搜档网
当前位置:搜档网 › 基于ARM LinuxUSB摄像头蓝牙的图像采集与蓝牙传输

基于ARM LinuxUSB摄像头蓝牙的图像采集与蓝牙传输

基于ARM LinuxUSB摄像头蓝牙的图像采集与蓝牙传输
基于ARM LinuxUSB摄像头蓝牙的图像采集与蓝牙传输

基于ARM Linux的图像采集与蓝牙传输

2007-12-12 14:50

基于ARM Linux的图像采集与蓝牙传输

嵌入式Linux系统具有可移植性好、网络功能强、优秀的GNU编译工具、免费的开放源代码等优点。S3C2410处理器是一款采用ARM920T结构,内部资源非常丰富的32位嵌入式处理器。USB摄像头具有低廉的价格,良好的性能,加上Linux下有V4L支持对其编程,很容易集成到嵌入式系统中。蓝牙技术是目前被认可的短距离无线通信技术,广泛应用于手机、电脑以及汽车免提系统。

本文介绍基于嵌入式Linux的USB图像采集系统,并通过构建好的嵌入式Linux 下的蓝牙环境将采集到的图片传送到蓝牙手机上,实现监控功能。

1 软硬件平台概述

系统硬件平台如图1所示。该平台软件上采用嵌入式Linux操作系统;硬件上采用Samsung公司的S3C2410处理器,另外配置了64 MB的NAND Flash存储器和64MB 的SDRAM,通过以太网控制芯片CS8900扩展一个10M以太网接口。引出两个USB主口,一个接USB摄像头,一个接USB蓝牙适配器;将通过USB摄像头采集到的图像数据输出到缓冲区中,保存成文件,并通过蓝牙传输到蓝牙手机上。

2 摄像头驱动

在Linu x下已经支持的摄像头驱动是采用OV511芯片的摄像头。使用这款芯片的摄像头有网眼2000/3000等系列,而现在市面上常见的摄像头芯片大多采用中芯微的zc0301、zc0302和zc0303等。Linux内核中并没有相关的驱动支持,但可以从网上下载到相关的spca5xx驱动。

本系统就采用市面上最常用的zc0301p1芯片的摄像头。由于是用于ARM开发板上,可以下载专用于嵌入式Linux的spca5xx-LE驱动,LE版的驱动最大限度地减少了内存的使用,符合嵌入式的需要。将下载的驱动加入到内核中,修改Makefile和Kconfig文件,在内核中选中USB_SPCA5XX,编译后就将摄像头的驱动加入到内核映像

中了。

3 Video4Linux简介

Video4Linux(简称“V4L”)是Linux下用于获取视频和音频数据的API接口,配合适当的视频采集设备和相应的驱动程序,可以实现影像/图片采集、AM/FM广播、频道切换等功能,在远程会议、可视电话、视频监控系统中都有广泛的应用。

在Linux下,所有外设都被看成是一种特殊文件,称为“设备文件”,可以像访问普通文件一样对其进行读写。一般来说,采用V4L驱动的摄像头设备文件是/dev/v4l/video0。为了通用,可建立一个到/dev/video0的连接。

V4L支持两种方式来捕获图像:mmap(内存映射方式)和read(直接读取方式)。

V4L在include/linux/videodev.h文件中定义了一些重要的数据结构,在进行图像的采集过程中,就是通过对这些数据的操作来获得最终的图像数据。

4 图像采集

在图像采集过程中,采用V4L的read方式直接读取设备来获取JPEG格式的图像数据,具体流程如图2所示。

4.1 初始化摄像头设备

指定要操作的摄像头设备文件/dev/video0,调用OPEN()打开该设备文件,将自定义的数据结构vdIn中的成员初始化,包括设备名称(vd->videodevice)、要采集图像的宽度(vd->hdrwidth)和高度(vd->hdrheight)、像素位数(vd->bppIn)、帧大小(vd->framesizeIn),为帧数据分配存储空间(vd->pFramebuffer)。

4.2 设定待采集图像的各种属性

zc0301p1摄像头支持JPEG格式的图像采集,定义VIDEO_PALETTE_JPEG为21,将其赋值给图像帧的调色板palette,这是一个必须设置的重要的参数。其他参数(如图

像色调、颜色、对比度等)可以先将VIDIOCGPICT传递给ioctl()查看其默认值。

如果发觉以上的参数不符合采集图像的规范,则可以将pict.brightness、

pict.colour、pict.contrast、pict.white-ness、pict.depth等重新赋值,再将VIDIOCSPICT传递给ioctl()来重新设置这些参数。

4.3 进行图像采集

在图像采集过程中,采用read方法直接读取设备文件来获取一帧数据保存到缓冲区中,通过convertframe()函数将pFramebuffer中的数据转成完整的JPEG格式的数据保存到ptframe缓存中去,再调用fwrite()函数将pt-frame缓存中的JPEG格式数据写入到指定的文件中去,即得到一幅JPEG格式的图像。

5 蓝牙传输

蓝牙协议规范遵循开放系统互连参考模型(OPENSystem Interconnection/Referenced Model,OSI/RM),从低到高地定义了蓝牙协议堆栈的各个层次。

在蓝牙协议体系中,OBEX位于RFCOMM之上。OBEX提供了对象的表示模型,并通过“Put”和“Get”操作传输对象。设备间的对话遵循客户和服务器间的请求—响应模式。OBEX会话开始由客户端发出连接请求,连接建立成功后服务器发送成功的连接响应,否则发送连接不成功的连接响应。在连接之后,客户端可以通过Put请求向服务器“推送(Push)”对象,如果对象较大,Put请求可以使用多个Put请求分组,每个请求分组需返回一个Put响应分组。本系统将采集到的图片保存到/tmp/cap.jpeg,现在要将图片通过蓝牙传输到蓝牙手机上。具体实现过程如下:

① 在内核中打上蓝牙补丁,加入蓝牙协议的支持,添加USB蓝牙适配器的驱动。

② 编译bluez的库和工具。从网上下载bluez-libs、bluez-utils和dbus库,用ARM-Linux-gcc完成交叉编译,得到了arm版的bl

uez库和bluez的工具以及dbus-daemon工具。这是蓝牙适配器在ARM Linux的环境下正常工作所必需的。

③ 启动USB蓝牙适配器。要使USB蓝牙适配器正常工作,需要用到步骤②中编译得到的dbus-daemon工具和一些蓝牙工具(如hciconfig、hcid等)。dbus是一个消息传递系统,应用程序间可通过它来相互传递消息。dbus-daemon是一个守护进程,是运行hcid所必需的,hcid用来读入hcid.conf文件。该文件是蓝牙设备的一个配置文件,在该配置文件中设置好蓝牙设备的类型、classid、配对码、设备是否可被搜索等其他的属性。

④ 实现文件传输。本系统采用OBEX协议的客户/服务器模式来传递采集到的图片文件,需要用到蓝牙的Object PUSH服务。首先用sdptool工具搜索到蓝牙手机的MAC地址以及Object PUSH服务所占用的频道,然后用rfcomm工具将该频道绑定到虚拟串口,最后运行obex_test完成文件的传输。

采用Object PUSH服务来实现文件传输的流程。

结语

本设计实现了ARM Linux环境下的图像采集工作,构建了ARM Linux下的蓝牙工作环境;通过蓝牙的OBEX协议和Object PUSH服务,实现了ARM Linux平台与蓝牙手机之间的文件传输。利用嵌入式系统和无线传输实现远程监控,符合数字化、网络化的发展趋势。

智能车模拟摄像头图像采集方法详解

本帖最后由 superyongzhe 于 2009-11-16 23:24 编辑 我想大家肯定还遇到一个问题,那就是如何知道自己采集的图像是否正确呢?可以使用串 口,大家把我那个程序里面的printp.c 复制到你的工程里,再把includes.h里面的声明添加到你的程序里,在串口初始化程序里 设置好波特率(如何设置可参考《单片 机嵌入式在线开发方法》一书中的相关内容,也可以看芯片资料)。上位机可以使用“串口 助手就可以了”,很简单的。如果大 家还有什么问题就赶快提出来把,我尽量给大家解决,因为这里面前车的东西比较繁杂,我 一下说不清楚。最好有个电视机,能 够看到摄像头摄在那里,这样会更容易校对 近几天看到论坛里有很多网友遇到CCD图像采集的麻烦,我在最开始的时候也为这个烦恼过,由于本人比较菜,在度过大概半个月的绝望日夜后,在刚准备放弃时突然发现我已经采集到正确的图像了。特再次分享,希望能解决大家当前遇到的麻烦。 在采集图像之前,我们首先要知道摄像头输出信号的特性。目前的模拟摄像头一般都是PAL制式的,输出的信号由复合同步信号,复合消隐信号和视频信号。其中的视频信号才是真正的图像信号,对于黑白摄像头,图像越黑,电压越低,图像越白,电压越高。而复合同步信号是控制电视机的电子枪对电子的偏转的,复合消隐信号是在图像换行和换场时电子枪回扫时不发射电子。由于人眼看到的图像大于等于24Hz时人才不会觉得图像闪烁,所以PAL 制式输出的图像是25Hz,即每秒钟有25幅画面,说的专业点就是每秒25帧,其中每一帧有625行。但由于在早期电子技术还不发达时,电源不稳定,容易对电视信号进行干扰,而交流电源是50Hz所以,为了和电网兼容,同时由于25Hz时图像不稳定,所以后来工程师们把一副图像分成两场显示,对于一幅画面,一共有625行,但是电子枪先扫描奇数场1,3,5.....,然后再扫描2,4,6.....,所以这样的话,一副图像就变成了隔行扫描,每秒钟就有50场了。其中具体的细节请参考这个网站 电视原理与系统 /zjx/zjx09/zjx090000.htm 只用看前面的黑白全电视信号和PAL制式就可以了(当然如果感兴趣可以全部看完)。 通过上面的内容如果你对PAL制式信号了然于心,那么就可以开始图像的采集了,PAL 输出的信号有复合同步信号,复合消隐信号和视频信号。那么我们首先就是要从这三种信号中分理出复合同步信号,复合消隐信号和视频信号,以便我们对AD采样到的值进行存储,

(完整版)基于CCD图像采集系统毕业设计

毕业设计(论文) 基于CCD图像采集系统

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

第1章绪论 1.1课题景背 近年来,随着工业的发展和安全意识的增强,对生产监测和控制的要求不断提高,在设备检测、安全监控、自动测量等工业测控领域,都需要有性能好、成本低、工作稳定、应用灵活方便的图像采集和处理系统。而CCD图像传感器正是目前常用的图像传感器之一。 CCD是Charge Coupled Device的缩写,是一种光电转换式图像传感器。它利用光电转换原理把图像信息直接转换成电信号,这样便实现了非电量的电测量。同时它还具有体积小、重量轻、噪声低、自扫描、工作速度快、测量精度高、寿命长等诸多优点,因此受到人们的高度重视,在精密测量、非接触无损检测、文件扫描与航空遥感等领域中,发挥着重要的作用。 20世纪70年代美国贝尔实验室的W.S.Boyle,G.E.Smith发现了电荷通过半导体势阱发生转移的现象,提出了电荷藕合这一新概念和一维CCD器件模型,同时预言了CCD器件在信号处理、信号储存及图像传感中的应用前景。近年来随着半导体材料与技术的发展,尤其是集成电路技术的不断进步,CCD图像传感器得到很大发展,性能迅速提高。同时CCD图像传感器的家族也在不断壮大。在原有的可见光CCD、红外CCD、微光CCD、紫外CCD和X射线CCD等各种CCD图像传感器的基础之上,90年代以来又出现了几种新的CCD图像传感器,例如:超级空穴堆积CCD、超高感度空穴堆积CCD、超级CCD和四色超级空穴堆积CCD 。世界上CCD图像传感器主要由索尼、富士、夏普、柯达、松下和菲利浦六家公司所生产。国内CCD图像传感器的研制不够迅速,尚

