搜档网
当前位置:搜档网 › 双曲线的简单几何性质典型例题

双曲线的简单几何性质典型例题

双曲线的简单几何性质典型例题
双曲线的简单几何性质典型例题

典型例题一

例1 求与双曲线19162

2=-y x 共渐近线且过()

332-,A 点的双曲线方程及离心率. 解法一:双曲线191622=-y x 的渐近线方程为:x y 4

3±= (1)设所求双曲线方程为122

22=-b

y a x ∵43=a b ,∴a b 4

3= ① ∵()332-,

A 在双曲线上 ∴191222=-b

a ② 由①-②,得方程组无解

(2)设双曲线方程为122

22=-b

x a y ∵43=a b ,∴a b 3

4= ③ ∵()

332-,A 在双曲线上,∴112922=-b

a ④ 由③④得492=a ,42=

b ∴所求双曲线方程为:144

922=-x y 且离心率3

5=e 解法二:设与双曲线191622=-y x 共渐近线的双曲线方程为:()09

162

2≠=-λλy x ∵点()332-,A 在双曲线上,∴4

1991612-=-=λ ∴所求双曲线方程为:4191622-=-y x ,即14

4

92

2=-x y . 说明:(1)很显然,解法二优于解法一.

(2)不难证明与双曲线191622=-y x 共渐近线的双曲线方程()09

162

2≠=-λλy x .

一般地,在已知渐近线方程或与已知双曲线有相同渐近线的条件下,利用双曲线系方程()02

2

22≠=-λλb y a x 求双曲线方程较为方便.通常是根据题设中的另一条件确定参数λ. (3)以上优美巧妙的解法,达到了化繁为易的目的.教学中,要引起重视.

典型例题二

例2 作方程21x y -=的图象.

分析:∵21x y -=()()?????>-≤-?11

1122x x x x ∴方程图象应该是圆122=+y x 及双曲线122=-y x 在x 轴上方的图象.

说明:在根据方程作出相应图象时,应遵循:“如果曲线C 的方程是()0=y x f ,,那么点()00y x P ,在曲线C 上的充要条件是()000=y x f ,”这一原则;另外,须注意方程变形的未知数的允许值可能会扩大,而原方程的曲线只能取原方程允许值范围内的那一部分.

典型例题三

例3 求以曲线0104222=--+x y x 和222

-=x y 的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.

分析:先求出渐近线方程,确定出其斜率,结合已知条件确定所求双曲线方程中的字母系数.

解:∵?????-==--+2201042222x y x y x ,∴???==23y x 或???-==23y x ,∴渐近线方程为x y 32±= 当焦点在x 轴上时,由3

2=a b 且6=a ,得4=b . ∴所求双曲线方程为116

362

2=-y x 当焦点在y 轴上时,由3

2=b a ,且6=a ,得9=b . ∴所求双曲线方程为181

362

2=-x y 说明:(1)“定量”与“定位”是求双曲线标准方程的两个过程,解题过程中应准确把握.

(2)为避免上述的“定位”讨论,我们可以用有相同渐近线的双曲线系方程去解,请读者自行完成.

双曲线题型归纳含(答案)

三、典型例题选讲 (一)考查双曲线的概念 例1 设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若3||1=PF ,则=||2PF ( ) A .1或5 B .6 C .7 D .9 分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出 2||PF 的值. 解:Θ双曲线19222=-y a x 渐近线方程为y =x a 3 ±,由已知渐近线为023=-y x , 122,||||||4a PF PF ∴=±∴-=,||4||12PF PF +±=∴. 12||3, ||0PF PF =>Q ,7||2=∴PF . 故选C . 归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法. (二)基本量求解 例2(2009山东理)设双曲线12222=-b y a x 的一条渐近线与抛物线2 1y x =+只有一个公共点, 则双曲线的离心率为( ) A . 4 5 B .5 C .25 D .5 解析:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ? =? ??=+?,消去y ,得 210b x x a - +=有唯一解,所以△=2()40b a -=, 所以2b a =,2221()5c a b b e a a a +===+=,故选D .

