搜档网
当前位置:搜档网 › 激光干涉式微位移测量系统的设计和研究

激光干涉式微位移测量系统的设计和研究

激光干涉式微位移测量系统的设计和研究
激光干涉式微位移测量系统的设计和研究

毕业设计(论文)

题目激光干涉式微位移测量系统的

研究与设计

二级学院电子信息与自动化学院

专业测控技术与仪器

班级测控技术与仪器2班

学生姓名贺斌学号 10707030209

指导教师职称

时间

目录

摘要.................................................................................................................................... ?

Abstract........................................................................................................................ I I

1 绪论 (1)

1.1课题的主要任务、内容及意义 (1)

1.1.1 课题主要任务和意义 (1)

1.1.2 课题主要内容 (1)

1.2 课题研究背景 (1)

1.2.1 位移检测 (2)

1.2.2 多普勒效应 (2)

1.3 国内外基于激光原理的微位移测量技术的发展现状 (3)

1.4 光学微位移测量的几种方法 (3)

1.4.1 光外差法 (3)

1.4.2 电镜法 (3)

1.4.3 激光三角测量法 (4)

1.4.4 干涉法测量 (4)

1.5 系统方案 (4)

1.5.1 全息干涉测量 (5)

1.5.2 散斑干涉测量 (5)

1.5.3 光栅位移激光多普勒测量 (6)

1.6 系统主要完成的工作 (7)

1.7 本章小结 (7)

2 系统的测量原理 (8)

2.1 光路部分 (8)

2.2 光信号检测部分 (9)

2.2.1 混频技术 (9)

2.2.2 PIN光电二极管 (11)

2.2.3利用PIN光电二极管检查光信号............ 错误!未定义书签。

2.3 本章小结 (14)

3 系统的硬件结构 (15)

3.1光路部分 (15)

3.1.1光源的选择 (15)

3.1.2 光路结构 (16)

3.2 光信号检测电路 (17)

3.2.1 光电检测设计要求 (17)

3.2.2 光电检测电路设计 (18)

3.3信号调理电路 (18)

3.3.1滤波电路 (19)

3.3.2 主放大电路............................. 错误!未定义书签。

3.3.3 方波整形............................... 错误!未定义书签。

3.4 计数处理电路 (21)

3.4.1 芯片介绍 (22)

3.4.2 电路设计 (24)

3.5 信号处理部分及显示 (24)

3.5.1 单片机AT89S52介绍 (25)

3.5.2 16ⅹ2LCD液晶显示器介 (27)

3.5.3 数据处理及显示接口电路 (28)

3.6 本章小结 (30)

4 系统软件的设计 (31)

4.1 软件开发环境 (31)

4.2 整体软件设计 (32)

4.3 启动检测程序 (32)

4.4 位移测量程序 (33)

4.5 测量辩向程序 (34)

4.6 LCD显示程序 (35)

4.7 本章小结 (36)

5仿真调试与分析.............................................................................. 错误!未定义书签。

5.1 前置放大调试 (37)

5.2 滤波电路调试 (38)

5.3主放大电路和整形电路调试..................... 错误!未定义书签。

5.4 单片机AT89S52及LCD液晶显示仿真调试 (39)

5.5 实物调试 (41)

5.6 本章小结 (41)

6 结论 (42)

致谢 (43)

参考文献 (44)

附录 (46)

文献综述 (58)

摘要

随着近代工业的迅速发展,微位移测量变得十分重要,且现代工业技术的发展对微位移测量的精度和方式提出了更多更高的要求。因光学干涉测量具有更高的测试灵敏度和准确度,其得到了广泛的发展。在光学干涉测量法中,激光多普勒效应测量方法具有动态响应快、线性度好、测量范围大、精度高等许多独特的优点,得到了更加广泛的应用,有很好的发展前景。为了满足微位移测量的非接触、高精度等要求本文设计、制作了一种基于激光多普勒效应的测微位移系统,和传统的微位移测量仪器相比,其精度、误差、灵敏度及稳定度都有较大提高,并实现了对微位移的自动非接触测量。该系统由硬件和软件两部分组成。硬件电路包括光路部分、光信号检测部分、计数处理及判向部分、信号处理及显示部分。系统使用相干性更好的He-Ne激光器作为光源,采用PIN光电二极管作为条纹拾取工具,配以硬件的条纹计数处理及判向电路,最后由单片机处理数据,得出被测物的位移量并通过液晶屏显示。系统软件设计采用AT89S52芯片执行监控程序。程序设计采用灵活的C语言实现。

关键词: 多普勒效应微位移 PIN光电二极管 AT89S52

Abstract

With the rapid development of modern industry,micro-displacement measurement become very important.and the development had proposed higher and more demand of the accuracy and means of displacement measurement . as one of measurements of optical interferometry ,the measurement of Laser Doppler Effect has many unique advantages of fast dynamic response, linearity, measurement range, precision and so on . With these advantages, it has been more widely used and has a good prospect. To meet the non-contact displacement measurement, high accuracy and other requirements,this paper designed a test system based on laser Doppler effect of the micro-displacement. compared to traditional micro-displacement measuring instrument,It have greatly improved accuracy, error, sensitivity and stability And realized the automatic non-contact micro-displacement measurement. The system consists of hardware and software components. the system use a better coherence He-Ne laser as the light source, PIN photodiode was used as a tool to pick up stripes, Microcontroller to process data and obtained displacement of the measured object and through the LCD screen to display with hardware circuit. AT89S52 chip is the implementation of control procedures. System to achieve programming by flexible C language.

Key words: Laser Doppler Effect micro-displacement PIN photodiode AT89S52

1 绪论

1.1课题的主要任务、内容及意义

1.1.1 课题主要任务和意义

本课题的主要任务是设计制作一个高精度激光干涉式微位移自动测量系统。

课题研究的意义在于:随着近代工业的迅速发展,对计量测试技术的精度、效率和自动化的要求越来越高,并向着动态、在线、实时等方向发展。一些航空领域的测试,要求在持殊的条件下进行,如高温、高压、高速、放射、腐蚀介质或小空间等;在机械工业中,为提高精密加工机床的精度,结构的稳定性和可靠性,要求检测其在承载条件下工作机的动态形变,如大机械的动态变形场(如大型发电机或各种大型机械主轴在运转过程中的变形)、机床导轨在工作中的形变等;在建筑工业中,侨梁承载下的变形场检测、大坝,船舶等工程结构变形状况的检测等,以及对滑坡、地陷、雪崩、地基崩塌等地质灾害的监测都需要进行测量,以获得测量对象的动态测量信息。就这些方面的微位移测量而言,一方面传统的接触式测量技术跟不上现代工业机械加工、材料加工的非接触测量要求,另一方面,传统的静态测量技术同样满足不了现代测试技术中主动测量的要求。因此,在航空、军工、机械等各个领域中的许多测量,非接触式微位移测量方法应用广泛,也起到了十分重要的作用[1]。

1.1.2 课题的主要内容

课题的主要内容包括:完成基于多普勒效应测距的原理分析;提出激光干涉式微位移测量系统的设计方法;完成该系统机械结构和硬件电路设计;完成该测量系统的程序设计,仿真调试最终完成整个自动位移测量系统。

1.2 课题研究背景

1.2.1位移检测

位移是指物体位置对参考点产生的偏移量。位移测量包括线位移或角位移。线位移是指物体相对于某参考坐标系一点的距离的变化量。它是描述物体空间位置变化的物理量。若物体沿直线方向运动的位移量称之为直线位移,它是描述物体在平面内直线位置变化的物理量。对于线位移而言基本与长度测量为同一范畴,人们习惯上常把某一固定的测量如物体的长度直径等称之为长度测量,而把在工作中变化的尺寸测量称之为位移测量,所以测量长度及位移的仪表往往在一定条件下可以通用。

位移测量技术是振动、压力、应变、加速度、温度、流量等测量技术的基础。这是因为在众多的物理量中位移与其它机械量相比是既容易检测又容易获得高精

度的检测结果。所以测量中常采用将被测对象的机械量转换成位移量来检测的方法。例如将压力转换成膜的位移、将加速度转换成重物的位移等。因此人们在很早以前就认识到测量位移的重要性,位移测量也是精密计量领域中的一个重要分支。

位移的量值范围差异很大(在制造工业中nm-μm-mm 直至数十米;秒分度以下或几度至几十度),检测可以是接触式或非接触式,加之对检测准确度、分辨力、使用条件等要求不同,因此有多种多样的检测方法。

随着光学检测元件和精密制造工艺的提高以及电子元器件的发展,伴随计算机的更新换代和工业自动控制技术的不断进步,利用光电结合的方法是解决问题的有效途径,如光栅码盘、激光干涉法、三角法、光斑散射法,其测量精度高、反应速度快、易于实现数字化测量[2]。