STM32单片机ov760摄像头进行图像采集处理

#include #include #include #include #include #include #include #include #include "Image.h" #include "include.h" float kp,kd,ki; s16 steererr = 0; u8 Get_a_Y() { u8 t1,t2; //获得一个Y分量的过程 FIFO_RCK=0; FIFO_RCK=1; t1=(0x00ff&GPIOB->IDR); FIFO_RCK=0; FIFO_RCK=1; t2=(0x00ff&GPIOB->IDR); //跳过一个像素 FIFO_RCK=0; FIFO_RCK=1; t2=(0x00ff&GPIOB->IDR); FIFO_RCK=0; FIFO_RCK=1; t2=(0x00ff&GPIOB->IDR); return t1; }

void skip_a_row() { u16 i; u8 temp; for (i=0;i<320;i++) { //跳过一个像素 FIFO_RCK=0; FIFO_RCK=1; temp=(0x00ff&GPIOB->IDR); FIFO_RCK=0; FIFO_RCK=1; temp=(0x00ff&GPIOB->IDR); } } void Get_a_Image() { u16 i,j; for (i=0;i

第一章摄像头的基本结构

第一章 摄像头的基本结构 根据我公司的产品特征,结合行业内的产品特点,首先从摄像头机芯出发,先以单板机为例,详细分解摄像头的基本结构,以此为点辐射开来,逐步认识摄像头的工作原理、特性和应用范围。 摄像头的基本结构可分为4个基本部分,分别是镜头部分、LED部分、芯片部分、PCB 及元器件部分。其中每一部分中又包含几个小的部件,具体如下: 一.镜头部分,镜头部分包括镜头、镜头座、镜头盖、固定焦距件等4个配件 1.镜头,镜头由透镜(凸透镜、凹透镜)组成,透镜从材质上分塑胶透镜(plastic) 和玻璃透镜(glass)。这两种材质可以通过多种组合方式形成最后的镜头。通常镜头构造有:1P、2P、1G1P、1G2P、2G2P、4G、5G等。玻璃透镜又分镀膜和不镀膜。镀膜镜片可以增加通光量减少反光,使成像清晰,画质明亮鲜艳,镀膜是常见的镜头处理工艺,最常见镀膜为单层膜、多层膜、增透膜、滤光膜、红外线截止膜等。 ⑴按照颜色分类,镜头可分为:彩色镜头、黑白镜头。 ⑵按照功能分类,镜头可分为:固定镜头、变焦镜头。 ⑶按照大小分类,镜头可分为:单板镜头、针孔镜头、CS镜头。 ⑷按照红外分类,镜头可分为:850nm镜头、940nm镜头、650nm镜头。 ⑸按照焦距分类,镜头可分为:1.8mm、2.1mm、2.5mm、2.8mm、3.0mm、3.6mm、5.4mm、6mm、8mm、12mm、16mm、25mm、……. 2. 镜头座,镜头座是用来固定镜头的,镜头是螺旋在镜头座里面的,按照材质分类, 镜头座常分为以下2类:

⑴塑胶镜头座,这种座价格成本低,使用最普遍。 ⑵金属镜头座,这种座价格成本高,但是其散热性能好。 ⑶另外也可以按照用途分类,可以分为:单板镜头座、CS镜头座等。 3. 镜头盖,保护镜头前端玻璃的塑胶盖。 4. 固定焦距件,主要针对单板镜头,将镜头锁定在镜头座内让其不易滑动而改变焦距,导致图像模糊。其主要固定方法有3种: ⑴螺丝固定,容易划伤镜头螺纹牙,容易造成光轴偏移,有突出螺帽存在而易与其他器件冲突,但固定较紧实。 ⑵弹簧固定,固定不紧实容易滑动,但位置好,光轴不偏,便于孔内吻合。 ⑶打胶固定,不美观,不匀称,稍繁琐,不利于再调节焦距。 5. 镜头的安装方式:有C式和CS式两种,两者的螺纹均为1英寸32牙,直径为1 英寸,差别是镜头距CCD靶面的距离不同,C式安装座从基准面到焦点的距离为17.562毫米,比CS式距离CCD靶面多一个专用接圈的长度,CS式距焦点距离为12.5毫米。别小看这一个接圈,如果没有它,镜头与摄像头就不能正常聚焦,图象变得模糊不清。所以在安装镜头前,先看一看摄像头和镜头是不是同一种接口方式,如果不是,就需要根据具体情况增减接圈。有的摄像头不用接圈,而采用后像调节环(如松下产品),调节时,用螺丝刀拧松调节环上的螺丝,转动调节环,此时CCD靶面会相对安装基座向后(前)运动,也起到接圈的作用。另外(如SONY,JVC)采用的方式类似后像调节环,它的固定螺丝一般在摄像机的侧面。拧松后,调节顶端的一个齿轮,也可以使图象清晰而不用加减接圈。 二.LED部分,LED部分主要是指单板机上的LED灯,由红外发光二级管组成的发光体,光谱功率分布为中心波长 830 ~ 950nm ,半峰带宽约 40nm 左右,它是窄带分布,目前市场上用的LED灯比较统一,可以从以下3个方面来进行分类: 1.按照光源的波段分,可以分为3类: (1).白炽灯,即可见白光LED灯。 (2).850nm红外灯,发出近红外光线,有红暴现象,人眼可识别。 (3).940nm红外灯,发出红外光线,无红暴现象,人眼无法识别。 光是一种电磁波,它的波长区间从几个纳米( 1nm=10-9m )到 1 毫米( mm )左右。人眼可见的只是其中一部分,我们称其为可见光,可见光的波长范围为 380nm ~ 780nm ,可见光波长由长到短分为红、橙、黄、绿、青、兰、紫光,其中波长比红光长的称为红外光。因此850nm的波段微微可见红光,称之为有红暴现象,940nm波段的就不可见了。

CameraLink 图像采集接口电路1 (2)

