搜档网
当前位置:搜档网 › ASME标准-管道

ASME标准-管道

ASME标准-管道
ASME标准-管道

一、压力管道设计常用ASME标准

这里有两个标准,一个是组件尺寸型式标准(我国也有相应组件形式标准),另一个是材料标准(我国没有对材料形成专门的标准化)。

型式标准规定了组件的型式、系列、尺寸、公差、试验要求,以及该组件可采用的材料标准等。材料标准规定了适用的对象、原材料(坯料)品种(采用锻轧Wrought 或锻件Forged)、化学成分、机械性能、制造工艺(包括焊接)、热处理、无损检查、取样和性能检验、质量证书、标志等。

1. 典型的组件型式标准

1)钢管

ANSI/ASME B36.10M 无缝及焊接钢管

ANSI/ASME B36.19M 不锈钢无缝及焊接钢管

2)管件

ANSI/ASME B16.9 工厂制造的钢对焊管件

ANSI/ASME B16.1 承插焊和螺纹锻造管件

ANSI/ASME B16.28 钢制对焊小半径弯头和回弯头

3)阀门

ANSI/ASME B16.34 法兰连接、螺纹连接和焊接连接的阀门

API 599 法兰或对焊连接的钢制旋塞阀

API 600 法兰或对焊连接的钢制闸阀

API 602 紧凑型碳钢闸阀

API 609 凸耳型对夹蝶阀

4)法兰

ANSI/ASME B16.5 管法兰和法兰管件

ANSI/ASME B16.36 孔板法兰

ANSI/ASME B16.42 球墨铸铁法兰和法兰管件

ANSI/ASME B16.47 大直径钢法兰

API 601 突面管法兰和法兰连接用金属垫片

5)垫片

ANSI/ASME B16.20 管法兰用缠绕式、包覆式垫片和环槽式用金属垫片

ANSI/ASME B16.21 管法兰用非金属平垫片

6)紧固件

ANSI/ASME B18.2.1 方头和六角头螺栓和螺纹

ANSI/ASME B18.2.2 方头和六角头螺母

7)管件

ASMEI B16.9 工厂制造的锻钢对焊管件

ASME B16.11 承插焊和螺纹锻钢管件

MSS-SP-43 锻制不锈钢对焊管件

2. 材料标准

ASTM/ASME材料标准主要集中收录在ASME II A篇铁基材料,B篇非铁基材料,C篇焊条、焊丝填充金属,D篇性能,以及一些增补内容。

与压力管道设计相关的典型的为A篇、D篇等。

A篇的主要分类有:钢板、薄板和钢带,公称管(Pipe),管子(Tube),钢法兰、配件、阀门及零件,压力容器用钢板、薄板和钢带,结构钢,钢棒材,钢螺栓材料,钢坯和锻件,钢铸件,耐腐蚀钢和耐热钢,锻轧铁、铸铁和可锻铸铁,以及方法标准等。

材料表示方法用"标准号-级别"及UNS。

如304是级别。TP316前面的TP表示管材,英文单词TUBE & PIPE的首个字母。F316前面的F表示锻件,是FORGING的缩写。一般在ASME里,很多都是引用A STM标准,并在前面加个S,如A312被ASME纳入后为SA312。在ASTM标准中,A表示为A系列材料,当然还有B、C等。

美国高合金钢用UNS牌号表示,它是按美国钢铁协会AISI的编号表示方法转过来的,比如,AISI把18-8不锈钢记为UNS No S 30400(3代表镍铬钢),ASTM引用过来叫它为304型,于是各国也跟着这么叫,成为普遍的表示法。还比如316、31 6L、321、347、320、904等。ASME(或ASTM)对公称成分相同(UNS No 号相同)的不同钢材产品,还用不同的标准区分。比如板材SA-240(牌号304),管材有213、249、312、376、430(牌号都是TP304)等,而锻件A-182,牌号

F304。ASTM的记法,如A-516,A代表钢铁金属,516只是个序号,后面跟着年号。ASME等同采用ASTM的记法后在最前面加S。再有,B-表示非铁基金属,如S B-409。