归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能. 例3(2009全国Ⅰ理)设双曲线22221x y a b -=(a >0,b >0)的渐近线与抛物线y =x 2 +1相 切,则该双曲线的离心率等于( )A.3 B.2 C.5 D.6 解析:设切点00(,)P x y ,则切线的斜率为 0'0|2x x y x ==.由题意有 00 2y x x =.又有2001y x =+,联立两式解得:2201,2,1()5b b x e a a =∴ ==+=. 因此选C . 例4(2009江西)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点,若12F F ,, (0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3 解析:由3tan 6 2c b π = =2222 344()c b c a ==-,则2c e a ==,故选B . 归纳小结:注意等边三角形及双曲线的几何特征,从而得出3 tan 6 2c b π = =体现数形结合思想的应用. (三)求曲线的方程

双曲线的简单几何性质总结归纳

双曲线的简单几何性质 一.基本概念 1 双曲线定义: ①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹 (21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. ②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征: ⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+ ⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+ ⑷焦点到准线的距离:22 11221221 a a F K F K c F K F K c c c ==-==+或 ⑸两准线间的距离: 2 122a K K c = ⑹21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将 有关线段1PF 、2PF 、21F F 和角结合起来,122 12 cot 2 PF F F PF S b ?∠= ⑺离心率: 121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞) ⑻焦点到渐近线的距离:虚半轴长b ⑼通径的长是a b 22,焦准距2b c ,焦参数2b a (通径长的一半)其中2 22b a c +=a PF PF 221=- 3 双曲线标准方程的两种形式: ①22 a x -22 b y =1, c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22 b x =1, c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±= ②若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x ③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上) ④特别地当?=时b a 离心率2=e ?两渐近线互相垂直,分别为y=x ±,

双曲线几何性质 (1)

百度文库- 让每个人平等地提升自我! 1 双曲线的几何性质 学习目标:理解并掌握双曲线的几何性质,能根据性质解决一些基本问题,进一步体会数形结合的思想. 学习重点:双曲线的几何性质及其运用. 一、学习情境 类比椭圆几何性质和研究方法,我们应该如何去研究双曲线的几何性质? 二、学习任务(理P56—P58例3完;文P49—P51例3完) 问题1: 画出 1 3 42 2 2 2 = - y x 与 1 3 42 2 2 2 = - x y 的图形,观察图形你能得出双曲线的哪些性质? 问题2: 请分别从图形和方程两个角度解释这些性质. 标准方程 图象 范围 对称轴 对称中心 实虚轴 顶点 渐近线 离心率 a,b,c关系 A级理P61 (文P53) 1、2、3、4 B级习题理2.3 (文2.2) 3、4 选做题 1、已知椭圆方程 1 9 16 2 2 = + y x 和双曲线方程 1 9 16 2 2 = - x y 有下列说法: ①椭圆和双曲线的实轴长都是4,但椭圆和双曲线的实轴分别在x轴和y轴上; ②椭圆的长半轴长是4,双曲线的实轴长是3 ③它们的焦距都是10 其中说法正确的个数是() A、0 B、1 C、2 D、3个 2、根据下列条件,求双曲线方程 ①与双曲线1 4 16 2 2 = - y x 有公共焦点,且过点(2 3,2) ②与双曲线1 9 16 2 2 = - y x 有共同的渐近线,且过点(3 2,-3) 三、归纳反思 椭圆和双曲线几何性质的比较: 椭圆双曲线定义 标准方程 图形 (顶点坐 标) (焦点坐 标) 范围 轴 对称轴 (对称中 心) 离心率 及其范围 a,b,c关系 渐近线

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

双曲线的简单几何性质(教案)(精)

双曲线的简单几何性质 山丹一中周相年 教学目标: (1 知识目标 能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程等,熟练掌握双曲线的几何性质 . (2能力目标 通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质, 在老师的指导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强学生的自信心 . (3 情感目标 通过提问、讨论、合作、探究等主动参与教学的活动,培养学生自尊、自强、自信、自主等良好的心理潜能和主人翁意识、集体主义精神 . 教学重点:双曲线的几何性质 . 教学难点:双曲线的渐近线 . 教学方法:启发诱导、练讲结合 教学用具 :多媒体 教学过程: 一、复习回顾,问题引入: 问题 1:双曲线的定义及其标准方程?