CameraLink 图像采集接口电路 1.Camera Link标准概述 Camera Link 技术标准是基于 National Semiconductor 公司的 Channel Link 标准发展而来的,而 Channel Link 标准是一种多路并行 LVDS 传输接口标准。 低压差分信号( LVDS )是一种低摆幅的差分信号技术,电压摆幅在 350mV 左右,具有扰动小,跳变速率快的特点,在无失传输介质里的理论最大传输速率在 1.923Gbps 。 90 年代美国国家半导体公司( National Semiconductor )为了找到平板显示技术的解决方案,开发了基于 LVDS 物理层平台的 Channel Link 技术。此技术一诞生就被进行了扩展,用来作为新的通用视频数据传输技术使用。 如图1 所示, Channel Link 由一个并转串信号发送驱动器和一个串转并信号接收器组成,其最高数据传输速率可达 2.38G 。数据发送器含有 28 位的单端并行信号和 1 个单端时钟信号,将 28 位 CMOS/TTL 信号串行化处理后分成 4 路 LVDS 数据流,其 4 路串行数据流和 1 路发送 LVDS 时钟流在 5 路 LVDS 差分对中传输。接收器接收从 4 路 LVDS 数据流和 1 路 LVDS 时钟流中把传来的数据和时钟信号恢复成 28 位的 CMOS/TTL 并行数据和与其相对应的同步时钟信号。 图1 camera link接口电路 2.Channel Link标准的端口和端口分配 2.1 .端口定义 一个端口定义为一个 8 位的字,在这个 8 位的字中,最低的 1 位( LSB )是 bit0 ,最高的 1 位( MSB )是 bit7 。 Camera Link 标准使用 8 个端口,即端口 A 至端口 H 。

LabVIEW应用于实时图像采集及处理系统

LabVIEW应用于实时图像采集及处理系统 2008-7-29 9:35:00于子江娄洪伟于晓闫丰隋永新杨怀江供稿 摘要:本文在LabVIEW和NI-IMAQ Vision软件平台下,利用通用图像采集卡开发一种图像实时采集处理虚拟仪器系统。通过调用动态链接库驱动通用图像采集卡完成图像采集,采集图像的帧速率达到25帧每秒。利用NI-IMAQ Vision视频处理模块,进行图像处理,以完成光电探测器的标定。该系统具有灵活性强、可靠性高、性价比高等优点。 主题词:虚拟仪器;图像处理;LabVIEW;动态链接库 1.引言 美国国家仪器(NI)公司的虚拟仪器开发平台LabVIEW,使用图形化编程语言编程,界面友好,简单易学,配套的图像处理软件包能提供丰富的图像处理与分析算法函数,极大地方便了用户,使构建图像处理与分析系统容易、灵活、程序移植性好,大大缩短了系统开发周期。在推出应用软件的基础上,NI公司又推出了图像采集卡,对于NI公司的图像采集卡,可以直接使用采集卡自带的驱动以及LabVIEW中的DAQ库直接对端口进行操作。 但由于NI公司的图像采集卡成本很高,大多用户难以接受,因此硬件平台往往采用通用图像采集卡,软件方面的图像处理程序仍采用LabVIEW以及视频处理模块编写。本文正是基于这样的目的,提出了一种在LabVIEW环境下驱动通用图像采集卡的方案,在TDS642EVM高速DSP视频处理板卡的平台下,完成实时图像采集及处理。 在图象处理的工作中主要完成对CCD光电探测器的辐射标定。由于探测器在自然环境下获取图像时,会受到来自大气干扰,自身暗电流,热噪声等影响,使CCD像元所输出信号的数值量化值与实际探测目标辐射亮度之间存在差异,所以要得到目标的精确图像就必须对探测器进行辐射标定。 2.图像采集卡简介 闻亭公司TDS642EVM(简称642)多路实时视频处理板卡是基于DSP TMS320DM642芯片设计的评估开发板。计算能力可达到4Gips,板上的视频接口和视频编解码芯片Philips SAA7115H相连,实现实时多路视频图像采集功能,支持多种PAL,NTSC和SECAM视频标准。本系统通过642的PCI接口与主机进行数据交换。PCI支持“即插即用(PnP)”自动配置功能,使图像采集板的配置变得更加方便,其一切资源需求的设置工作在系统初启时交由BIOS处理,无需用户进行繁琐的开关与跳线操作。PCI接口的海量数据吞吐,为其完成实时图像采集和处理提供保证。 3.系统组成及工作原理

PCB图像采集系统研究背景意义及国内外现状

PCB 图像采集系统研究背景意义及国内外现状 1 研究背景 2 AOI 系统的研究和国内现状 3 研究意义 1 研究背景 印刷电路板(Printed Circuit Board, PCB)又称为印刷线路板或印制电路板。印刷电路板是各种电子产品的主要部件,有“电子产品之母”之称,它是任何电子设备及产品均需配备的,其性能的好坏在很大程度上影响到电子产品的质量。几乎每一种电子设备都离不开PCB小到电子手表、计算器,大到航空航天、军用武器系统等,都包含各式各样,大小各异的PCB板。近年来,随着生产工艺的不断提高,PCB正在向超薄型、小元件、高密度、细间距方向快速发展。这种趋势必然给质量检测工作带来了很多挑战和困难。因此PCB故障的检测已经成为PCB制造过程中的一个核心问题,是电子产品制造厂商非常关注的问题。在生产线上,厂家为保证PCB板的质量,就得要求100%的合格率,对所有的部件、子过程和成品都是如此。在过去靠人工对其进行检测的过程中,存在以下几个不可避免的缺点: (1) 容易漏检。由于是人眼检测,眼睛容易疲劳,会造成故障不能被发现的问题。并且人工检测主观性大,判断标准不统一,使检测质量变得不稳定。 (2) 检测速度慢,检测时间长。比如对于图形复杂的印刷电路板,人工很难实现快速高效的检测,因此人工检测不能满足高速的生产效率。 (3) 随着技术的发展,设备的成本降低,人工费用增加,仍然由人工进行产品质量控制,将难于实现优质高效,而且还会增加生产成本。 (4) 在信息技术如此发达的今天人工检测有不可克服的劣势,例如:对检测结果实时地保存和远距离传输,对原始图像的保存和远距离传输等。 (5) 有些在线检测系统是接触式检测,需要与产品进行接触测量,因此,有可能会损伤产品。 因此,人工检测的精确性和可靠性大打折扣,传统意义上的检测方法不再能适应现代电路板检测的要求。如果漏检的有错误的电路板进入下一道工序,随着每一项工艺步骤的增加,到最终经过贴装阶段后,仍然会被检测出来是有故障的,那时,制造厂商与其花费大量的人力和成本来检测、返修这块电路板,还不如选择丢