下面列举一些典型的ASME管道材料:

1.公称管

1)SA-106 高温用无缝碳钢公称管

中、低碳钢,其等级分A、B、C三级。C%≤0.25%~0.35%;合金总量<0.2%。2)SA-312/SA-312M 无缝和焊接奥氏体不锈钢公称管

适用于高温及一般腐蚀用。级别有TP304H、TH316H、TP321H等9种。

3)SA-333/SA-333M 低温用无缝和焊接公称管

适用于低温公称壁厚的无缝以及焊接的碳钢、合金钢公称管。其级别有1、3、4、6、7、8、9、10、11共9种。

4)SA-335/SA-335M 高温用无缝铁素体合金钢公称管

级别有P1、P2、P5、P5c、P9、P11、P12、P15、P21、P22。

5)SA-709/709M 无缝及焊接的铁素体、奥氏体不锈钢公称管

2.钢法兰、配件、阀门及零件

1)SA-105/SA-105M 管道元件用碳钢锻件

适用于室温和高温下工作的压力系统中锻制碳素钢管道构件。

2)SA-182/SA-182M 高温用锻制或轧制合金钢公称管道法兰、锻制管配件、阀门和零件

级别较多,如F1、F2、F5、F12-1、F12-2、F304H、F316LH等。

3)SA-234/SA-234M 中、高温用锻制碳钢和合金钢管道配件

适用于最新版的ANSI B16.9、ANSI B16.11、ANSI B16.28及MSS SP-79和MSS SP-95所包括的无缝的及焊接结构的锻制碳钢和合金钢管配件;这些管配件采用中温及高温的压力管道和压力容器制造。级别有WPB、WPC、WP-1、WP-2、WPR等多种。

4)SA-403/SA-403M 锻轧奥氏体不锈钢管配件

包括了若干级别的奥氏体不锈钢合金,并分别依据所适用的ANSI或MSS尺寸及额定压力标准,使用WP或CR前缀来标志钢的级别。

5)SA-420/SA-420M 低温用锻造碳钢和合金钢管配件

适用于ANSI B16.9、ANSI、B16.11 、ANSI B16.28及MSS SP-79和MSS SP-95最新版标准的锻制碳钢和合金钢无缝焊接结构管配件。等级有WPL3、WPL 6、WPL8、WPL9。

6)SA-815/SA-815M 塑性加工成形铁素体、奥氏体及马氏体不锈钢配件。

3.钢螺栓材料

1)SA-193/SA-193M 高温用合金钢和不锈钢材料

适用于高温压力容器、阀门、法兰及管配件用合金钢和不锈钢螺栓材料。材料类别包括铁素体钢和奥氏体钢,其级别如B5、B8等多种。

2)SA-194/SA-194M 高温高压螺栓用碳钢和合金钢螺母

包括从M6到M100的各种碳钢、合金钢、马氏体不锈钢、奥氏体不锈钢螺母。奥氏体级别,加前缀8和9;铁素体级别有1,2,2H,2HM,3,4,6,6F,7,7M,16。

二、压力管道材料等级表内容简述

管道材料等级中包含了材料规定,是针对一系列介质条件而编制的管道器材应用明细表。它是根据管道系统中的温度和压力及腐蚀性来分类的。通过情况下,材料等级表的内容有:

1)等级名称(或等级号)、设计条件(设计压力、设计温度和介质)、法兰公称压力等级、材料腐蚀余量等。

2)钢管外径尺寸系列信息及壁厚

钢管外径尺寸系列有大小外径之分,ASME标准采用大外径。外径尺寸定位后,意味着与其相关的钢管、管件、阀门、法兰、垫片、紧固件、附件等都要与之匹配。就法兰系列而言,一类是以200℃作为计算基准温度的"欧式法兰",一类是以大约430℃(对150LB级则是300℃)作为基准温度的"美式法兰"。ASME标准的钢管外径尺寸系列标准为ANSI B36.10、ANSI B36.19,其公称直径范围为DN6~DN2000 mm。

