2 ()u f x y z =++,22u y ??; (4) (,,)x u f x y xy y =+,2u y x ???.

全微分方向导数偏导数与连续四者之间的关系

全微分方向导数偏导数与连续四者之间的关系 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

全微分、方向导数、偏导数与连续四者之间的关系 朱丽娜 郑州工业安全职业学院 451192 摘要 本文结合具体实例分三种情况分别讨论了二元函数的全微分、偏导数和连续之间的关系,全微分存在和任意方向的方向导数存在之间的关系,任意方向的方向导数、偏导数和连续之间的关系,从而得出他们四者之间的所有关系。 关键词 全微分,任意方向上的方向导数,偏导数,连续 对于多元函数的偏导数、方向导数、偏导数和连续等基本概念及其内在联系,既是多元函数微分学中的重难点知识,也是我们教学过程中容易出现的误解和错误盲点.本文就该问题分三种情况、以二元函数为例来加以阐述,以做到加强理解和灵活掌握的目的. 一、 全微分、偏导数和连续三者之间的关系 定理1:(必要条件)如果函数(,)z f x y =在点(,)x y 可微分,则该函数在点(,)x y 连续且一阶偏导数存在. 定理2:(充分条件)函数(,)z f x y =在点00(,)x y 处对,x y 的一阶偏导数存在且连续,则在该点处必可微分. 读者还可以从可微的定义看到函数在可微点处必连续,但是在函数的连续点处不 一定存在偏导数,当然更不能保证函数在该点可微.如z =在原点连续,但是在该点处偏导数不存在,也不可微. 偏导数存在,函数却不一定可微,也不一定连续. 二、 全微分存在和任意方向的方向导数存在之间的关系

定理3:函数(,)z f x y =在点00(,)x y 处可微分,则在该点处任意方向上的方向导数存在,反之不成立. 例1 :函数z =在点(0,0)处对,x y 的全微分不存在,但在该点处沿任意方向的方向导数存在. 证明:0(0,0)(,0)(0,0)lim x z z x z x x ?→??-=?? 故z =在点(0,0)处对x 的偏导数不存在, 同理z =在点(0,0)处对y 的偏导数不存在, 由定理1 z =在点(0,0)处对,x y 的全微分不存在. 但z =在点(0,0)处沿任意方向的方向导数为 即任意方向上的方向导数存在. 三、任意方向的方向导数、偏导数和连续之间的关系 咱们下面介绍一个更易出错的概念,大多数人以为“若函数在一点处沿任意方向的方向导数存在,则函数在该点处必连续”.这是一个完全错误的概念,如: 例2: 2 222422,0,0,0,xy x y z x y x y ?+≠?=+??+=? 它在任意方向上的方向导数为: 这一结果表明2 222422,00,0xy x y z x y x y ?+≠?=+??+=? 在点(0,0)处沿任意方向的方向导数都存在. 但是222001lim (0,0)2 y x x x z z x x ++ →→==≠+,即函数在该点不连续. 定理4:函数(,)z f x y =在点00(,)x y 沿任意方向上的方向导数存在,则在该点处偏导数必存在. 证明:函数在点00(,)x y 的任意方向的方向导数为:

第十三讲:多元函数的偏导数与全微分的练习题答案

第十三讲:多元函数的偏导数与全微分的练习题答案 一、单项选择题(每小题4分,共24分) 1. 设2(,)f x y x y xy y +-=+ 则(,)f x y = (A ) A . ()2x x y - B .2xy y + C .()2 x x y + D .2x xy - 解: (,)()f x y x y x y y +-=+ []1()()()2 x y x y x y = ++-- (,)()2x f x y x y ∴=- 2. 22 1cos lim 1x x y o e y x y →→++= (D ) A . 0 B .1 C . 1e D . 2 e 解:22cos (,)1x e y f x y x y =++在点(1,0)连续 '221cos cos 0lim 11102x x y o e y e e x y →→∴==++++ 3.设(,) f x y 在点00(,)x y 处有偏导数存在,则0000(2,)(,)lim h o f x h y f x h y h →+--=(D ) A .0 B .'00(,)x f x y C .'002(,)x f x y D .'003(,)x f x y 解:原式=0000(2,)(,)lim 22h o f x h y f x y h →+-? 0000(,)(,)lim h o f x h y f x y h →--+- ='''0000002(,)(,)3(,)x x x f x y f x y f x y += 4.(,)z f x y =偏导数存在是(,)z f x y =可微的 (B ) A .充分条件 B .必要条件 C .充分必要条件 D .无关条件