摄像头是如何做出来的

看——摄像头是如何做出来的! 市场上一般主流的摄像头都在一百多元左右,基本上都归成外设耗材类产品。很多人去买摄像头的时候,都以为没有什么技术含量,没有什么工艺要求,买个鼠标键盘还要看看手感,买摄像头就不太在意了,所以造成很多生产摄像头的厂商大量制造品质低劣的产品,有无牌无厂的,有大品牌去找小厂OEM的,鱼龙混杂,这些摄像头“厂家”基本上有三个类型: 一、纯加工厂,这类厂家无开发能力,到市场上买一些外壳(俗称:模具),买已经设计好的公版PCB,就进行手工贴片和组装。专门接单,赚的是加工费,有时也随便贴个牌子,以低价或抛单的形式来渠道上出现。 二、品牌运营商和兼营商,这类商家具有很强的渠道推广的能力,品牌也有较好的知名度,摄像头产品主要是从纯加工厂里买来,也叫OEM。虽然有品牌,但外观长得都差不多一个样,产品同质化严重。 三、综合化厂家,拥有有从外观设计、电路开发、软件和驱动研发、生产、销售的综合企业,这类厂家在最所投入的精力最大,产品也较具特色,能较好的把握市场和消费者的需求,不断开发新的产品推向市场。 笔者近来就去一家综合化的摄像头开发生产厂家全程参观了J-CAM的全套生产过程。从外观设计,PCB电路板设计、精密模具设计制造、注塑成形、无尘车间喷油、电路板SMT高速贴片、插件、装配、检测、包装。

(接下来,介绍的就是此款摄像头的制造流程) 出色的摄像头不仅需要有出色的效果,同样,也要有吸引人的外观。成功的外观设计,需要出色的设计理念,但要把将这理念在具体实物体现出来,又需要精湛的工艺。 设计篇 一、外观设计 据天敏工业设计小组介绍,摄像头前期设计的工作也很复杂。 一个新的摄像头的诞生,最初由设计师的灵感而成,设计师首先用手画草图,将自己的的想法粗略地在纸上体现,画出简易的大体外观。 (天敏子弹头的设计草图) 在ID小组讨论后决定后,用Rhino犀牛工业造型软件先画几个三维的外观效果图,经讨论大致确认后,把这个粗略的外观图纸文件送去打版中心进行CNC三维雕刻打“手版”,然后对实体模型进行评审,然后会根据模型计师进行不断的修改,这个过程是要将摄像头的最后所要实现的外观确认。外观打样后,即进行结构论证和设计工作,一般使用“PRO-E”软件,结构设计。 在设计底座时,就打了很多个样版。设计师根据市场的调研,发现现大多数的摄像头的底座都

基于Labview的图像采集与处理

目前工作成果: 一、USB图像获取 USB设备在正常工作以前,第一件要做的事就是枚举,所以在USB摄像头进行初始化之前,需要先枚举系统中的USB设备。 (1)基于USB的Snap采集图像 程序运行结果: 此程序只能采集一帧图像,不能连续采集。将采集图像函数放入循环中就可连续采集。

循环中的可以计算循环一次所用的时间,运行发现用Snap采集图像时它的采集速率比较低。运行程序时移动摄像头可以清楚的看到所采集的图像有时比较模糊。 (2)基于USB的Grab采集图像 运行程序之后发现摄像头采集图像的速率明显提高。

二、图像处理 1、图像灰度处理 (1)基本原理 将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可用两种方法来实现。 第一种方法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。 第二种方法是根据YUV的颜色空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜色空间的变化关系可建立亮度Y与R、G、B三个颜色分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。 (2)labview中图像灰度处理程序框图 处理结果:

单片机图像采集与网络传输

单片机图像采集与网络传输 作者:发布时间:2012-03-21来源:繁体版 1.引言随着网络技术的发展和网络应用的普及,如何充分利用网络资源来实现低成本、高可靠的远程视频监控,已成为一个技术热点。本文介绍一个用单片机与图像采集模块接口,嵌入TCP/IP协议栈,制作“网络摄像头”的方 1.引言 随着网络技术的发展和网络应用的普及,如何充分利用网络资源来实现低成本、高可靠的远程视频监控,已成为一个技术热点。本文介绍一个用单片机与图像采集模块接口,嵌入TCP/IP协议栈,制作“网络摄像头”的方法。本网络摄像头在一个组播式视频图像监控系统中,只作为组播源向以太网发送视频图像数据;其它监控计算机则作为组播成员接收数据。整个视频图像发送和监控系统在局域网中使用时,监控接收端的PC机只要加入了组播组,不必知道网络摄像头的IP 地址和MAC地址,也不需要两者的IP地址是在同一网段,均可接收到网络摄像头发出的图像数据,使用起来相当方便。 2. 硬件接口电路 网络摄像头的硬件接口电路如图1所示。该电路采用的单片机是89C52芯片,另扩展32K的外部存储器,供网络和图像数据处理用。 图1中的DB200是一个产品摄像模块,它由微型摄像镜头、图像缓存、时序发生、总线接口等电路构成;其外接信号是一个16脚的插座(9 ~ 16脚分别对应数据线D7 ~ D0,其它为地址、电源和读写控制线)。 图1中,U1、U4和DB200的片选信号由89C52的地址线A14、A15和74HC00的3