钢管壁厚的表示方法有三种,如管表号(SCH)、壁厚(mm)、重量(STD、XS、X XS)。

3)钢管、管件(弯头、三通、异径管、支管接头等)、阀门、法兰、垫片、紧固件等

全面一些,在标识时除了提供钢管、管件等的材料(标准)、连接形式(对焊、承插焊、螺纹连接)、表面状态(无缝、有缝)等内容外,还应提供组件型式标准。

4)管道分支信息

即管道分支表,提供主管与支管连接应匹配的规定。通常情况下,应优先选用标准管件,如三通/四通(等径、异径)、支管接头等。若出现主、支管相差太大无法选择时,才使用非标接头形式,并需要计算是否需要进行补强等加强措施。

三、ASME B31.3钢管壁厚计算

制定材料等级表需要计算的内容有两种情形,其一是前面提到的开孔补强计算,其二是这里提及的钢管(含弯头等)的强度计算。

ASME B31系列钢管壁厚计算的公式有多种,对于石化项目必须按B31.3管道规范中的方法进行强度计算。强度计算需要的条件为设计条件(温度、压力)、材料许用应力、钢管外径(或内径)、质量系数(也称焊接接头系数)、温度影响系数,此外还要考虑材料腐蚀余量、加工裕量等。壁厚计算的结果是进行钢管(及弯件)壁厚选用标准尺寸的依据。这种方法与容器壁厚选用的方法基本一致。弯头等管件的壁厚也有计算方法,但是在通常情况下,是以直管的计算为依据选用标准厚度即可。而开孔补强计算方法就与容器的完全一致了。

四、选材与腐蚀

进行材料等级表制定需要考虑的事项有多种,除了前面提及材料满足强度要求只是其中之一,还要考虑操作介质的性质、操作工况等引起材料的各种腐蚀。

就腐蚀形式而言,根据腐蚀发生的机理可划分为化学腐蚀、电化学腐蚀和物理腐蚀三类。根据腐蚀形态可划分为均匀腐蚀、局部腐蚀和应力腐蚀三类。其中局部腐蚀又可分为电偶腐蚀(如碳钢与不锈钢接触并处于电解质环境中)、点蚀(如对奥氏体不锈钢材料的应用要注意氯离子的含量)、缝隙腐蚀、晶间腐蚀(如高温时奥氏体不锈钢产生的晶界贫铬)。

因此就需要了解材料的耐腐蚀性能,并查询金属腐蚀相关手册等资料。

五、铁碳合金相图

管道材料等级表的技术主要在对材料性能的掌握上,因此各设计院通常是由机械专业的人来进行此方面的工作。而材料的关键技术又与了解其本质-铁碳合金相图是密切相关的。

铁碳合金相图是以温度为纵坐标,碳含量(组元)为横坐标。表示在接近平衡条件(铁-石墨)和亚稳条件(铁-碳化铁)下(或极缓慢的冷却条件下)以铁、碳为组元的二元合金在不同温度下所呈现的相和这些相之间的平衡关系。相图在金属加工和工程应用中是一个很重要的工具,从相图中可以查到合金的溶点和凝固点,根据相图可以确定合金热加工时的加热温度和热处理温度,由此可以预测合金的性能。

该相图中有两个组元,即Fe和Fe3C。其中,Fe的性能表现为强度和硬度较低,塑性和韧性较好;Fe3C为具有复杂晶格结构的间隙化合物,其性能表现为硬而脆。

四个基本相,即液相(L )、铁素体(α)、奥氏体(γ)和渗碳体(Fe3C);此外还有一个次生相珠光体(P)。其中,铁素体为碳在α-Fe中的间隙固溶体,具有体心立方晶格,溶碳量较少,室温溶碳量为0.008%,属常温组织;奥氏体为碳在γ-Fe中的间隙固溶体,具有面心立方晶格结构,溶碳量较大,属高温组织,奥氏体具有良好的塑性,故金属热变形加工多是在这种相状态下进行的;渗碳体为金属键及化学键的结合物,属于常温组织;珠光体为铁素体和渗碳体的混合物,既具有很好的强度和硬度,又具有良好的塑性和韧性,属常温组织。含碳量大于2.06%的合金及温度下的δ-Fe在工程上无太大意义。