问题 2:椭圆的简单几何性质有哪些?我们是如何研究的?双曲线是否也有类似性质?又该怎样研究? 二、合作交流,探究性质: 类比椭圆的几何性质的研究方法,我们根据双曲线的标准方程 0, 0(122 22>>=-b a b y a x 研究它的几何性质 1. 范围: 双曲线在不等式x ≥ a 与x ≤-a 所表示的区域内 . 2. 对称性: 双曲线关于每个坐标轴和原点都对称, 这时, 坐标轴是 双曲线的对称轴, 原点是双曲线的对称中心, 双曲线的对称 中心叫双曲线中心 . 3.顶点: (1 双曲线和它的对称轴有两个交点 A1(-a,0 、 A2(a,0, 它们叫做双曲线的顶点 . (2 线段 A1A2叫双曲线的实轴, 它的长等于 2a,a 叫做双曲线的实半轴长; 线段B1B2叫双曲线的虚轴,它的长等于 2b, b叫做双曲线的虚半轴长 .

椭圆、双曲线、抛物线典型例题整理

椭圆典型例题 一、已知椭圆焦点的位置,求椭圆的标准方程。 例1:已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,求椭圆的标准方程。 2.已知椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 二、未知椭圆焦点的位置,求椭圆的标准方程。 例:1. 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。 例.求过点(-3,2)且与椭圆x 29+y 24 =1有相同焦点的椭圆的标准方程. 四、与直线相结合的问题,求椭圆的标准方程。 例: 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 五、求椭圆的离心率问题。 例1 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. . 例2 已知椭圆19822=++y k x 的离心率2 1=e ,求k 的值. 六、由椭圆内的三角形周长、面积有关的问题 例:1.若△ABC 的两个顶点坐标A (-4,0),B (4,0),△ABC 的周长为18,求顶点C 的轨迹方程。 2.已知椭圆的标准方程是x 2a 2+y 225=1(a >5),它的两焦点分别是F 1,F 2,且F 1F 2=8,弦AB 过点F 1,求△ABF 2的周长. 3.设F 1、F 2是椭圆x 29+y 24 =1的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=2∶1,求△PF 1F 2的面积. 七、直线与椭圆的位置问题 例 已知椭圆1222=+y x ,求过点?? ? ??2121,P 且被P 平分的弦所在的直线方程.

(完整版)双曲线简单几何性质知识点总结,推荐文档

北安一中高二数学导学案 主备人:陈叔彤 审阅人:高二数学组 备课日期 :2012-10-17 课题:§双曲线简单几何性质知识点总结 课时: 课时 班级: 姓名: 【学习目标】 知识与技能:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等 几何性质 2.掌握双曲线的另一种定义及准线的概念3.掌握等轴双曲线,共轭双曲线等概念 过程与方法:进一步对学生进行运动变化和对立统一的观点的教育情感态度与价值观:辨证唯物主义世界观。【学习重点】双曲线的几何性质及其应用。【学习难点】双曲线的知识结构的归纳总结。 【学法指导】 1.课前依据参考资料,自主完成,有疑问的地方做好标记. 2.课前互相讨论交流,课上积极展示学习成果. 【知识链接】双曲线的定义:_________________________________________________【学习过程】 1.范围: 由标准方程,从横的方向来看,直线x=-a,x=a 之间没有图 122 22=-b y a x 象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大。 X 的取值范围________ y 的取值范围______2. 对称性: 对称轴________ 对称中心________3.顶点:(如图) 顶点:____________特殊点:____________实轴:长为2a, a 叫做半实轴长21A A 虚轴:长为2b ,b 叫做虚半轴长 21B B 双曲线只有两个顶点,而椭圆则有四个顶点, 这是两者的又一差异4.离心率: 双曲线的焦距与实轴长的比,叫做双曲线的离心率 a c a c e == 22范围:___________________ 双曲线形状与e 的关系:,e 越大,即渐112 222 2-=-=-= =e a c a a c a b k 近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔

高中数学《双曲线》典型例题12例(含标准答案)

《双曲线》典型例题12例 典型例题一 例1 讨论 19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k , 所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时, k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴所求双曲线方程为19 162 2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162 2 =-- λ λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164 25 =-- λ λ ∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为: ()16014162 2<<=+--λλλy x ∵双曲线过点() 223, ,∴144 1618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=- y x 说明:(1)注意到了与双曲线 14 162 2=-y x 有公共焦点的双曲线系方程为14162 2=+--λ λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面. 典型例题三 例3 已知双曲线116 92 2=- y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.