求偏导数的方法小结-求偏导数公式法

求偏导数的方法小结 (应化2,闻庚辰,学号:130911225) 一, 一般函数: 计算多元函数的偏导数时, 由于变元多, 往往计算量较大. 在求某一点的偏导数时 , 一般的计算方法是, 先求出偏 导函数, 再代人这一点的值而得到这一点的偏导数. 我们发 现 , 把部分变元的值先代人函数中, 减少变元的数量, 再计 算偏导数, 可以减少运算量。 求函数f(x,y)在点(a,b )处的偏导数f ’x(a,b)及f ’y(a,b)的方法是: 1) 先求出偏导数的函数式,然后将(a,b )代入计算即可. 2) 先求出g(x)=f(x,b)和h(y)=f(a,y),再求出g ’(b),h ’(a)便得到f ’x(a,b)和f ’y(a,b). 3) 若函数f(x,y)是分段函数则一般采用定义来做. 复合具体函数的导数求解: 基本法则:x z ??=u z ??x u ??+v z ??x v ?? y z ??=u z ??y u ??+v z ??y v ?? 其本质与一元函数的求导法则是一样的,只不过是将暂时不求的变量看成常量而已。 例1 :z=f(x,y)=(x+y)xy ,求f ’ x (1,1),f ’y (1,0); 法一:设u=x+y,v=xy,则z=u v 函数的复合关系为:z 是u,v 的函数,u,v 分别是x,y 的函数. 则:x z ??=u z ??x u ??+v z ??x v ?? =xy(x+y)xy-1+y(x+y)xy ln(x+y) =y(x+y)xy [)(y x x +ln(x+y)]

f ’ x (x,y)= y(x+y)xy [)(y x x ++ln(x+y)] 所以:f ’ x (1,1)=1+2ln2 由于f(x,y)的表达式中的 x,y 依次轮换,即x 换y 成,同时将换y 成x ,表达式不变,这叫做函数f(x,y)对自变量x,y 交换具有轮换对称性。具有轮换对称性的函数,只要在f ’ x 的表达式中将x,y 调换即得到f ’y 。即:f ’y (x,y )= y(x+y)xy [)(y x x ++ln(x+y)] 所以f ’y (1,0)=0 法二:由于和一元函数的求导的实质是一样的。我们可以不引入中间变量,对某一自变量求导时,只要把其他自变量看成常数即可。如: Lnz=xyln(x+y) 上式两边求导得: z 1 x z ??=y[ln(x+y)+ )(y x x +] 从而:x z ??=z y[ln(x+y)+ )(y x x +] 所以:f ’ x (1,1)=1+2ln2 有函数的对称轮换性得:f ’y (1,0)=0 例三:我们也可以利用全微分的不变性来解题。 设z=e u sin(v),而u=xy,v=x+y 。求x z ??+y z ??在(1,1)处的值。 dz=d(e u sin(v))= e u sin(v)du+e u cos(v)dv du=d(xy)=ydx+xdy dv=d(x+y)=dx+dy 代入后合并同类项得: dz=(e u sin(v)y+e u cos(v))dx+(e u sin(v)x+ e u cos(v))dy 将点(1,1)代入得: x z ??+y z ??=2e(sin2+cos2). 二,隐函数的求偏导。

4.2- 偏导数的运算

第二节 偏导数 教学目的:(1) 理解多元函数偏导数的概念; (2) 掌握偏导数和高阶偏导数的求法的四则运算法则和复合函 数的求导法则; (3) 了解混合偏导数与求导次序无关的充分条件。 教学重点:偏导数和高阶偏导数的求法 教学难点:偏导数存在性的讨论 教学方法:讲练结合 教学时数:2课时 一、偏导数的定义及其计算 在研究一元函数时,从研究函数的变化率引入了导数的概念,对于多元函数同样需要讨论它的变化率。由于多元函数不止一个自变量,研究起来要复杂得多。但是,我们可考虑多元函数关于其中一个自变量的变化率,例如: 理想气体的体积:,T V k p = 因此,我们引入下面的偏导数概念。 1、偏导数的定义 定义2.1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义,当y 固定在0y ,而x 在0x 处有增量x ?时,相应地函数有增量:),(),(0000y x f y x x f -?+, 如果x y x f y x x f x ?-?+→?) ,(),(lim 00000 存在,则称此极限为函数),(y x f z =在点),(00y x 处对 x 的偏导数,记为 00(,)x y z x ??,00(,) x y f x ??,00(,)x z x y 或),(00y x f x . 即0000000 (,)(,)(,)lim x x f x x y f x y f x y x ?→+?-=?0 0d (,)d x x f x y x ==。 同理可定义函数),(y x f z =在点),(00y x 处对 y 的偏导数,为 y y x f y y x f y ?-?+→?) ,(),(lim 00000 记为 00(,) x y z y ??, 00(,) x y f y ??,00(,)y z x y 或00(,)y f x y . 即00(,)y f x y 00000 (,)(,)lim y f x y y f x y y ?→+?-=?0 0d (,) d y y f x y y ==。