个与非门提供:A15=0时选通U4;A15=1及A14=0时选通U1;A15=1及A14=1时选通DB200。DB200的第8脚接A13用来选择其内部寄存器。 RTL8019AS有3种工作方式:(1)跳线方式。(2)即插即用方式。(3)免跳线方式。RTL8019AS使用哪种工作方式由第65脚(JP)决定。为减少连线,我们采用跳线方式(把65脚接高电平)。这样网卡的传输介质、I/O基地址和中断号就由74、77、78、79、80、81、82、84、85等引脚状态决定。 RTL8019AS的81、82、84、85(BD0-BD3)脚接低电平,对应32个I/O寄存器地址范围为300H - 31FH;78-80(BD4-BD6)脚接低电平,对应中断号为INT0(IRQ2/9);74(BA14)、77(BD7)脚接低电平,为自动检测传输介质方式。RTL8019AS有20根地址(SA0-SA19)线,将其5、7、8、9、10(SA0-SA4)脚接89C52的A8-A12,将15、16(SA8、SA9)脚接高电平来确保基地址为300H,其余地址线则全部接地。由于RTL8019AS的使能(AEN)信号是由89C52的 A15=1及A14=0时提供,因此我们可得出以下地址关系: 89C52:A15 A14 A13 A12 A11 A10 A9 A8 A7………A0 8019:SA4 SA3 SA2 SA1 SA0 ………… 2进制数: 1 0 0 0 0 0 0 0 0000 0000 16进制数: 0X8000 2进制数: 1 0 0 1 1 1 1 1 0000 0000 16进制数: 0X9F00 可见,如果89C52输出地址0X8000至0X9F00,均可选中RTL8019AS。由于 RTL8019AS的SA9和SA8恒接高电平,当89C52 的地址信号由0X8000至0X9F00变动时,会有:SA9 SA8 SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0 =11 0000 0000 至11 0001 1111,即对应选择RTL8019AS的I/O寄存器地址300H至31FH。 RTL8019AS的96脚(IOCS16B)接低电平,使其工作在8位总线模式;64脚接低电平,使用非AUI接口;31、32脚接高电平,屏蔽远程自举加载功能;33脚所需复位信号,由89C52的P1.5提供;29、30脚对应接89C52的读写脚。 3. 软件模块设计 嵌入式系统一般采用简化的TCP/IP协议栈。常用的有IP、ARP、UDP、ICMP、TCP以及HTTP等协议。为了尝试实现一个最简易的嵌入式TCP/IP协议,我们选用UDP通讯方式。 UDP的通讯方式有3种:点对点、广播和组播。考虑到点对点通讯需要ARP协议来取得目标节点的物理地址,我们不用点对点通讯。至于广播通讯和组播通讯,两者都不需要ARP协议。但广播方式有如下缺陷:(1)广播数据报不能跨过路由器传播;(2)广播时本地子网的所有主机都会接收到广播并作出响应,既增加了非接收者的开销,保密性也不好。我们采用的组播方式不存在这些问题,较适合作为网络视频监控的信息传输。 3.1 主程序工作流程

PCB图像采集系统研究背景意义及国内外现状

PCB图像采集系统研究背景意义及国内外现状 1 研究背景 2 AOI系统的研究和国内现状 3 研究意义 1 研究背景 印刷电路板(Printed Circuit Board,PCB)又称为印刷线路板或印制电路板。印刷电路板是各种电子产品的主要部件,有“电子产品之母”之称,它是任何电子设备及产品均需配备的,其性能的好坏在很大程度上影响到电子产品的质量。几乎每一种电子设备都离不开PCB,小到电子手表、计算器,大到航空航天、军用武器系统等,都包含各式各样,大小各异的PCB板。近年来,随着生产工艺的不断提高,PCB正在向超薄型、小元件、高密度、细间距方向快速发展。这种趋势必然给质量检测工作带来了很多挑战和困难。因此PCB故障的检测已经成为PCB制造过程中的一个核心问题,是电子产品制造厂商非常关注的问题。在生产线上,厂家为保证PCB板的质量,就得要求100%的合格率,对所有的部件、子过程和成品都是如此。在过去靠人工对其进行检测的过程中,存在以下几个不可避免的缺点: (1)容易漏检。由于是人眼检测,眼睛容易疲劳,会造成故障不能被发现的问题。并且人工检测主观性大,判断标准不统一,使检测质量变得不稳定。 (2)检测速度慢,检测时间长。比如对于图形复杂的印刷电路板,人工很难实现快速高效的检测,因此人工检测不能满足高速的生产效率。 (3)随着技术的发展,设备的成本降低,人工费用增加,仍然由人工进行产品质量控制,将难于实现优质高效,而且还会增加生产成本。 (4)在信息技术如此发达的今天人工检测有不可克服的劣势,例如:对检测结果实时地保存和远距离传输,对原始图像的保存和远距离传输等。 (5)有些在线检测系统是接触式检测,需要与产品进行接触测量,因此,有可能会损伤产品。 因此,人工检测的精确性和可靠性大打折扣,传统意义上的检测方法不再能适应现代电路板检测的要求。如果漏检的有错误的电路板进入下一道工序,随着每一项工艺步骤的增加,到最终经过贴装阶段后,仍然会被检测出来是有故障的,那时,制造厂商与其花费大量的人力和成本来检测、返修这块电路板,还不如选

对摄像头采集图像的处理(1)

1. 图像处理 4.2.1目标指引线的提取 智能车通过图像采样模块获得车前方的赛道图像信息,往下介绍如何 分析此二维数组来提取黑线,我们采用边缘检测的方法。 二维数组的行数和列数即为像素的图像坐标,我们若求出了黑线边缘 的图像坐标,就知道了黑线的位置。黑线边缘的特点是其左、右两像素为 一黑一白,两像素值的差的绝对值大于某阀值,大于可根据试验确定;而 其余处的相邻两像素或全白,或全黑,像素值差的绝对值小于该阀值。这 样,只要我们对两数组每行中任何相邻两点做差,就可以根据差值的大小 是否大于该阀值来判断此两点处是否为黑线边缘,还可以进行根据差值的 正负来判定边缘处是左白右黑,还是右黑左白。 从最左端的第一个有效数据点开始依次向右进行阀值判断:由于实际 中黑白赛道边缘可能会出现模糊偏差,导致阀值并不是个很简单介于两相 邻之间,很可能要相隔两个点。因此:第line为原点,判断和line+3的差 是否大于该阀值,如果是则将line+3记为i,从i开始继续在接下的从i+3到该行最末一个点之间的差值是否大于阀值,如果大于则将line+i/2+1的坐 标赋给中心给黑线中心位置值,如5-4

图4-4单行黑线提取法 利用该算法所得到的黑线提取效果不仅可靠,而且实时性好;在失去 黑线目标以后能够记住是从左侧还是从右侧超出视野,从而控制舵机转向让赛车回到正常赛道。 试验表明:只要阀值取得合适,该算法不仅可靠,而且实时性较好。 如果更进一步可以设置阀值根据现场情况的变化而变化。在黑线引导线已经能够可靠提取的基础上,我们可以利用它来进行相应的弯、直道判定,以及速度和转向舵机控制算法的研究。 2.