1.2.2 多普勒效应

多普勒效应(Doppler effect)是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒(Christian Johann Doppler)而命名的,他于1842年首先提出了这一理论。多普勒认为,物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高。在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低。波源的速度越高,所产生的效应越大。根据光波频移的程度,可以计算出波源循着观测方向运动的速度。除非波源的速度非常接近光速,否则多普勒频移的程度一般都很小。具有波动性的光出现的这种效应,又被称为多普勒一斐索效应。因为法国物理学家斐索(1819~1896年)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法。光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化。如果恒星远离我们去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移。

1964年Yeh和Cummins首次观察了水流中粒子的散射光频移,证实了可以利用激光多普勒频移技术来确定流体速度以来,激光多普勒技术以它精度高、动态响应快、测量范围大、非接触测量等特点得到了长足的发展。在Yeh和Cummins 之后,Foreman和Georeg等人进一步论述了多普勒技术的原理、特点及其应用,使该项技术得到初步的实用化,不仅可以测量液体流速,还可以测量气体的流速。七十年代是激光多普勒技术发展最为活跃的一个时期,Durst和Whitelaw提出的集成光学单元有了进一步的发展,使得该系统的光路结构更为紧凑,调整也很方便,光束扩展、偏振分离、频率分离、光学移频等近代光学技术在激光多普勒技术中得到了广泛的应用,信号处理采用了频率跟踪、锁定放大、计数处理、光子相关及其它一些方法,同时设计和开发了相应的信号处理器,使LDV(激光多普勒

测速)测量应用更为广泛。1975年在丹麦首都哥本哈根举行的“激光多普勒测速仪国际讨论会”标志着这一技术的成熟[3]。

1.3 国内外基于激光原理的微位移测量技术的发展现状

自20世纪70年代末SELCOM公司制造并销售第一批激光测量微位移仪器(简称测微仪)以来,国际上除了SELCOM以外,日本的安立、美国的Keyence、MTI 、Instruments、德国米铱测试技术公司等都在生产许多高精度,快速测量仪[425]。其中安立公司生产的高精度系列的测量范围为80μm到40mm,精度为全量程0.1%;Keyence公司的LK系列激光测微仪中精度最高的LK2011精度能达到0.1μm。米铱测试技术公司的德国米铱optoNCDT 2200高响应高精度激光位移传感器测量范围为2—200mm;分辨率能达到全量程的0.005%[4][5]。

而国内在该领域中的研究起步较晚,水平还比较低,但比较比较活跃。在生产测微仪方面,国内的公司比较少。其中率先开发出产品的是中国科技大学精密机械及精密仪器系的李胜利教授等人,在1995年研制了JW型测微仪,他们的测量精度有0.5μm,1μm,5μm三种,但测量范围最大仅5mm。另外比较有名的是深圳亨利新实业有限公司,它依靠华中科技大学的技术,生产的LT系列激光精密测微仪,其按量程和精度可分为三档:(1)高精度、小量程—1μm、1mm(2)中精度、中量程—

0.01mm、10mm;(3)低精度、大量程—0.3mm、300mm[6]。

1.4 光学微位移测量的几种方法

光学测量方法是伴随激光、全息等技术的研究发展而产生的方法,它具有非接触、材料适应性广,测量点小、测量精度高、可用于实时在线快速测量等特点,在微位移测量中得到了广泛的应用。特别是近20年来电子技术与计算机技术飞速发展为位移的光学测量提供了有力支持,使其理论研究不断深入,并将成果逐步应用到工业生产领域。按使用光学的原理不同分为以下几种方法:

1.4.1 光外差法

光外差法[7]是利用光外差原理,激光束通过分光束分成两束光,一束经过光频移器后,得到一个频移,作为测量光束;另一束未经频移的光束作为参考光束。测量光聚焦在被测表面,其反射光再次经过一定频移后与参考光束会合,经偏振片相互干涉由光电接收器接收,从而获得被测表面的微位移。这种方法的测量精度与分辨率都比较高,分辨率能达到亚纳米级,因此受到人们的普遍重视,比较适用于超精度表面的测量,但量程小、结构复杂、成本比较高。

1.4.2 电镜法

电镜法[8]是利用电子显微镜直接得到被测表面的微位移。但目前其产品体积大,且局限于在实验室研究使用,不能用于加工生产现场。

1.4.3 激光三角测量法

三角法测量法是种传统的测位移方法,将被测物表面与光源及接收系统摆在三个点,构成三角形光路。其工作过程主要是:激光光源发出的光束经透镜照射被测物体表面上;光线由物体表面漫反射,一部分被光电接收系统接收。如果物体

表面高低不平,则在光电接收探测器的光敏面上的光斑有一定的移动,根据三角形相似原理可求出物体表面的位移[9]。

1.4.4 干涉法测量

干涉测量法是基于光波的干涉原理测位移的方法。激光的出现使干涉测量位移的应用范围更加广泛。其测量的基本原理是:由激光器发出的光经分光镜分为两束,一束射向干涉仪的固定参考臂,经参考反射镜返回后形成参考光束;另一束

射向干涉仪的测量臂,测量臂中的反射镜随被测物体表面的位移变化而移动,这束光从测量反射镜后形成测量光束。测量光束和参考光束的相互叠加干涉形成干涉信号。干涉信号的明暗变化密度与被测测位移成反比。因此,由光接收器件光

电显微镜得到的明暗变化密度可以得出被测位移的值[10]。

干涉法原理简单、构造容易,测量精度高,测量范围大,适用于实时动态测量而被广泛应用于位移测量。

1.5 系统方案

目前干涉测量按测量对象不同大致可分为三类:

1.5.1 全息干涉测量

全息干涉计量方法比普通干涉计量具有更高的灵敏度和精度,特别适用于物

体微小变形、微振动的测量。它利用全息照相可以记录和再现物体光波的能力,在干版上记录和比较物体两个状态产生的光波干涉,以得到的干涉条纹来实现测量[11]。全息干涉计量可以测量任何形状的物体的位移和变形或物体表面状况的位移和变形。一个粗糙的机械零件或实物无需表面处理就可以直接进行测量。二次曝光全息干涉术是在物体位移或变形测量中最常用的方法,图1.1给出了表面形变二次曝光全息干涉原理图。它是在一张全息记录干版上对物体的两种不同状况(载荷、温度、压力等)进行记录,从而把物体在这两次曝光间的相对位置变化作为永久记录保存下来。由于全息照相可以把物体的光波记录下来,因此,两次曝光便把同一物体在这两种状态下的不同空间位置的物体光波记录在同一张底片上,当处理完的底片用激光再现时,这两个光波会同时再现,由于两次曝光间物体的位移或形变产生的光程差导致干涉现象,因此在空间产生干涉图案。二次曝光全息干涉法是把变形前后的波面都冻结在全息干版中,因而再现观察带有永久性冻结、记录的意义。而单次曝光法,要求先记录一张原始的物光波面的全息图,经处理后,将其精确复位出和记录时相同的位置,然后用参考光束和原物光束分别照明全息图和物体,观察者通过全息图进行观察时,将同时接收到全息图再现

的物体虚像光波以及由物体散射的并透过全息图的光波。如果物体没有任何形变,这两个光波则完全相同,呈现零场干涉状态,如果物体发生形变或微小位移,则形变的实时漫散射光将和未形变前的原始光波相干涉,形成反映物体形变与位移的干涉条纹图。单次曝光只冻结形变前的物体波面作为标准比较波,变形物体的波面则是实时产生,具有实时、连续观察整个过程的特点。

图1.1 表面形变二次曝光全息干涉原理图

1.5.2 散斑干涉测量

散斑双光束法一般用来测量面内位移量,其示意图如图1.2所示[12]。待测物体被两束准直相干光照明,并由照相机成像,两束光与yz平面成相等角θ入射到S上。每一束入射光产生一束散斑波前,故有两束散斑波前射到照相底片上。

图1.2 散斑干涉测量面内位移

于是,针对每一物点,都存在两条相干于像平面的光线。这样就获得一幅对整个物体的散斑图,再由照相底片记录下来。当物体发生变形时,各点的位移使两散斑波前产生相对的相位变化。对两束光来说,沿观察方向位移所引起的光程变化,与沿Y方向的面内位移所引起的光程变化是相同的,因此,相对相位变化只是由沿x方向面内位移所致。

双光束散斑干涉计量要求有严格的机械防震设施,主要缺点是散斑条纹的像质较差。

1.5.3光栅位移激光多普勒测量

图1.3给出了光栅移动时衍射光束的多普勒效应原理示意图。设光的入射角为i,光的频率为,波长为λ,第k(k=0,士1,土2)级衍射光的衍射角为光栅的运动速度为V,光栅常数为d。则根据多普勒效应原理,第k级衍射光的频率为:

(1.1)

式((1.1)中,从而衍射光栅的第k级衍射光束的多普勒频移,可见,光栅的多普勒频移只与栅距d,衍射级次k和它的运动速度V有关,与光波长无关[13]。衍射级次越高则频移越大,零衍射级的频移值为零。光栅的位移测量就是通过差频的方法检测衍射光的多普勒频移值实现的。可以采用光电接收器检测多普勒频移值,光电检测器一般都基于平方律设计,对高频信号无响应,因此光电检测器输出的交流信号频率即是两束光的频差。对这一信号进行脉冲计数,就可以得到光栅的位移X: X=Nd,N为条纹计数。衍射光栅的多普勒信号具有信号强、信噪比高、抗干扰能力强等优点,而且它的多普勒频移与光的波长无关。因此光栅多普勒方法容易实现遥测,对于在车间条件下精密机械的横向位移遥测具有重要意义。