双曲线的简单几何性质 (第二课时) 教案 2

课 题:8.4双曲线的简单几何性质 (二) 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握等轴双曲线,共轭双曲线等概念 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养 教学重点:双曲线的渐近线、离心率 教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.范围、对称性 由标准方程122 22=-b y a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方 向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭 圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点 顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线122 22=-b y a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的 平行线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是x a b y ± =( 0=±b y a x ),这两条直线就是双曲线的渐近线 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e x y Q B 1 B 2A 1A 2N M O

(完整版)双曲线简单几何性质知识点总结

四、双曲线 一、双曲线及其简单几何性质 (一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨 迹叫做双曲线。 定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。 ● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支); 当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支); ② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。 双曲线12222=-b y a x 与122 22=-b x a y (a>0,b>0)的区别和联系

(二)双曲线的简单性质 1.范围: 由标准方程122 22=-b y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的 方向来看,随着x 的增大,y 的绝对值也无限增大。 x 的取值范围________ ,y 的取值范围______ 2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________ 特殊点:____________ 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做半虚轴长 双曲线只有两个顶点,而椭圆则有四个顶点 4.离心率: 双曲线的焦距与实轴长的比 a c a c e = = 22,叫做双曲线的离心率 范围:___________________ 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越 大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 5.双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数 )0(>>= a c a c e 的点的轨迹是双曲线 其中,定点叫做双 曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线 c a x l 2 2:= ; 6.渐近线 过双曲线122 2 2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线 围成一个矩形 矩形的两条对角线所在直线方程是____________或(0 =±b y a x ),这两条直线就是双曲线 的渐近线 双曲线无限接近渐近线,但永不相交。

双曲线经典例题讲解

第一部分 双曲线相关知识点讲解 一.双曲线的定义及双曲线的标准方程: 1 双曲线定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦 点. 要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同. 当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; 当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在. 2.双曲线的标准方程:12222=-b y a x 和122 22=-b x a y (a >0,b >0).这里222a c b -=, 其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同. 3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 二.双曲线的内外部: (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 三.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). 四.双曲线的简单几何性质 22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±=

双曲线的几何性质(一)

双曲线的几何性质(一) 教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. 教学重点 双曲线的几何性质 教学难点 双曲线的渐近线 教学过程 I.复习回顾: 双曲线的标准方程、研究椭圆的几何性质的方法与步骤 II.讲授新课: 1.范围: 双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称, 这时,坐标轴是双曲线的对称轴,原点是 双曲线的对称中心,双曲线的对称中心叫 双曲线的中心。 3.顶点: 双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;

线段B 1B 2叫双曲线的虚轴,它的长等于2b ,b 叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=± x a b 叫做双曲线的渐近线; ②从图可以看出,双曲线122 22=-b y a x 的各支向 外延伸时,与直线y =±x a b 逐渐接近. ③“渐近”的证明:略 ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤ 利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 注意:⑴求渐近线方程的简便方法:令方程左边等于零即0b y a x 22 22=- ⑵等轴双曲线一般可设为k y x 22=- 等轴双曲线的性质:①离心率为2 ②等轴双曲线的相伴矩形是正方形 ③渐近线方程为y =±x 且互相垂直 ④两条渐近线平分双曲线实轴和虚轴所成的角。 5.离心率:

双曲线优秀经典例题讲解

双 曲 线 是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12 m ,上口半径为13 m ,下口半径为25 m ,高55 m.选择适当的坐标系,求出此双曲线的方程(精确到1m ). 解:如图8—17,建立直角坐标系xOy ,使A 圆的直径AA ′在x 轴上,圆心与原点重合.这时上、下口的直径CC ′、BB ′平行于x 轴,且C C '=13×2 (m),B B '=25×2 (m).设双曲线的方程 为122 22=-b y a x (a >0,b >0)令点C 的坐标为(13,y ),则点B 的坐标为(25,y -55).因为点B 、C 在双曲线上,所以,1)55(12252 222=--b y .1121322 22=-b y 解方程组???????=-=--(2) 11213(1) 1)55(12252 2 222 2 22b y b y 由方程(2)得 b y 125= (负值舍去).代入方程 (1)得,1)55125(12252222 =--b b 化简得 19b 2+275b -18150=0 (3) 解方程(3)得 b ≈25 (m).所以所求双曲线方程为: .1625 1442 2=-y x 例2. ABC ?中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 2 1sin sin =-,求顶点A 的轨迹方程. 解:取BC 的中点O 为原点,BC 所在直线为x 轴,建立直角坐标系,因为4=BC ,所以B(0,2-), )0,2(c .利用正弦定理,从条件得242 1 =?= -b c ,即2=-AC AB .由双曲线定义知,点A 的轨迹是B 、C 为焦点,焦距为4,实轴长为2,虚轴长为32的双曲线右支,点(1,0)除外,即轨迹方程为13 2 2=- y x (1>x ). 变式训练3:已知双曲线)0,0(122 22>>=-b a b y a x 的一条渐近线方程为x y 3=,两条准 线的距离为l . (1)求双曲线的方程; (2)直线l 过坐标原点O 且和双曲线交于两点M 、N ,点P 为双曲线上异于M 、N 的一点,且直线PM ,PN 的斜率均存在,求k PM ·k PN 的值. 典型例题