手机摄像头结构设计详解

手机摄像头结构设计详解 一、首先认识下手机用的摄像头(做结构主要是根据摄像头的视角区域而定的)

结构设计要点: 1、镜片通常采用钢化玻璃或PMMA(超过30万像素的建议用钢化玻璃),厚度可根据结构需要选用不同的规格,常用的有0.5、0.65、0.8(摄像头镜片最厚不要超过0.80),镜片的最高面B(如图所示)要比大面A (如图所示)低0.1以上,以防刮花。 镜片一般为切割成型的,四周与壳体间隙为0.07MM。常用0.15厚的双面胶固定在底壳上,双面胶单边最窄不少于0.80MM。 2、镜片背面要丝印,因此要画丝印界线,丝印区不能挡住摄像头的视角,通常丝印线要比视角区单边大至少0.2MM。

3、壳体开孔要比丝印线一般单边大0.2,防止从镜片的外面(未丝印区)看到壳体。 4、摄像头要在底壳上长围骨固定,单边间隙0.10MM,高度要包住摄像头本体2/3以上。

5、摄像头前端要用泡棉压在壳体上,起到缓冲保护作用,以防损坏摄像头,泡棉常用材料为PORON,厚度常用的有0.3(预压后0.20)、0.5(预压后0.30)、0.8(预压后0.50) 。泡棉单边宽度最窄不少于0.80。 辅料一般是注塑厂装配在壳体上的,所以在壳体上要能限位泡棉 6、其它配合尺寸如图所示

7、特别说明: 1、在设计摄像头固定结构时,应尽量避免从镜片外面直接看到壳体。但如果摄像头离壳体太高,镜片又不能做大的情况下,我们可以采取将摄像头的装配位置朝上移,摄像头下面加泡棉或者将原泡棉加厚。 2、将摄像头垫高或者降低时,如果摄像头与主板连接的FPC不够长,可以重新设计FPC(需征得客户同意)。 8、如果摄像头离壳体太高、镜片又不能做大、又不能加泡棉垫高时,如果从镜片外面就能直接看到壳体,我们采取在壳体上做台阶,就如照像机伸缩镜头一样,增加美观。

基于STM32F107的图像采集传输系统设计

基于STM32F107的图像采集传输系统设计 时间:2016-03-30 1 赞 0评论 关键字:STM32低功耗OV7670CC2530 [导读]无线传感网络是由大量具有通信和计算能力、廉价微型的传感器节点通过自组织的无线通信方式,相互传递信息,协同地完成特定功能的智能网络,在环境监测、安全监控、智能家居等领域有着广大的应用空间。 摘要:设计一种基于ZigBee传输技术和JPEG图像压缩技术的图像采集传输系统。以STM32F107微控制器为核心,通过摄像头OV7670采集到图像后,对图像进行JPEG压缩。压缩后的数据通过ZigBee模块传输到上位机,在上位机上进行图像恢复。该系统功耗低,工作稳定,适合用于远程监测的图像采集系统使用。 关键词:STM32;低功耗;OV7670;CC2530 无线传感网络是由大量具有通信和计算能力、廉价微型的传感器节点通过自组织的无线通信方式,相互传递信息,协同地完成特定功能的智能网络,在环境监测、安全监控、智能家居等领域有着广大的应用空间。通过图像信息的分析可以精确、直观地对目标环境实施监测。本系统通过STM32F107对摄像头的时序

控制,以及ZigBee模块的使用,实现了图像信息在无线传感网络的实时采集和传输。 1 硬件设计方案 1.1 硬件系统结构 系统硬件部分主要由STM32F107、摄像头OV7670、帧缓存器及ZigBee 模块及其他外设组成。其中,LCD接口主要用于图像显示,便于图像采集程序的调试,SRAM用于系统的数据存储器,Flash用于系统的程序存储器。系统整体框图如图1所示。 1.2 STM32F107微处理器 STM32F107是意法半导体推出全新STM32互连型系列微控制器中的一款性能较强产品,是基于Cortex-M3内核的32位微控制器。工作电压为2~3.6 V,主频为72 MHz,片上集成256 kb的Flash和64 kb的SRAM.STM32F107拥有全速USB(OTG)接口,两路CAN2.0B接口,以及以太网10/100 MAC模块,并且带有一个ZigBee无线网络通讯接口,支持JTAG/SWD接口的调试下载,支持IAP。此芯片可以满足工业、医疗、楼宇自动化、家庭音响和家电市场多种产品需求。 1.3 摄像头OV7670

基于摄像头的图像采集与处理应用

基于摄像头的图像采集与处理应用 1、摄像头工作原理 图像传感器,是组成数字摄像头的重要组成部分。根据元件的材料不同,可分为CCD (Charge Coupled Device,电荷耦合元件)和CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件)两大类。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。 互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD一样同为在图像传感器中可记录光线变化的半导体。CMOS主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。 CCD和CMOS在制造上的主要区别是CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上,工作原理没有本质的区别。CCD制造工艺较复杂,采用CCD的摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD和CMOS的实际效果的差距已经减小了不少。而且CMOS的制造成本和功耗都要低于CCD不少,所以很多摄像头生产厂商采用的CMOS感光元件。成像方面:在相同像素下CCD的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好,由于自身物理特性的原因,CMOS的成像质量和CCD还是有一定距离的。但由于低廉的价格以及高度的整合性,因此在摄像头领域还是得到了广泛的应用 工作原理:为了方便大家理解,我们拿人的眼睛来打个比方。当光线照射景物,景物上的光线反射通过人的晶状体聚焦,在视网膜上就可以形成图像,然后视网膜的神经感知到图像将信息传到大脑,我们就能看见东西了。摄像头成像的原理和这个过程非常相似,光线照射景物,景物上的光线反射通过镜头聚焦,图像传感器就会感知到图像。 具体部分是这样的,摄像头按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出。如图1所示,摄像头连续地扫描图像上的一行,则输出