随着科技的进步,对测量精度的要求越来越高,激光多普勒技术的非接触、高精度测量的优点使它得到蓬勃发展。激光多普勒测量有以下的优点:

1.空间分辨率高。

2.测量精度高。

3.多普勒频移与位移成线性关系。

i

光栅

图1.3光栅衍射示意图

4.动态响应快,信号用光来传递,惯性极小,可以进行实时测量。

5.激光多普勒测量是非接触式测量,激光会聚的干涉体积小,即是测量探头在通常情况下对被测的流场和物体等没有干扰。

1.6 系统主要完成的工作

确定系统的理论基础是多普勒效应测量原理以后,根据这一原理设计相关硬件电路和软件程序。测量电路以单片机AT89S52为控制核心,配合相关硬件电路,进行信号采集与数据处理,完成对被测物微位移的自动测量。主要工作包括设计硬件电路和软件监控程序。硬件设计有光路的设计、PIN光电二极管检测部分的设计、信号调理、计数处理及判向电路的设计、信号处理及显示的设计。软件设计主要是监控测量的启动停止以及位移的数字化还原显示。

1.7 本章小结

本章首先明确了系统设计的任务要求和目的,介绍了相关研究背景、国内外激光微位移测量的现状,在此基础上提出了三种干涉测量微位移的方法,通过比较,确定以多普勒效应为基础的激光干涉测量法为系统设计方案。

2 系统的测量原理

2.1 光路部分

任何形式的波传播,由于波源、接收器、传播介质或中间反射器或散射体的运动,将使频率发生变化,这种频率变化称作多普勒频移。由被测物运动所散射的光的频移应当作为一个双重多普勒频移来考虑[14]。光源发射一束光入射到运动物体表面(如图2.1所示),运动物体相对于光源来说,相当于接收器,从光的多普勒效应考虑[15],接收到的频率将随运动体的速度增加:

(2.1)

式(2.1)中为光源辐射频率,u 为运动物体表面速度,

为入射光和运动方向夹角,c 为真空中光速;运动物体又相当于一个发射天线,把接收到的辐射波

发射出来,在方向的接收器也因多普勒效应,收到频率增高的光波信号为

:

(2.2)

式(2.2)中

因为在关心的速度范围内

,对上面的展开式取一级近似

运动体

图2.1 多普勒效应原理示意图

(2.3)把式(2.3)带入(2.2)中得

忽略式中的高次项,得

(2.4)所以速度为u的运动体产生的多普勒频移为

(2.5)

用同样方式可得到

(2.6)

即当光源和接收器都在运动方向一侧,并且运动物体与接收器做相向运动时,按收器接收的光频率增加,波长减小。当光线垂直入射并接受回波信号时,即==θ=0,则

(2.7)

对式(2.7)两端时间积分得:

(2.8)

式中为被测物体位移量,为干涉条纹移动数,系统只要检测出条纹移动数就可以得出被测物体的位移量。

2.2 光信号检测部分

2.2.1 混频技术

收音机是用超外差技术检测无线电信号的。天线接收的信号同收音机内部的本机振荡信号混合,一同加到平方律检测器上,得到的输出信号频率等于外来信号频率与本机振荡频率之差。无线电超外差技术可以推广到光频信号,因为现在的光检测器件都是平方律检测器,只对光强敏感,而光强是光波振幅的平方,并且大部分检测器都是高频截止的器件[16]。例如光电倍增管。与光电倍增管配合使用的电阻、电容回路决定着其有一定的通带响应宽度,一般截止频率小于109HZ,即使不考虑RC回路,光阴极接收光信号产生电子,形成电子一空穴对也需要一个

最小时间,这个时间称为电子一光子相互作用时间,量级约在s,按照通常定义上升时间的方法计算,也很难找到响应带宽高于HZ的光电倍增管,因此目前光检测器件都不能直接响应光频(HZ),而是检测其差拍信号。

光混频技术即相干检测技术,或称为频率调制技术。假设有两列波,其中一

列波表达式为另一列波表达式为,则合成波的振幅为

(2.9)式(2.9)中,E1,E2是两入射波的振幅,是两入射波的角频率,

是两入射波的初相位。当相差不是很大时,两列波叠加后表现为驻波列,驻波的频率是两列入射波的频率之差,相当于在载波上施加了一个调制信号。当这一叠加波输入到平方律检测器时,检测器只能对合成波的强度起响应。根据式(2.9)有

(2.10)

反映在图形上即为图2.2所示

图2.2 频率相差不大的两列波形成的驻波列

式(2.10)所示的信号经过具有高频截止功能的光电检测器后,频率高于的信号都不能通过,式(2.10)中的前三项只能输出其平均值。的平均值是1/2 ,的平均值是0,因此式(2.10)最终成为

(2.11)

放在光合成路径中的光电检测器,将产生调制在差拍频率上的电信号。图2.4给出了理论上光电检测器输出的信号波形图。

图2.3 光电检测器输出的信号波形

光学混频技术是一种光干涉技术,两束光相交后,以波动的振幅相加,而不是在叠加的界面上强度相加,所以这两列波必须满足干涉的条件,即时间相干性和空间相干性,偏振方向要一致,并且初始相位差必须是稳定的。在式(2.11)中输出信号的初位相差为,如果中任何一个(或两个)随机变化,

成为一个随机变量,就不可能利用光学混频技术得到仅与差频相关的正弦

输出[16]。

2.2.2 PIN光电二极管

光电二极管的光探测方式有两种结构: 一是光伏模式,在这种模式下,光电二极管处于零偏状态,不存在暗电流,有较低的噪声,线性好,适合于比较精确的测量;二是光导模式,在这种模式下,需给光电二极管加反向偏置电压,存在暗电流,由此会产生较大的噪声电流,有非线性,通常应用在高速场合[17]。

光电二极管的特点:(1)反向电流随入射光照度的增加而变大,在一定反向电压范围内,反向电流的大小几乎与反向电压无关;(2)在入射光照一定时,光电二极管相当于恒流源,其输出电压随负载电阻增大而升高;(3)光电二极管的暗电流很小,光电流较大。

光照下PIN光电二极管PN结的伏安特性为:

(2.12)

式中,为PN结的反向饱和电流,V为包括外电压和光电压的实际结电压;K 为玻尔兹曼常数,T为探测器的工作温度。由式子可以得出以为参量的伏安特性曲线,从图中可以看出光电二极管的反向输出电流与照强度成正比。图2给出了PIN光电二极管的等效电路。它包括光电流,暗电流,结电阻,结电容的

并联。其中暗电流对应于工作电压下没有光照时的输出电流,为串联电阻,其值远小于负载电阻,通常可以忽略。

图2.5 PIN光电二极管伏安特性

在应用时,要求光伏探测器工作在线性范围内,因此必须保证>>>>,器件近似以短路方式工作。短路电流I与入射到探测器上的光功率成正比,并且

不受工作温度的影响。

图2.6 PIN光电二极管的等效电路

2.2.3利用PIN光电二极管检查光信号

光电二极管的输出电流信号很小(在微安级)、信号频率范围大( 从直流到1 MHz方波)。为了提取有用信息,必须先将该电流信号变换为电压信号,然后再进一步放大。为获得最佳的效果,在电路设计时必须考虑高增益、低噪声及宽频带的要求[18]。

(1)提高响应度与输出的线性

图2.7 光电转换原理图

PIN 光电二极管没有内部增益(即只有单位增益),因此他对光的响应度是不高的。在单位增益中一个入射光子只产生一个电子的光电流。根据波长,其最高量子效率(转换效率) 为92%。因此在使用时必须把光电二极管输出的电信号放大。

典型的光电转换电路如图2.7所示。电路中光电二极管工作于光导模式,可探测微弱的光,另外运算放大器可以获得高达或更高的增益;因此,图2.7可有效提高光响应度。实际上,这也是一个I-V 变换器,由于负反馈的原因,运算放大器的等效输入阻抗为:

(2.13)

式中是运算放大器的开环输入阻抗,对场效应管输入的情形,

Ω。是开环放大倍数, 一般大于106 ,将这些值代入式(2.13)可知的值很小,接近于0 Ω(此时光电流与辐照光功率成良好的线性关系)。又由于运算放大器的开环输入阻抗很大(虚断) ,光电二极管的电流都流入了反馈电阻,故运放的输出电压为

(2.14)

其中是光电二极管的短路输出电流,其值与辐照光功率成正比,由此可见该电路的输出电压与入射光功率成良好线性关系。

(2)降低噪声

光电二极管、电阻及运算放大器等器件都存在散粒噪声、热噪声等。放大器在放大光电二极管输出信号的同时将噪声也放大了,从而影响系统的分辨率。反馈电阻在输出端造成的噪声分量为:

(2.15)

带宽可见,采用较大的光电二极管,反馈电阻较小

的运算放大电路将使输出噪声减小。随着频率的增加,的作用开始表现出来,信

号电流的放大倍数开始下降,转折频率为。而噪声电压与信号电流的幅频特性完全不同。在直流段和较低频率时噪声电压的放大倍数为

随着频率的增加,噪声增益曲线首先由于的作用开始升高,直至由于电容的作用而停止。在高频段,噪声增益被限定在。由此可见越大,

越小,噪声的影响越小。加入可限制高频段的噪声增益。另外由于运算放大器存在着失调电压和失调电流,且随温度的变化而变化。虽然失调电压和失调电流在电路调整时能加以补偿,但是温度漂移的影响将在电路的输出端形成噪声。为降低放大电路的输出噪声,需要选用输入失调电压温漂及输入失调电流温漂都较小的运算放大器,同时选用值大的光电二极管并尽量控制温度变化范围。

(3)放大电路频带宽度与响应速度的提高

光电检测电路的响应速度与光电二极管、运算放大器及应用状况有关系: 光电二极管的响应速度与他的有效工作区有关。有效工作区小的器件响应速度快。不同的运算放大器响应速度不同,要提高电路的响应速度,需要选择合适的运算放大器。在应用电路方面,光导模式的响应速度比光伏模式快。另外负载的大小与性质对响应速度也有影响。负载电阻越大,响应速度越慢。因此为提高电路的响应速度及带宽,除了选择合适的元器件外,还应在电路设计方面采取相关措施。

2.4 本章小结

原理分析是系统设计的基础我准备。本章给出了系统设计中的一些理论原理介绍,包括利用多普勒频移测位移的原理;测量传感器用到的混频技术原理;传感器的工作原理;传感器测量原理以及实现系统功能的计数和辩向原理等,通过原理分析理解能为整个系统设计提供清晰的思路和为硬件电路设计做好准备。

激光干涉位移测量技术

激光干涉位移测量技术 张欣(2015110034) 摘要:为了实现纳米级以上分辨力位移的测量研究,利用激光干涉位移测量技术可以达到纳米级分辨力,其具有可溯源、分辨力高、测量速度快等特点,是目前位移测量领域的主流技术。本文对目前主要的激光干涉位移测量技术进行了分类介绍,并对各种干涉仪的特点进行了分析,最后介绍了激光干涉位移测量技术的国内外发展现状和趋势。 关键词:纳米级;激光干涉;位移测量; 1 引言 干涉测量技术( interferometry ) 是基于电磁波干涉理论,通过检测相干电磁波的图样,频率、振幅、相位等属性,将其应用于各种相关的测量技术的统称。用于实现干涉测量技术的仪器被称为干涉仪。在当今多个科研领域,干涉测量技术都发挥着重要的作用,包括天文学,光纤光学,以及各种工程测量学。其中由于上个世纪60年代激光的研制成功,使得激光干涉测量技术在各种精密工程领域得到了广泛的应用。它的基本功能是将机械位移信息变成干涉条纹的电信号,再对干涉条纹进行调理和细分,进而获得所需要的测量信息。整个激光干涉测量系统中主要的组成部分有光电转换、信号调理、信号细分处理。 1.1激光干涉仪分类 激光干涉仪是以干涉测量为原理,利用激光作为长度基准,对数控设备(加工中心、三坐标测量机等)的位置精度(定位精度、重复定位精度等)、几何精度(抚养扭摆角度、直线度、垂直度)进行精密测量的精密测量技术。由于激光具有波长稳定、波长短、具有干涉性,使得激光在现代光电测量系统中占据了重要的地位,尤其是在激光干涉测量系统中。下面介绍激光干涉仪测量原理以及激光干涉仪。 光的相长干涉和相消干涉: 图1.光的相长以及相消干涉 如果两束光相位相同,光波会叠加增强,表现为亮条纹,如果两束光相位相反,光波会相互抵消,表现为暗条纹。图1.1就是光的相长以及相消干涉,而激光干涉仪主要依据的原理就是激光的干涉产生明亮

激光干涉仪应用原理(八)——激光干涉测量

Radiation Harsh Application | 强辐射环境应用 强辐射环境下FPS3010激光干涉测量 Laser Interferometry in Radiation Harsh Environments using the FPS3010 介绍 目前,同步辐射应用已经扩展到多种邻域中,如生物科技(蛋白质晶体),医药研究(微生物),工程应用(高分辨率裂缝演变成像),高级材料研究(纳米结构材料)。在纳米领域许多应用中,如透镜组,布拉格反射器,狭缝以及目标定位等都需要非常高的分辨率。机械结构需要高集成度,高稳定性,并且要减小温漂以及定位误差的影响。另外,运动部件的质量需要严格控制到最低,从而提高机械特性,并且减小位置误差。 针对以上讨论,这意味着编码必须在待测物附近,也就是说,编码器即使不是在X光或者粒子束中,也需要安置在辐射区内。 FPS3010激光干涉仪最大的特点是皮米级分辨率,兼容真空环境,并且在此类应用中,可以采用远程控模块。因此,FPS3010可以工作在强辐射环境下,也就是将干涉仪系统以及子系统安装在同步辐射光源或者束线附近,以及其他高辐射的环境中。 在目前的传感器选型中,“M12”传感器探头可以工作在高达10MGy的辐射环境下。这个研究主要针对这些新型传感器的耐辐射强度。实验主要工作在60Co源下(1.17 MeV / 1.33 MeV γ- and 0.31 MeV β-rays)。实验证明在3MGy辐射强度下传感头的读数没有明显偏差。在第二步骤测试中,对比传感器头放置在10MGy强辐射环境前后,对固定目标的测量值。对比结果为传感器所得目标值没有明显偏差。将两个UHV真空兼容 M12传感头(一个是带AR膜透镜,一个是不带AR膜透镜),安装到聚酰亚胺光纤上,放置在1Gy/s辐射区域中。两个探测头都安装在铝支架上,实验过程中将会有20 nm/°C的温漂。为避免曝光情况,采用镀了金膜的耐辐射镜子,搭建3m反射腔。FPS3010控制器放置在探头测试腔体外,另一个带温控无辐射腔内。在整个测量周期内,腔内温度稳定性高于1℃。测试的最后,总累积量达3.024MGy。 测量 图2a显示在测试过程中,测得的位置值。编码器位置采样率为1kHz。在图中,每一个点为100次独立测量平均值。位置漂移观察周期为34天,采用镀膜传感器测量,3MGy累积量为150nm;未镀膜传感器3MGy累积量为400nm。由于信号保持性较好,所以测得位置值的不确定性(标准偏差)优于10nm。 在未镀膜传感器头,在累积总量达2MGy之后,漂移会略微增大(22.5天)。达到这点之后,可进行两个传感器头性能比较。图2b显示编码器(红线)以及控制器位置(蓝线)的温漂情况。整个周期中,温度漂移小于1℃。

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

激光干涉原理在振动测量中的应用讲解

激光干涉原理在振动测量中的应用 激光干涉原理在振动测量中的应用0 引言振动量值的计量是计量科学中一个非常重要的方面。在现实中,描述振动特性的最常用的量值是位移、速度、加速度。常用的测振技术是接触式测量。在测量物体上安装加速度传感器,利用加速度传感器的电荷输出信号实现加速度-速度-位移的相关测量。如果测量较小物体的振动,附加的传感器质量往往影响被测物体的振动,从而产生测量误差;而且一些工作场合因被测物体表面影响或是测量条件的限制往往 激光干涉原理在振动测量中的应用 0 引言 振动量值的计量是计量科学中一个非常重要的方面。在现实中,描述振动特性的最常用的量值是位移、速度、加速度。常用的测振技术是接触式测量。在测量物体上安装加速度传感器,利用加速度传感器的电荷输出信号实现加速度-速度-位移的相关测量。如果测量较小物体的振动,附加的传感器质量往往影响被测物体的振动,从而产生测量误差;而且一些工作场合因被测物体表面影响或是测量条件的限制往往不允许在被测物体表面安装测振传感器。因此设计和开发新型的非接触式、高精度、实时性的测振技术一直是工程科学和技术领域中的重要任务。 由于激光的方向性、单色性和相干性好等特性,使激光测量技术广泛应用于各种军事目标的测量和精密民用测量中,尤其是在测量各种微弱振动、目标运动的速度及其微小的变化等方面。 1 激光干涉测振原理 激光干涉测振技术是以激光干涉原理为基础进行测试的一门技术,测试灵敏度和准确度高,绝大部分都是非接触式的。激光干涉原理如图1所示。 光源S处发出的频率为f、波长为λ的激光束一部分投射到记录介质H(比如全息干板)上,光波的复振幅记为E1,另一部分经物体O表面反射后投射到记录介质H上,光波的复振幅记为E2。其中: 式中:A1和A2分别为光波的振幅;σ1和σ2分别是光波的位相;当E1和E2满足相干条件时,其光波的合成复振幅E为: 光强分布I为: 式(4)的四项中前三项均为高频分量,只有第四项为低频分量,且与物体表面的状态有关。第四项的含义是σ2代表的物体表面与σ1代表的参考面之间的相对变化量。因此通过处理和分析物体表面与参考在变形前后的位相变化、光强变化等,从而得到被测物体振动速度、位移等关系式。