双曲线-题型归纳-含答案

三、典型例题选讲 (一)考查双曲线的概念 例1 设P是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方 程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若3||1=PF ,则= ||2PF ( ) A.1或5 B.6 C.7 D.9 分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出2||PF 的值. 解: 双曲线 1922 2=-y a x 渐近线方程为x a 3 ±,由已知渐近线为023=-y x , 122,||||||4a PF PF ∴=±∴-=,||4||12PF PF +±=∴. 12||3, ||0PF PF =>,7||2=∴PF . 故选C. 归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法. (二)基本量求解 例 2(2009山东理)设双曲线122 22=-b y a x 的一条渐近线与抛物线 21y x =+只有一个公共点,则双曲线的离心率为( )

A.45 B .5 C.2 5 D. 5 解析:双曲线 122 22=-b y a x 的一条渐近线为 x a b y = ,由方程组 21b y x a y x ?=?? ?=+? ,消去y,得2 10b x x a -+=有唯一解,所以△=2()40b a -=, 所以2b a =,2221()5c a b b e a a a +===+=,故选D. 归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能. 例3(2009全国Ⅰ理)设双曲线22 221x y a b -=(a>0,b >0)的渐近线 与抛物线 2 +1相切,则该双曲线的离心率等于( )A3 B .2 56解析:设切点00(,)P x y ,则切线的斜率为0 '0|2x x y x ==.由题意有 00 2y x x =.又有2001y x =+,联立两式解得:2201,2,1()5b b x e a a =∴==+= 因此选C. 例4(2009 江西)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个 焦点,若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为

双曲线的几何性质(1) 导学案

双曲线的几何性质(1) 【学习目标】 1.了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线和离心率等。 2.能用双曲线的简单几何性质解决一些简单问题。 【自主学习】关于椭圆与双曲线性质的表格 渐近线 ①我们把两条直线y=±x a b 叫做双曲线的渐近线; ②双曲线12222=-b y a x 的各支向外延伸时,与直线y =±x a b 逐渐接近。 离心率 双曲线的焦距与实轴长的比e =a c ,叫双曲线的离心率; 说明:①由c >a >0可得e >1;②双曲线的离心率越大,它的开口越阔。

【活动探究】 例1双曲线22169144x y -=的实轴长是 ,虚轴的长是 ,离心率是 ,顶点坐标是 ,渐近线方程是 . 例2求双曲线13 42 2=-y x 的实轴长和虚轴长、焦点的坐标、顶点坐标、离心率、渐近线方程. 例3 已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为 43 ,求双曲线的标准方程。 【目标检测】 1.比较下列双曲线的形状, ①22 936x y -=;②2211612x y -= ; ③2213664x y -=;④22 1106y x -= 其中开口最大的是 ,开口最小的是 。 2. 离心率是椭圆16x 2+25y 2=400的离心率的倒数,焦点是此椭圆长轴端点的双曲线的标准方程是___________________。 3..中心在原点,对称轴为坐标轴,离心率为 3,焦距等于10的双曲线方程为______________________。 4.过双曲线的一个焦点F 2作垂直于实轴的弦PQ ,F 1是另一焦点,∠PF 1Q =π2 ,则这条双曲线的离心率等于_________。 5.渐近线方程是3x 02=±y ,一个焦点为F(-4,0)的双曲线方程为 。 6. 双曲线的离心率为 5 13,坐标轴为对称轴,且焦点在y 轴上,则此双曲线的渐近线方程是__________。