图像采集系统的制作方法

本技术涉及一种图像采集系统,其能够适用于对不同分辨率、不同图像输出接口的相机,并且具备自检功能,实现对自身系统误差进行检测,大大提高了图像采集工作的工作效率和可靠性。该系统包括相机和上位机;还包括分别与相机和上位机相互通讯的相机通用检测设备;相机通用检测设备包括子板以及母板;子板包括第一基板、设置在第一基板上的N个相机接口、N个接口芯片、N个电平转换芯片以及第一电连接器;母板包括第二基板、设置在第二基板上的电源模块、第二电连接器、FPGA芯片、SDRAM芯片、串行UART接口以及数据传输接口;第一电连接器和第二电连接器是板间电连接器,通过这两个电连接器将第一基板和第二基板互联起来。 技术要求 1.一种图像采集系统,包括相机和上位机;其改进之处在于:还包括分别与相机和上位机相互通讯的相机通用检测设备; 相机通用检测设备包括子板以及母板; 子板包括第一基板、设置在第一基板上的N个相机接口、N个接口芯片、N个电平转换芯片以及第一电连接器; 母板包括第二基板、设置在第二基板上的电源模块、第二电连接器、FPGA芯片、SDRAM芯片、串行UART接口以及数据传输接口; 第一电连接器和第二电连接器是板间电连接器,通过这两个电连接器将第一基板和第二基板互联起来; 相机图像输出接口与第一基板上的接口芯片、相机接口、电平转换芯片电连接,用于对图像数据进行传输和处理; 第二基板上的SDRAM芯片、串行UART接口以及数据输出接口均与FPGA芯片电连接; 串行UART接口与上位机电连接用于接收上位机发送的控制指令,数据输出接口与上位机通过千兆以太网实现物理连接,通过标准的UDP协议实现相互通讯; 电源模块用于给相机供电。 2.根据权利要求1所述的图像采集系统,其特征在于: 所述FPGA芯片上运行的模块包括:图像接口控制模块、图像数据缓存模块、虚拟相机控制模块、以太网数据打包模块、以太网发送模块、SDRAM控制模块以及UART模块; 图像接口控制模块针对不同的接口的相机产生不同的时序接口波形,控制接口芯片完成相机图像数据的正确采集; 图像数据缓存模块将采集到的图像数据缓存到FPGA内部的FIFO中,并在缓存到特定FIFO深度的时候,通知以太网数据打包模块读取FIFO内部的数据,并按照协议进行打包; 虚拟相机控制模块根据上位机的指令设置,产生不同分辨率的15个虚拟相机图像,且在同一时刻,只产生一种虚拟相机图像用于对相机自身进行检测; 以太网数据打包模块根据上位机的指令设置,选择“图像数据缓存模块”或者“虚拟相机控制模块”的其中一个,读取其中的数据进行以太网数据打包;

摄像头组成

摄像头 中成 物理组成 1、镜头:镜头的组成是透镜结构,由几片透镜组成,一般有塑胶透镜(plastic)或玻璃透镜(glass)。玻璃对光的透过要远远好于塑料,尤其是是否镀增透膜,这是一个非常重要的指标。正常光线进入玻璃镜片会有10%-15%的光损失,若不镀增透膜会严重影响画面的亮度及流畅性.镀膜后,光线仅仅会损失3%-5%.市场上常用塑料镜头是没有镀增透膜,它的光损失会达到15%-20%,画面发暗。通常摄像头用的镜头构造有、1P、2P、1G1P、1G2P、2G2P、4G等。透镜越多,成本越高;玻璃透镜比塑胶贵。因此一个品质好的摄像头应该是采用玻璃镜头,成像效果就相对塑胶镜头会好。现在市场上的大多摄像头产品为了降低成本,一般会采用塑胶镜头或半塑胶半玻璃镜头(即、1P、2P、1G1P、1G2P等),只有采用4G玻璃镜头才是具有较好的光学品质的摄像头。 2、图像传感器:传感器主要有CCD和CMOS两种。CCD是一种半导体器件,能够把光学影像转化为数字信号。CCD上植入的微小光敏物质称作像素(Pixel)。一块CCD上包含的像素数越多,其提供的画面分辨率也就越高。CCD 的作用就像胶片一样,但它是把图像像素转换成数字信号。CCD上有许多排列整齐的电容,能感应光线,并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电荷转给它相邻的电容。CCD的成像像素和清晰度,以及色彩的还原度都比较好,但是价格高。而CMOS成像方面要相对差一些,但价格要便宜不少。 CMOS传感器(SENSOR)、是一种半导体芯片,其表面包含有几十万到几百

万的光电二极管。光电二极管受到光照射时,就会产生电荷。在采用CMOS为感光元器件的产品中,通过数字信号处理芯片DSP处理采用影像光源自动增益补强技术,自动亮度、白平衡控制技术,色饱和度、对比度、边缘增强以及伽马矫正等先进的影像控制技术。市场上的摄像头产品采用的CMOS品牌主要有MICRON,HYNIX,TASC等这三家。 3、数字信号处理芯片(DSP):DSP芯片是影响摄像头视频捕获速度的主要因素。DSP是摄像头的大脑,效果相同于计算机里的CPU,它的功能主要是通过一系列复杂的数学算法运算,对由CMOS传感器传来的数字图像信号进行优化处理,并把处理后的信号通过USB等接口传到PC等设备,是摄像头的核心设备。 DSP结构框架: (1. ISP(image signal processor)(镜像信号处理器) (2. JPEG encoder(JPEG图像解码器) (3. USB device controller(USB设备控制器) 4、PCB板 PCB板是摄像头所有元器件的载体,相当于计算机的主板,它一般会采用2层或者4层板,它的布线、工艺、元器件的焊接等等对摄像头的稳定性和寿命起着非常关键的作用,同时也决定着摄像头的外观和使用的镜头的材料和尺寸。 5、线材

相关主题