激光干涉仪使用技巧讲解

厨 f静堂鸯溅斌技术)2007亭第弘誊第{O麓 激光干涉仪使用技巧 Precise G口洫to Vsine a Laser Interferometer 魏纯 (广州市计最检测技术研究院,广东广州510030) 瓣萎:本文讨论了激光予涉仪在使用巾的准直等技礴,用户在实际使用中增加葺芒件以及维护巾邋蓟的同舔。燕键词:激光平涉仪;准直 l引言高性能激光干涉仪具有快速、高准确测量的优点,是校准数字机床、坐标测量机及其它定位装置精度及线性指标最常用的标准仪器,弦者所在单位使用的是英国RENISHAW公闭生产的MLl0激光干涉仪,具有性能稳定,使罱方便等特点。 通过较长时闯使用,作者认为测量人员除了要考虑环境、温度、原理等影响测量的常规因素外,掌握一些激光干涉仪的使用技巧会使测量互作事半功倍。 2原理介绍

MLl0激光干涉仪是根据光学千涉基本原理设计磊成酌。从MLl0激光器射出的激光束有单一频率,其标称波长隽0.633pLIn,且其长期波长稳定健(真空状态)要高于0.1ppm。当此光束抵达偏振分光镜时,会被分为两道光束一一道反射光糯一道透射光。这两道光射向其反光镜,然后透过分光镜反射圈去,在激光头内的探测器形成一道干涉光束。若光程差没有任俺变讫,探测器会在樵长性秘楣潢性于涉的两极找到稳定的信号。若光程差确实有变化,探测器会在 每一次光程改变时,在相长性和相消性干涉的弼极找 到变动的信号。这些变化(援格)会被计算并用来测量两个光程闻的差异变化。测量的光程就是栅格数乘以光束大约一半的波长。 值褥注意的是,激光束的波长取决于所通过敖空气折射率。由于空气折射率会随着温度、压力和相对湿度而变化,用来计算测蹩值的波长值可能需要加以李}偿,以配合这魍环境参数豹改变。实际上就测量准确度而言,此类补偿在进行线性位移(定位精度)测量,特别是量程较大时,非常重要。3激光干涉仪使用技巧 3.1 Z轴激光光路快速准直方法 用激光干涉仪进行线性测量时,无论是数字机 床、还是坐标测燮枫,z轴测量酵激光光路的礁童榻对X、Y轴准直来说,要困难的多。尤其是在z轴距离较长的情况下,要保证激光光束经反射镜反射后回到激 先探测器的强度满足测量对对光强的要求,准妻激光光路往往需要很长时间。 根据作者长期使用的经验,按照“离处动尾部,低处动整体”的调整方法,将会大大缩短漆直时闻。(“尾部”是指MLl0激光器电源接口边上的倾斜度调蹩旋钮和三兔架云台上的旋转微调控制旋锂,“整体”是指三

激光位移干涉仪

激光干涉仪 激光干涉仪是利用光的干涉原理测量光程之差从而测定有关物理量的一种精密光学测量仪器。其基本原理和结构为迈克尔逊干涉仪。两束相干光间光程差的任何变化会非常灵敏地导致干涉场的变化(如条纹的移动等),而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉场的变化可测量几何长度尺寸或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程差的精度,如传统迈克尔逊干涉仪中干涉条纹每移动一个条纹间距,光程差就改变1/2个波长,所以干涉仪是以光波波长为单位测量光程差的。现代激光干涉仪是以波长高度稳定的稳频激光器为测量工具,其稳定度一般优于10的—7次方。激光干涉仪的测量精度之高是任何其他测量方法所无法比拟的。 (一) 第一代激光干涉仪 最早的干涉仪以单频激光器作光源,基本与迈克尔逊干涉仪一样,只是平面镜被角锥棱镜代替,同时加入了两个探测器来探测干涉场,如图1所示。系统设法使两个探测器探测到的信号相位差90°,以便实现可逆计数。 单频干涉仪的输出信号可以表示为 ()()??????±+=?t dt t v A A t u 0004cos λπ? 其中0A 为直流分量,A 为交流分量振幅(有用的信号)。在短距离测量时,一般来说直流分量变化不大,认为是恒定值,单频干涉仪以其简单、反射镜移动速度不受原理限制、有用信号占有的频带范围较窄等表现出它的优越性。但是激光功率的飘移,光电接收系统飘移,长距离测量时测量光束强度下降等因素,使直流分量和交流分量均不断下降,轻则造成工作点飘移、干涉条纹分数部分测量误差等,严重时整形电路停止工作,干涉仪失效。因此第一代干涉仪由于可靠性的问题,在实际应用中受到很大限制。 (二) 第二代激光干涉仪 1. 内相位调制干涉仪 内相位调制干涉仪是在参考镜上加上某一振幅和频率的调制振动信号,那么干涉仪的光程差就会相对于平均位置正负的交替变化,干涉仪信号为 ()()?? ??????? ??++=?t dt t v A A t u m t ωελπcos 4cos 00

精密位移量的激光干涉测量方法及实验

精密位移量的激光干涉测量方法及实验 一、实验目的: 1. 了解激光干涉测量的原理 2. 掌握微米及亚微米量级位移量的激光干涉测量方法 3. 了解激光干涉测量方法的优点和应用场合 二、实验原理 本实验采用泰曼-格林(Twyman-Green )干涉系统,T -G 干涉系统是著名的迈克尔逊白光干涉仪的简化。用激光为光源,可获得清晰、明亮的干涉条纹,其原理如图1所示。 图1 T -G 干涉系统 激光通过扩束准直系统L 1提供入射的平面波(平行光束)。设光轴方向为Z 轴,则此平面波可用下式表示: ikz Ae Z U =)( (1) 式中A ??平面波的振幅,λ π 2= k 为波数,λ??激光波长 此平面波经半反射镜BS 分为二束,一束经参考镜M 1,反射后成为参考光束,其复振幅U R 用下式表示 )(R R z R R e A U φ?= (2) 式中A R ??参考光束的振幅,φR (z R )??参考光束的位相,它由参考光程z R 决定。 另一束为透射光,经测量镜M 2反射,其复振幅U t ,用下式表示: )(t t z i t t e A U φ?= (3) 式中A t ??测量光束的振幅,φt (z t )??测量光束的位相,它由测量光程Z t 决定。 此二束光在BS 上相遇,由于激光的相干性,因而产生干涉条纹。干涉条纹的光强I(x,y)由下式决定

*?=U U y x I ),( (4) 式中** *+=+=t R t R U U U U U U ,,而U*,U R *,U t *为U ,U R ,U t 的共轭波。 当反射镜M 1与M 2彼此间有一交角2θ,并将式(2),式(3)代入式(4),且当θ较小,即sin θ?θ时,经简化可求得干涉条纹的光强为: )2cos 1(2),(0θkl I y x I += (5) 式中I 0??激光光强,l ??光程差,t R z z l -=。 式(5)说明干涉条纹由光程差l 及θ来调制。当θ为一常数时,干涉条纹的光强如图2所示。 2 λ ? =N l (6) 式中N ??干涉条纹数 因此,记录干涉条纹移动数,已知激光波长,由式(6)即可测量反射镜的位移量,或反射镜的轴向变动量?L 。干涉条纹的计数,从图1中知道,定位在BS 面上或无穷远上的干涉条纹由成像物镜L 2将条纹成在探测器上,实现计数。 测量灵敏为:当N =1,则m l μλλ 63.0,2 == ?(He-Ne 激光),则m l μ3.0=? 如果细分N ,一般以1/10细分为例,则干涉测量的最高灵敏度为m l μ03.0=? 三、实验光路 激光器1发出的激光经衰减器2(用于调节激光强度)后由二个定向小孔3,5引导,经反射镜6,7进入扩束准直物镜8,10(即图1中的L 1),由分光镜14(即图1中BS )分成二束光,分别由反射镜16(即图1中的M 1),18(M 2)反射形成干涉条纹并经成像物镜