双曲线典型例题

【例1】若椭圆 ()012 2 n m n y m x =+ 与双曲线 2 2 1x y a b - =)0( b a 有相同的焦点F 1,F 2,P 是两条曲线的一个交点, 则|PF 1|·|PF 2|的值是 ( ) A. a m - B. ()a m -2 1 C. 2 2 a m - D. a m - ()121PF PF ∴+= 双曲线的实半轴为 ()122PF PF ∴-=± () ()()2 2 12121244PF PF m a PF PF m a -?=-??=-:,故选A. 【评注】严格区分椭圆与双曲线的第一定义,是破解本题的关键. 【例2】已知双曲线 127 9 2 2 =- y x 与点M (5,3) ,F 为右焦点,若双曲线上有一点P ,使PM PF 2 1+ 最小,则P 点的坐标为 【分析】待求式中的 12 是什么?是双曲线离心率的 倒数.由此可知,解本题须用双曲线的第二定义. 【解析】双曲线的右焦点F (6,0),离心率2e =, 右准线为32 l x = :.作M N l ⊥于N ,交双曲线右支于P , 连FP ,则122 P F e P N P N P N P F ==?= .此时 PM 13752 25 P F P M P N M N + =+==- =为最小. 在127 9 2 2 =- y x 中,令3y =,得2 12x x x =?=±∴ 0,取x =所求P 点的坐标为(). (2)渐近线——双曲线与直线相约天涯 对于二次曲线,渐近线为双曲线所独有. 双曲线的许多特性围绕着渐近线而展开. 双曲线的左、右两支都无限接近其渐近线而又不能与其相交,这一特有的几何性质不仅很好地界定了双曲线的范围.由于处理直线问题比处理曲线问题容易得多,所以这一性质被广泛应用于有关解题之中. 【例3】过点(1,3)且渐近线为x y 2 1± =的双曲线方程是 【解析】设所求双曲线为 ()2 2 14 x y k -= 点(1,3)代入:13594 4 k = -=- .代入(1): 2 2 2 2 35414 4 35 35 x y x y -=- ? - =即为所求. 【评注】在双曲线 222 2 1x y a b - =中,令 222 2 00x y x y a b a b - =? ± =即为其渐近线.根据这一点,可以简洁地设待求双曲线为 222 2 x y k a b - =,而无须考虑其实、虚轴的位置. X Y O F (6,0)M (5,3)P N P ′ N ′X = 3 2

2-2-2 双曲线的简单几何性质

能力拓展提升 一、选择题 11.已知方程ax 2-ay 2=b ,且a 、b 异号,则方程表示( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .焦点在y 轴上的双曲线 [答案] D [解析] 方程变形为x 2b a -y 2b a =1,由a 、b 异号知b a <0,故方程表示 焦点在y 轴上的双曲线,故答案为D. 12.(2013·新课标Ⅰ文,4)已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的离心率为5 2,则C 的渐近线方程为( ) A .y =±1 4x B .y =±1 3x C .y =±12x D .y =±x [答案] C [解析] 本题考查双曲线渐近线方程.由题意得c a =52,即c =52a ,而c 2 =a 2 +b 2 ,所以a 2 +b 2 =54a 2,b 2=14a 2,b 2a 2=14,所以b a =12,渐 近线的方程为y =±1 2x ,选C.在解答此类问题时,要充分利用a 、b 、c 的关系. 13.(2012~2013学年度浙江金华十校高二期末测试)已知椭圆x 2 a 2

+y 2b 2=1(a >b >0)的离心率为12,则双曲线x 2a 2-y 2 b 2=1的渐近线方程为( ) A .y =±3 2x B .y =±1 2x C .y =±2x D .y =±233x [答案] A [解析] 由题意得a 2-b 2a =12, ∴3a 2 =4b 2 ,∴b a =3 2. ∴双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±3 2x . 14.中心在坐标原点,离心率为5 3的双曲线的焦点在y 轴上,则它的渐近线方程为( ) A .y =±5 4x B .y =±4 5x C .y =±43x D .y =±34x [答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2 a 2=259,∴ b 2a 2=16 9, ∴b a =4 3,又∵双曲线的焦点在y 轴上, ∴双曲线的渐近线方程为x =±b a y ,即x =±4 3y , ∴所求双曲线的渐近线方程为y =±34x . 二、填空题