4.2-偏导数的运算

第二节偏导数 教学目的:(1)理解多元函数偏导数的概念; (2) 掌握偏导数和高阶偏导数的求法的四则运算法则和复合函 数的求 导法则; (3) 了解混合偏导数与求导次序无关的充分条件。 教学重点:偏导数和高阶偏导数的求法 教学难点:偏导数存在性的讨论 教学方法:讲练结合 教学时数:2课时 、偏导数的定义及其计算 在研究一元函数时,从研究函数的变化率引入了导数的概念, 对于多元函数同样需要讨 论它的变化率。由于多元函数不止一个自变量,研究起来要复杂得多。但是,我们可考虑多 元函数关于其中一个自变量的变化率,例如 : 理想气体的体积:V k T , P 因此,我们引入下面的偏导数概念。 1、偏导数的定义 定义2.1 设函数z f (x, y)在点(x o ,y 。)的某一邻域内有定义,当y 固定在y 。,而x Z x (X o , y o )或 f x (x o , y o ). (S o ) 同理可定义函数z f (x,y)在点(x (py o )处对y 的偏导数,为 |im f(x o ,y o y) f(x o ,y 。) y o y 在x o 处有增量 x 时,相应地函数有增量: f (x o x, y o ) f(x o , y o ), 如果lim 血 x o xL ^— f(x ° ,yo) 存在,则称此极限为函数 Z f (x, y)在点(x o , y o )处对 x 的偏导数 ,记为 即 f x (x o ,y o ) l x m o f(xo x ,yo) f(xo ,yo) d dx f(x , yo) x Xo °

如果函数z f (x, y)在区域D 内任一点(x, y)处对x 的偏导数都存在,那么这个 偏导数就是x 、y 的函数,它就称为函数 z f (x, y)对自变量x 的偏导函数,简称偏导数 记作, ,Z x 或 f x (x, y). x x 同理可以定义函数 z f (x, y)对自变量y 的偏导数,记作一Z ,—, Z y 或f y (x, y) ? y y 偏导数的概念可以推广到二元以上函数 如 u f (x, y, z)在(x, y, z)处 f x (x,y,z) lim f(x x,y, z) f( x,y,z) , x o x f (x, y y,z) f (x, y,z) f y (x,y,z) lim o , y o y f z (x,y,z) |im f( x,y, z z) f( x,y,z ). z o z 2、计算: 从偏导数的定义可以看出, 计算多元函数的偏导数并不需要新的方法, 若对某一个自变 导法则都可以移植到多元函数的偏导数的计算上来。 x 2 3xy y 2在点(1,2)处的偏导数. 记为上 ,f Z y (X o ,y °)或 f y (X o , y o ). y (x o ,y o ) y (x o ,y o ) 即 f y (X o , y o ) limUX 泄 y o y) f(x °,y °) y d dy f(Xo,y) y yo 量求导,只需将其他自变量常数,用一元函数微分法即可。 曰 是 元函数的求导公式和求