高精度光学测量微位移技术综述

word格式文档 高精度光学测量微位移技术综述 *** (******大学光电**学院,重庆400065) 摘要 微位移测量技术在科学与工业技术领域应用广泛。光学测量微位移技术与传统测量方法相比,具有灵敏度高、抗电磁干扰能力强、耐腐蚀、防爆、结构简单、体积小、重量轻等优点。本文介绍了几种高精度光学测量微位移的方法,从激光三角法、激光干涉法、光栅尺法、光纤光栅法、X射线干涉法和F-P干涉法几个类别对各种微位移测量原理和仪器进行了系统的分析和比较,并对各种方法的特点进行了归纳,对光学微位移测量方法的发展趋势进行了概括。 关键词:微位移测量,高精度,光学测量,发展趋势 1 引言 随着科学技术的发展,微小位移的检测手段已发展到多种,测量准确度也不断提高。目前,高分辨力微位移测量技术主要分为包含电学、显微镜等测量方法的非光学测量技术和以激光干涉测量为代表的光学测量技术两大类。电学测量技术又包括电阻法、电容和电感法以及电涡流法等,其中,电容和电感法发展迅速,较为常用。目前,三端电容传感器可测出5×10-5μm的微位移,最大稳定性为每天漂移几个皮米[1]。而显微镜测量技术种类较多,主要有高性能透射电子显微镜、扫描电子显微镜、扫描探针显微镜(包括扫描隧道显微镜和原子力显微镜)等二十多个品种[2]。按光学原理不同,光学测量技术可分为激光三角测量[3]、光杠杆法[1,4]、光栅尺测量法[5]、光纤位移测量法[5]和激光干涉法等,测量分辨力在 专业资料整理

几十皮米到几纳米之间。此外,利用X射线衍射效应进行位移测量的X射线干涉技术近年来备受关注,其最大特点是以晶格结构中的原子间距作为溯源标准,可实现皮米量级的高分辨力,避免了光学干涉仪的各种非线性误差[6]。现将主要的具有纳米量级及以上分辨力的微位移测量技术概括如表1所示。 纵观位移测量技术的发展历程,如果说扫描探针技术为高分辨力位移测量领域带来了革命性变革,那么近几十年来激光技术的发展则将该领域带入了一个崭新的时代。由表1可见,目前电容传感器和SPM的测量分辨力也很高,但它们的共同缺陷是当溯源至国际标准长度单位时,必须借助激光干涉仪等方法进行标定和校准。根据1983年第17次度量大会对“米”的新定义,激光干涉法对几何量值溯源有着天然优越性,同时具有非接触测量、分辨力高、测量速度快等优势。本文将对目前主要的光学微位移测量技术介绍和比较分析。 表1 常用微位移测量技术 仪器种类分辨力/nm 测量范围 电容传感器0.05-2 10nm-300μm 电感传感器 5 10μm SPM 0.05 1-10μm 激光三角测头 2.5 100-500μm 光纤位移传感器 2.5 30-100μm 双频激光干涉仪0.1 >10m 光栅尺0.1-10 70-200mm X射线干涉仪0.005 200μm F-P干涉仪0.001 5nm-300μm 2 光学微位移测量技术概述 2.1 激光三角法微位移测量技术 随着工业测量领域的不断扩展以及对测量精度和测量速度的不断提高,传统的接触式测量已经无法满足工业界的需求。而非接触测量由于其良好的精确性和

激光干涉仪分类及应用

激光干涉仪分类及应用 激光干涉仪以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量。激光干涉仪有单频的和双频的两种。 激光干涉仪的分类: 单频激光干涉仪 从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N为电脉冲总数),算出可动反射镜的位移量L。使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。 双频激光干涉仪 在氦氖激光器上,加上一个约0.03特斯拉的轴向磁场。由于塞曼分裂效应和频率牵引效应,激光器产生1和2两个不同频率的左旋和右旋圆偏振光。经1/4波片后成为两个互相垂直的线偏振光,再经分光镜分为两路。一路经偏振片1后成为含有频率为f1-f2的参考光束。另一路经偏振分光镜后又分为两路:一路成为仅含有f1的光束,另一路成为仅含有f2的光束。当可动反射镜移动时,含有f2的光束经可动反射镜反射后成为含有f2±Δf的光束,Δf是可动反射镜移动时因多普勒效应产生的附加频率,正负号表示移动方向(多普勒效应是奥地利人C.J.多普勒提出的,即波的频率在波源或接受器运动时会产生变化)。这路光束和由固定反射镜反射回来仅含有f1的光的光束经偏振片2后会合成为f1-(f2±Δf)的测量光束。测量光束和上述参考光束经各自的光电转换元件、放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算(乘1/2激光波长)后即可得出可动反射镜的位移量。双频激光干涉仪是应用频率变化来测量位移的,这种位移信息载于f1和f2的频差上,对由光强变化引起的直流电平变化不敏感,所以抗干扰能力强。它常用于检定测长机、三坐标测量机、光刻机和加工中心等的坐标精度,也可用作测长机、高精度三坐标测量机等的测量系统。利用相应附件,还可进行高精度直

实验二 双频激光干涉实验

实验二 双频激光干涉实验 一、 实验目的 了解双频激光干涉测量原理,设计测量长度与角度的干涉系统,并且比较一般干涉测量与双频激光干涉测量的异同。 二、 实验原理 1. 测长原理如图1所示: 其中L1 为稳频的激光器,Mm 、Mr 为两个全反射组件,P1、P2 为检偏器,D1、D2 为光电探测 器。Mm 固定在被测物体上。 输出激光含频差为f ?的两正交线偏振光分量1f 、2f 。输出光经分光镜 BS 后,一 部分光被反射,经检偏器 P 1, 两频率分量干涉产生拍频,该信号被光电探测器D1 接 收,形成参考信号 Sr 。透射光经线性干涉仪后,1f 、2f 被分开, 1f 进入参考臂,2f 进入测量臂,由两角锥棱镜反射返回后,在线性干涉仪上会合,经检偏器 P2 后发生干 涉,光电探测器 D2 接收干涉信号,形成测量信号 Sm 。 此时如果测量镜以速度v 移动,则1f 的返回光频率发生变化,成为1D f f +?,D f ?为多普勒频差,1D f f +?通过线性干涉仪与2f 的返回光会合,经检偏后,其拍频被光电 探测器 D2 接收,Sr ,Sm 经前置放大后进入计算机进行计数。 计算机对两路信号进行比较,计算其差值±D f ?。进而按下式计算动镜的速度?和移动的距离得出所测的长度 L 。 设在测量中动镜的移动速度v (这里v 可以随时间变化),则由多普勒效应引起的频差变化为: 122 D v v f f c λ?== (1-1) 式中:1f 激光频率,c 光速,λ波长,D f ?为动镜移动时,由它反射回来的光频率 的

变化量,也就是经计算机比较计算出来的两路信号的差值。 设动镜的移动距离为D ,时间为t 则: 000()222 t t t D D D vdt f dt f dt N λλλε==??=??=+??? (1-2) N ε+为测量过程中动镜下的条纹数(N 为整数部分,ε为小数部分)。 00()t t D D N f dt f dt ε+=??=??∑? (1-3) 所以,位移D 的计算公式为: ()2D N λε= + (1-4) 2. 测角原理如图2所示: 如图,基于正弦尺的原理,利用角度干涉仪和角度靶镜,双频激光干涉仪就可以进行角度测量。其干涉光路的工作原理和测长的相似,只不过测量的位移变成了两个角锥棱镜的相对位置变化—D 。于是,在小角度的情况下,我们得到角度测量结果(弧度)为: D L α= (1-5) 三、 实验步骤 1. 在实验箱中找出需要用的零部件(不用的不要拿出): (1) P T-1105C 激光头、(2)PT-1303C 高速接收器、(3)PT-1201A 线性干涉仪、(4) PT-1202A 全反射组件、(5)PT-1210A 角度干涉组件、(6)角度靶镜、(7) PT-1801B 通用调节架、(8)连接电缆 各部件外形图如下所示:

激光干涉微位移测量系统设计课题总结报告.

北京信息科技大学 《专业综合实践》报告 题目激光干涉微位移测量系统设计 学院仪器科学与光电工程 专业光信息科学与技术 学号2011010736、744、750、728 姓名邓伟壮、潘晗、张驰、贾希冉 指导老师 日期2015.1

目录 题目激光干涉微位移测量系统设计 (1) 目录 (2) 一、方案要求 (3) 1、设计内容 (3) 2、设计目标 (3) 3、设计预计实现目标 (3) 二、方案调研及原理 (3) 1、光学微位移测量的几种方法 (3) (1)光外差法 (3) (2)电镜法 (3) (3)激光三角测量法 (4) (4)干涉法测量 (4) 2、光电接收器件 (4) (1)光敏电阻 (4) (2)PIN光电二极管 (4) (3)利用PIN光电二极管检查光信号 (6) 三、测量系统设计 (8) 1、整体电路设计 (8) 2、光路部分 (8) 3、电路部分设计 (10) (1)前置放大电路(电流/电压转换) (10) (2)电压跟随器(电压稳定) (11) (3)去直流电路(高通滤波) (11) (4)滤波电路(低通滤波) (12) (5)两级放大电路(5~50倍放大) (12) (6)负电压电路(由于用电池供电,需要负电源) (12) 4、软件部分设计 (13) 四、系统调试分析 (13) 1、光路部分 (13) 2、电路部分 (13) 3、软件部分 (13) 五、结论 (13)