高中数学双曲线的简单几何性质(经典)

双曲线的简单几何性质 【知识点1】双曲线22a x -2 2b y =1的简单几何性质 (1)范围:|x |≥a,y∈R. (2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称. (3)顶点:两个顶点:A 1(-a,0),A 2(a,0),两顶点间的线段为实轴长为2a ,虚轴长为2b ,且c 2 =a 2 +b 2 . (4)渐近线:双曲线特有的性质,方程y =±a b x ,或令双曲线标准方程22a x -2 2b y =1中的1为零即得渐近线方程. (5)离心率e =a c >1,随着e 的增大,双曲线张口逐渐变得开阔. (6)等轴双曲线(等边双曲线):x 2-y 2=a 2 (a≠0),它的渐近线方程为y =±x,离心率e =2. (7)共轭双曲线:方程22a x -22b y =1与22a x -2 2b y =-1表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注 意方程的表达形式. 注意:(1)与双曲线22a x -22b y =1共渐近线的双曲线系方程可表示为22a x -2 2b y =λ(λ≠0且λ为待定常数) (2)与椭圆22a x +22b y =1(a >b >0)共焦点的曲线系方程可表示为λ-22a x -λ-22b y =1(λ<a 2,其中b 2 -λ>0时 为椭圆, b 2 <λ<a 2 时为双曲线) (3)双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c (c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b 2 ,与椭圆相同. 1、写出双曲线方程125492 2 -=-y x 的实轴长、虚轴的长,顶点坐标,离心率和渐近线方程 2、已知双曲线的渐近线方程为x y 4 3 ±=,求双曲线的离心率

双曲线的几何性质.

双曲线的几何性质 (4) 教学目标:能综合应用所学知识解决较综合的问题,提高分析问题与解决问题 的能力. 教学过程 例1 中心在原点,一个焦点为F (1,0)的双曲线,其实轴长与虚轴长之比为 m , 求双曲线标准方程. 例2 已知点A(3,2),F(2,0),在双曲线22 13y x -=上求一点 P ,使1||||2 PA PF +的值最小. 例3 已知双曲线2 2 12 y x -=,求过定点A (2,1)的弦的中点P 的轨迹方程. 例4 在双曲线22 11312 x y - =-的一支上有三个不同点A (x 1,y 1)、B (x 2,6)、C (x 3,y 3)与焦点F 1(0,5)的距离成等差数列,求y 1+y 3的值. 例5已知梯形ABCD 中,AB//CD,|AB|=2|CD|,点 E 满足 ,双曲线 过 C 、 D 、 E 三点,且以 A 、 B 为焦点,当23 34 λ≤≤时,求双曲线离心率 的取值范围. 课堂练习 1.设直线y =kx 与双曲线4x 2―y 2=16相交,则实数k 的取值范围是 (A )―2

圆锥曲线的综合经典例题(有答案)

经典例题精析 类型一:求曲线的标准方程 1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横 坐标为的椭圆标准方程. 思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量). 解析: 方法一:因为有焦点为, 所以设椭圆方程为,, 由,消去得, 所以 解得 故椭圆标准方程为 方法二:设椭圆方程,,, 因为弦AB中点,所以, 由得,(点差法) 所以 又

故椭圆标准方程为. 举一反三: 【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直, 且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程. 【答案】依题意设椭圆标准方程为(), 并有,解之得,, ∴椭圆标准方程为 2.根据下列条件,求双曲线的标准方程. (1)与双曲线有共同的渐近线,且过点; (2)与双曲线有公共焦点,且过点 解析: (1)解法一:设双曲线的方程为 由题意,得,解得, 所以双曲线的方程为 解法二:设所求双曲线方程为(),

将点代入得, 所以双曲线方程为即 (2)解法一:设双曲线方程为-=1 由题意易求 又双曲线过点,∴ 又∵,∴, 故所求双曲线的方程为. 解法二:设双曲线方程为, 将点代入得, 所以双曲线方程为. 总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程. 然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程. (1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及 准线)之间的 关系,并注意方程思想的应用. (2)若已知双曲线的渐近线方程,可设双曲线方程为 (). 举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程. (1)一渐近线方程为,且双曲线过点.

相关主题