导数公式大全

导数公式大全 1、原函数:y=c(c为常数) 导数:y'=0 2、原函数:y=x^n 导数:y'=nx^(n-1) 3、原函数:y=tanx 导数:y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx 6、原函数:y=cosx 导数:y'=-sinx 7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数:y'=e^x 9、原函数:y=logax 导数:y'=logae/x 10、原函数:y=lnx 导数:y'=1/x

y=f(x)=c (c为常数),则f'(x)=0 f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosx f(x)=cosx f'(x)=-sinx f(x)=tanx f'(x)=sec^2x f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0) f(x)=e^x f'(x)=e^x f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0) f(x)=lnx f'(x)=1/x (x>0) f(x)=tanx f'(x)=1/cos^2 x f(x)=cotx f'(x)=- 1/sin^2 x f(x)=acrsin(x) f'(x)=1/√(1-x^2) f(x)=acrcos(x) f'(x)=-1/√(1-x^2) f(x)=acrtan(x) f'(x)=-1/(1+x^2) 导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。 1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna

偏导数及其经济应用

§8.2 偏导数及其经济应用 教学目的:理解并掌握偏导数概念,能正确求出所给函数的 偏导数和高阶偏导数.了解偏导数的几何意义.了解偏导数在经济分析中的应用. 重点:正确求出所给函数的偏导数与高阶偏导数. 难点:分清常量与变量,正确运用一元函数导数公式求函数 的偏导数. 教学方法:启发式讲授与指导练习相结合 教学过程: 一、偏导数的定义及其计算方法 1.二元函数(,)z f x y =的全增量(全改变量) (,)(,)z f x x y y f x y ?=+?+?-. 二元函数对x 的偏增量(偏改变量) (,)(,)x z f x x y f x y ?=+?-. 二元函数对y 的偏增量 (,)(,)y z f x y y f x y ?=+?-. 2.二元函数偏导数的定义 【定义8.4】设函数(,)z f x y =在点00(,)x y 的某一邻域内有定义,若一元函数0(,)f x y 在0x x =处存在导数 00(,)x f x y ',则称00(,)x f x y '为(,)f x y 在点00(,)x y 处对 x 的偏导数,并记作 00 x x y y z x ==??, 00 x x y y f x ==??,00 x x x y y z ==或00(,)x f x y '. 其中 00(,)x f x y '= 000000(,)(,)lim lim x x x f x x y f x y z x x ?→?→+?-?=??. (2) 类似可定义函数(,)z f x y =在点00(,)x y 处对y 的偏导数: 00 x x y y z y ==??=00(,)y f x y '=

求偏导数的方法小结-求偏导数公式法

求偏导数的方法小结 (应化2,闻庚辰,学号:130911225) 一,一般函数: 计算多元函数的偏导数时,由于变元多,往往计算量较大.在求某一点的偏导数时,一般的计算方法是,先求出偏导函数,再代人这一点的值而得到这一点的偏导数.我们发现,把部分变元的值先代人函数中,减少变元的数量,再计算偏导数,可以减少运算量。 求函数f(x,y)在点(a,b)处的偏导数f’x(a,b)及f’y(a,b)的方法是: 1) 先求出偏导数的函数式,然后将(a,b)代入计算即可. 2) 先求出g(x)=f(x,b)和h(y)=f(a,y),再求出g’(b),h’(a)便得到f’x(a,b)和f’y(a,b). 3) 若函数f(x,y)是分段函数则一般采用定义来做. 复合具体函数的导数求解: 其本质与一元函数的求导法则是一样的,只不过是将暂时不求的变量看成常量而已。 例1 :z=f(x,y)=(x+y)xy,求f’x(1,1),f’y(1,0); 法一:设u=x+y,v=xy,则z=u v函数的复合关系为:z是u,v的函数,u,v分别是x,y 的函数.

=xy(x+y)xy-1+y(x+y)xy ln(x+y) =y(x+y)xy f’x(x,y)= y(x+y)xy 所以:f’x(1,1)=1+2ln2 由于f(x,y)的表达式中的x,y依次轮换,即x换y成,同时将换y成x,表达式不变,这叫做函数f(x,y)对自变量x,y交换具有轮换对称性。具有轮换对称性的函数,只要在f’x的表达式中将x,y调换即得到f’y。即:f’y(x,y)= y(x+y)xy 所以f’y(1,0)=0 法二:由于和一元函数的求导的实质是一样的。我们可以不引入中间变量,对某一自变量求导时,只要把其他自变量看成常数即可。如: Lnz=xyln(x+y) 上式两边求导得: 所以:f’x(1,1)=1+2ln2 有函数的对称轮换性得:f’y(1,0)=0 例三:我们也可以利用全微分的不变性来解题。 设z=e u sin(v),而u=xy,v=x+y1,1)处的值。

偏导数与全导数 偏微分与全微分的关系

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数

相关主题