激光干涉微位移测量系统设计 课程设计总结报告 成员:邓伟壮 2011010736 潘晗 2011010744 张驰 2011010750 贾希冉 2011010728 一、方案要求 1、设计内容 基于激光干涉的方法,利用光电探测器,实现微位移的高精度测量。 设计主要包括两部分: 1)方案调研、测量系统设计及分析; 2)搭建系统,获取干涉条纹,条纹处理,完成微位移测量。 2、设计目标 1)微位移测量精度达到微米量级; 2)测量范围小于等于1毫米; 3)测量结果显示。 3、设计预计实现目标 1)光学部分得到可视性较好的干涉条纹 2)电路部分最终输入单片机前得到方波的脉冲波形 3)单片机后在LCD上显示出微测量的数值结果 4)(拓展)在电脑中显示测量结果 二、方案调研及原理 1、光学微位移测量的几种方法 光学测量方法是伴随激光、全息等技术的研究发展而产生的方法,它具有非接触、材料适应性广,测量点小、测量精度高、可用于实时在线快速测量等特点,在微位移测量中得到了广泛的应用。特别是近20年来电子技术与计算机技术飞速发展为位移的光学测量提供了有力支持,使其理论研究不断深入,并将成果逐步应用到工业生产领域。按使用光学的原理不同分为以下几种方法: (1)光外差法 光外差法是利用光外差原理,激光束通过分光束分成两束光,一束经过光频移器后,得到一个频移,作为测量光束;另一束未经频移的光束作为参考光束。测量光聚焦在被测表面,其反射光再次经过一定频移后与参考光束会合,经偏振片相互干涉由光电接收器接收,从而获得被测表面的微位移。这种方法的测量精度与分辨率都比较高,分辨率能达到亚纳米级,因此受到人们的普遍重视,比较适用于超精度表面的测量,但量程小、结构复杂、成本比较高。 (2)电镜法

实验三 激光干涉测量技术

实验三激光干涉测量技术 一、引言 激光精密干涉测量技术有着广泛的应用。区别于基础实验课程中应用成套的干涉仪设备进行测量,本实验使用零散的光学元件搭建干涉装置,旨在锻炼学生的实际光路搭建能力以及相关的实践技巧。 二、实验目的 1.了解激光干涉测量的原理 2.掌握微米及亚微米量级位移量的激光干涉测量方法 3.了解激光干涉测量方法的优点和应用场合 4. 锻炼实际光路搭建能力以及搭建干涉测量装置的相关技巧 三、实验原理 本实验采用泰曼-格林(Twyman-Green)干涉系统,T-G干涉系统是著名的迈克尔逊白光干涉仪的一种变型,在光学仪器的制造工业中,常用其产生的等间距干涉条纹对光学零件或光学系统作综合质量检验。 图1 泰曼-格林干涉仪原理图

泰曼-格林干涉仪与原始的迈克尔逊干涉仪不同点是,光源是单色激光光源,它置于一个校正像差的透镜L1的前焦点上,光束经透镜L1准直后,被分束器A 分成两束光,到达反射镜M1和M2并被反射,两束反射光再次经A透射和反射,用另一个校正像差的透镜L2会聚,观察屏放在透镜L2的焦点位置观察,也可不加透镜L2直接观察。能够观察到反射镜M1和M2的整个范围,从而可获得清晰、明亮的等间距干涉直条纹,其原理如图1所示。 若作出反射镜M1在半反射面A中的虚像M1’(图中未画出),干涉仪的出射光线相当于M2和M1’所构成的空气楔的反射光,因而泰曼干涉仪实际上就等效于平面干涉仪,只是这里两束光的光路被完全分开,进而产生了等厚干涉条纹。当光源是点光源时,条纹是非定域的,在两个相干光束重叠区域内的任何平面上,条纹的清晰度都一样。不过,实际上为了获得足够强度的干涉条纹,光源的扩展不能忽略,这时条纹定域在M1和M2构成的空气楔附近。 如图1所示,设入射平面波经M1反射后的波前是W1,经M2反射后相应的波前是W2,W1和W2位相相同。引入虚波前W1’,它是在W1半反射面A中的虚像,图中画出了虚相交于波前W2上P点的两支光路,这两支光在P点的光程差为 即等于W1’到P点的法线距离,因为W1’和W2之间介质(空气)折射率为1,显然当 时,P点为亮点,而当 时,P点为暗点。如果平面M1和M2是理想的平面,那么反射回来的波前W1(或W1’)和W2也是平面,这样当眼睛聚焦于W2上时,在W1’和W2之间有一楔角 的情况下,将看到一组平行等距的直线条纹(W1’和W2相互平行,视场是均匀 照明的,没有条纹),它们与所形成的空气楔的楔棱平行。从一个亮条纹(或暗条纹)过渡到相邻的亮条纹(或暗条纹),W1’和W2之间的距离改变λ。由于 测量镜M2移动l会带来2l的光程差则: 式中N为干涉条纹数。 因此,记录下干涉条纹移动数,已知激光波长,即可测量反射镜的位移量,或反射镜的轴向变动量l。测量灵敏为:当N=1,则

激光干涉仪应用介绍(三)——高速长距离位移测量

基于FPS3010长行程高速位移测量 Long distance and high-speed displacement measurements using the FPS3010 基于光学法珀腔传感器FPS3010干涉仪可以测量目标相对位移,测量精度达到亚纳米分辨率,实时位置输出带宽达10MHz。在工业,科研以及研发等多种应用中需要高速以及长行程精密测量。如下面所示,FPS3010可以测量距离高达3m,并且速度达2m/s。 在这些测试中,FPS3010干涉仪采用的是M12探测头,并且在被测目标安装了反射器。图1中为整体设备,包括探测头和反射器。采用商用线性电机平台,可实现目标位置多次重复测量。另外,通过采用反射器取代平面镜,安装过程更为简易快捷:反射器相对于探测方向角度4度内都可以测出信号。反射器内部采用了3个正交式反射镜组成的几何结构。信号的高稳定性保证了FPS3010可以在全行程任意位置下进行标定,整套设备的使用方法非常友好,简易。 第一次测试,目标距离传感器头1m。包含振动目标的0.9m振动幅度以及达1.0m/s 速度。图2(a)显示的是在振动过程中,目标位置测量和速度。 图2(b)描述了在高速运动中的测量,距离为0.5m,速度为2.0m/s。从红色曲线中可见,平台最大加速度是一个限制:在到达位置B之前,需要10毫秒才能达到2m/s速度,同时也需要10ms减速。在图2(b)中,当运动到B点位置时,FPS3010也可以记录线性位移平台的位置误差,从图中可以看到超调值为5微米。 这个应用证明了FPS3010干涉仪测量位移3m,测量速度达2.0m/s时,可以达到亚纳米的重复精度。如果需要更多的资料,请联系我们! 图1:测量旋转物体运动误差机构。当轴旋转是,采用两个干涉传感器探头测量垂直于其转轴的两个方向上的运动误差。不同的被测物体采用不同尺寸的传感器探头。

激光干涉测量技术

激光干涉测量技术 南京师范大学中北学院 18112122 谭昌兴 干涉测量技术是以光波干涉原理为基础进行测量的一门技术。20世纪60年代以来,由于激光的出现、隔振条件的改善及电子与计算机技术的成熟,使干涉测量技术得到长足发展。 干涉测量技术大都是非接触测量,具有很高的测量灵敏度和精度。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪、马赫-泽德干涉仪、菲索干涉仪、泰曼-格林干涉仪等;70年代以后,抗环境干扰的外差干涉仪(交流干涉仪)发展迅速,如双频激光干涉仪等;近年来,光纤干涉仪的出现使干涉仪结构更加简单、紧凑,干涉仪性能也更加稳定。 干涉测长的基本原理 激光干涉测长的基本光路是一个迈克尔逊干涉仪,用干涉条纹来反映被测量的信息。干涉条纹是接收面上两路光程差相同的点连成的轨迹。激光器发出的激光束到达半透半反射镜P 后被分成两束,当两束光的光程相差激光半波长的偶数倍时,它们相互加强形成亮条纹;当两束光的光程相差半波长的奇数倍时,它们相互抵消形成暗条纹。两束光的光程差可以表为 (1) j M J j N i i i l n l n ∑∑==-=?11 式中j i n n ,分别为干涉仪两支光路的介质折射率;j i l l ,分别为干涉仪两支光路的几何路程。将被测物与其中一支光路联系起来,使反光镜M 2沿光束2方向移动,每移动半波长的长度,光束2的光程就改变了一个波长,于是干涉条纹就产生一个周期的明、暗变化。通过对干涉条纹变化的测量就可以得到被测长度。

被测长度L 与干涉条纹变化的次数N 和干涉仪所用光源波长λ之间的关系是 2λ N L = (2) 从测量方程出发可以对激光干涉测长系统进行基本误差分析 δλδδλ λ+=?+?=?N L N N L L 即 (3) 式中δλδδ和N ,L 分别为被测长度、干涉条纹变化计数和波长的相对误差。这说明被测长度的相对误差由两部分组成,一部分是干涉条纹计数的相对误差,另一部分是波长也就是频率的相对误差。前者是干涉测长系统的设计问题,后者除了激光稳频技术有关之外还与环境控制,即对温度、湿度、气压等的控制有关。因此激光干涉测长系统测量误差必须根据具体情况进行具体分析。 激光的发明和应用使干涉测长技术提高了精度,扩大了量程并且得到了普及,但是使干 涉测长技术走出实验室进入车间,成为生产过程质量控制设备的是激光外差干涉测长技术, 具体来讲就是双频激光干涉仪。 激光干涉仪产生的干涉条纹变化频率与测量反射镜的运动速度有关,在从静止到运动再 回到静止的过程中对应着频率从零到最大值再返回到零的全过程,因此光强转化出的直流电 信号的频率变化范围也是从零开始的。这样的信号只能用直流放大器来放大处理。但是在外 界环境干扰下,干涉条纹的平均光强会有很大的变化,以至于造成计数的错误。所以一般的 激光干涉仪抗干扰能力差,只能在恒温防振的条件下使用。为了克服以上缺点,可以在干涉 仪的信号中引入一定频率的载波,使被测信号通过这一载波来传递,使得干涉仪能够采用交 流放大,隔绝外界环境干扰造成的直流电平漂移。利用这种技术设计的干涉仪称作外差干涉 仪,或交流干涉仪。产生干涉仪载波信号的方法有两种,一种是使参与干涉的两束光产生一 个频率差,这样的两束光相干的结果会出现光学拍的现象,转化为电信号以后得到差频的载 波,另一种是在干涉仪的参考臂中对参考光束进行调制,与测量臂的光干涉直接生成载波信 迈克尔逊干涉仪 图1 激光干涉测长仪的原理图

激光干涉位移测量技术

激光干涉位移测量技术 摘要:为了实现纳米级以上分辨力位移的测量研究,利用激光干涉位移测量技术可以达到纳米级分辨力,其具有可溯源、分辨力高、测量速度快等特点,是目前位移测量领域的主流技术。本文对目前主要的激光干涉位移测量技术进行了分类介绍,并对各种干涉仪的特点进行了分析,最后介绍了激光干涉位移测量技术的国内外发展现状和趋势。 关键词:纳米级;激光干涉;位移测量; 1 引言 干涉测量技术( interferometry ) 是基于电磁波干涉理论,通过检测相干电磁波的图样,频率、振幅、相位等属性,将其应用于各种相关的测量技术的统称。用于实现干涉测量技术的仪器被称为干涉仪。在当今多个科研领域,干涉测量技术都发挥着重要的作用,包括天文学,光纤光学,以及各种工程测量学。其中由于上个世纪60年代激光的研制成功,使得激光干涉测量技术在各种精密工程领域得到了广泛的应用。它的基本功能是将机械位移信息变成干涉条纹的电信号,再对干涉条纹进行调理和细分,进而获得所需要的测量信息。整个激光干涉测量系统中主要的组成部分有光电转换、信号调理、信号细分处理。 1.1激光干涉仪分类 激光干涉仪是以干涉测量为原理,利用激光作为长度基准,对数控设备(加工中心、三坐标测量机等)的位置精度(定位精度、重复定位精度等)、几何精度(抚养扭摆角度、直线度、垂直度)进行精密测量的精密测量技术。由于激光具有波长稳定、波长短、具有干涉性,使得激光在现代光电测量系统中占据了重要的地位,尤其是在激光干涉测量系统中。下面介绍激光干涉仪测量原理以及激光干涉仪。 光的相长干涉和相消干涉: 图1.光的相长以及相消干涉 如果两束光相位相同,光波会叠加增强,表现为亮条纹,如果两束光相位相反,光波会相互抵消,表

激光干涉仪进行角度测量

SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(约6分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。 SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。 激光干涉仪角度测量方法

1.1.1. 角度测量构建 与线性测量原理一样,角度测量需要角度干涉镜和角度反射镜,并且角度反射镜和角度干涉镜必须有一个相对旋转。相对旋转后,会导致角度测量的两束光的光程差发生变化,而光程差的变化会被SJ6000激光干涉仪探测器探测出来,由软件将线性位置的变化转换为角度的变化显示出来。 图 16-角度测量原理及测量构建 图 17-1水平轴俯仰角度测量样图图 17-2水平轴偏摆角度测量样图1.1.2. 角度测量的应用 1.1. 2.1. 小角度精密测量 激光干涉仪角度镜能实现±10°以内的角度精密测量。

图 18-小角度测量实例 1.1. 2.2. 准直平台/倾斜工作台的测量 由于角度镜组的不同安装方式,其测量结果代表不同方向的角度值。您可以结合实际需要进行安装、测量。 图 19-水平方向角度测量 图 20-垂直方向角度测量 在垂直方向的角度测量中,角度反射镜记录下导轨在不同位置时的角度值,可由软件分析导轨的直线度信息,实现角度镜组测量直线度功能。

激光干涉测量

激光干涉测量 xxxxx xxxxx xxxxx 摘要:干涉测量技术是以光波干涉原理为基础进行测量的一门技术。 20世纪60年代以来,由于激光的出现、隔振条件的改善及电 子与计算机技术的成熟,使干涉测量技术得到长足发展。本文 介绍了激光干涉的基本原理。 关键词:激光干涉测量双频激光干涉仪 由于科学技术的进步,干涉测量技术已经得到相当广泛的应用。一方面因为微电子、微机械、微光学和现代工业提出了愈来愈高的精度和更大的量程,其它方法难以胜任;另一方面因为当代干涉测量技术本身具有灵敏度高、量程大、可以适应恶劣环境、光波和米定义联系而容易溯源等特点,因而在现代工业中应用非常广泛。 激光的出现在世界计量史上具有重大的意义。用稳频的氦氖激光器作为光源,由于它的相干长度很大,干涉仪的测量范围可以大大的扩展;而且由于它的光束发散角小,能量集中,因而它产生的干涉条纹可以用光电接收器接收,变为电讯号,并由计数器一个不漏的记录下来,从而提高了测量速度和测量精度,比如说我国自行设计与制造的以氦氖激光器作为光源的光电光波比长仪,可以在20分钟之内把1米线纹尺上1001条刻线依次自动鉴定完毕,精度达到±0.2μm,这就是激光干涉仪的成功例证。 一、激光干涉仪的介绍 激光干涉仪,以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,有单频的和双频的两种。 1、单频激光干涉仪 从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N 为电脉冲总数),算出可动反射镜的位移量L。使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。 2、双频激光干涉仪 双频激光干涉仪是在单频激光干涉仪的基础上发展的一种外差式干涉仪,,双频激光干涉仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等,也可以在普通车间内为大型机床的刻度进行标定,既可以对几十米的大量程进行精密测量,也可以对手表零件等微小运动进行精密测量,既可以对几何量如长度、角度.直线度、平行度、平面度、

激光干涉纳米位移测量系统设计(课程设计)

激光干涉纳米位移测量系统设计 总体构思及方案确定: 一、光学测量方法是伴随激光、全息等技术的研究发展而产生的方法,它具有非接触、材料适应性广,测量点小、测量精度高、可用于实时在线快速测量等特点,在微位移测量中得到了广泛的应用。特别是近20年来电子技术与计算机技术飞速发展为位移的光学测量提供了有力支持,使其理论研究不断深入,并将成果逐步应用到工业生产领域。按使用光学的原理不同分为以下几种方法: 1、光外差法: 光外差法是利用光外差原理,激光束通过分光束分成两束光,一束经过光频移器后,得到一个频移,作为测量光束;另一束未经频移的光束作为参考光束。测量光聚焦在被测表面,其反射光再次经过一定频移后与参考光束会合,经偏振片相互干涉由光电接收器接收,从而获得被测表面的微位移。这种方法的测量精度与分辨率都比较高,分辨率能达到亚纳米级,因此受到人们的普遍重视,比较适用于超精度表面的测量,但量程小、结构复杂、成本比较高。 2 电镜法 电镜法是利用电子显微镜直接得到被测表面的微位移。但目前其产品体积大,且局限于在实验室研究使用,不能用于加工生产现场。 3 激光三角测量法 三角法测量法是种传统的测位移方法,将被测物表面与光源及接收系统摆在三个点,构成三角形光路。其工作过程主要是:激光光源发出的光束经透镜照射被测物体表面上;光线由物体表面漫反射,一部分被光电接收系统接收。如果物体表面高低不平,则在光电接收探测器的光敏面上的光斑有一定的移动,根据三角形相似原理可求出物体表面的位移。 4 干涉法测量 干涉测量法是基于光波的干涉原理测位移的方法。激光的出现使干涉测量位移的应用范围更加广泛。其测量的基本原理是:由激光器发出的光经分光镜分为两束,一束射向干涉仪的固定参考臂,经参考反射镜返回后形成参考光束;另一束射向干涉仪的测量臂,测量臂中的反射镜随被测物体表面的位移变化而移动,这束光从测量反射镜后形成测量光束。测量光束和参考光束的相互叠加干涉形成干涉信号。干涉信号的明暗变化密度与被测测位移成反比。因此,由光接收器件光电显微镜得到的明暗变化密度可以得出被测位移的值。

相关主题