(铁-碳相图略)

相图中,A点为纯铁的溶点(1534℃),C点为奥氏体和渗碳体的共晶点(1130℃),D点为渗碳体的熔点(1600℃),S点为铁素体和渗碳体的共析点(723℃)。

GS线(A3线)为亚共析钢(C<0.8%)加热(称A c3线)或冷却(称A r3线)时铁素体与奥氏体转变的终了温度线(称A c3线)。ES线(A cm线)为过共析钢(0.8%

从相图可以看出,亚共析钢(常温组织α+P)-共析钢(常温组织P)-过共析钢(常温组织P+ Fe3C)-铸铁(常温组织Fe3C)随含碳量的变化,表现出的材料塑性、韧性与强度、硬度的变化关系。

另外,从相图可以看出,对同一材料,在从高温到常温转变的过程中,会得到不同的组织形式。对于影响材料中不理想的组织通过热处理(如退火、正火、淬火、回火、调质等)来处理,以此达到材料性能要求。即将材料加热到临界温度(A3、A1、A cm)以上30~50℃、保温、冷却等来得到不同的转变组织。退火冷却是在炉内缓冷的过程;可达到细化晶粒、消除偏析、降低硬度而提高塑性和韧性的目的。正火较退火冷却速度快一些(空气中冷却)。淬火是冷却时间最快的一种(水冷),用于提高材料硬度和耐磨性。

了解铁碳合金相图,有利于更好地选择适合工况(主要是温度)下的材料。

当然,钢中含有一些合金元素,如铬、钨、钒、氮、锰、硅、硫、磷等。大多数这些合金元素都能溶于铁素体中起固溶强化、细化晶粒等作用,使铁素体的强度、硬度升高,塑性、韧性下降;或与碳亲和形成碳化物而起到稳定并提高硬度的作用。对于不能溶解或亲和或者有害的杂质元素(如硫、磷)要在钢的形成过程中进行特别处理,减少其含量。

六、最后语

管道材料专业决定着工程项目的安全性与经济性。材料等级表制定体现着管道的专业的高精水平,其不亚于装置设备平面布置。丰富的材料知识和熟悉的管道标准应用会使管道器材选用或制定更加完美。

钢管承受压力壁厚计算方式

钢管承受压力壁厚计算方式 作者:大口径钢管来源:原创点击数: 271 更新时间:2010年03月12 【字体: 大中小】 碳钢、合金钢无缝钢管和焊接钢管在受内压时,共壁厚按下式计算: PD δ = ────── + C 200[σ]φ+P (2-1) 式中d——管璧厚度(毫米); P——管内介质工怍压力(公斤/厘米2);在压力不高时,式中分母的P值可取p=0,以简化计算; D——管子外径(毫米); φ——焊缝系数,无缝钢管φ=1,直缝焊接钢管φ=,螺旋缝焊接钢管φ=; [σ]——管材的许用应力(公斤/毫米2),管材在各种温度下的许用应力值详见表2-5; C——管子壁厚附加量(毫米)。 管子壁厚附加量按下式确定: C = C1 + C2 + C3 (2-2) 式中C1——管子壁厚负偏差附加量(毫术)。 无缝钢管(YB231-70)和石油裂化用钢管(YB237-70)壁厚负偏差见表2-1。 表2-1 无缝钢管和石油裂化用钢管壁厚负偏差 钢静种尝壁恒(毫米)壁厚偏差(%)

冷拔(冷轧)钢管>1-15 热轧钢管-15 >20 不锈钢、耐酸钢无缝钢管(YB 804-70)壁厚负偏差见表2-2。 表2-2 不锈铜、耐酸钢无缝钢管壁厚负偏差 钢管种类壁厚(毫米) 壁厚偏差(%) 普通级高级 冷拨(冷扎)钢管≤1毫米毫米>1-3-15-10>3-10 热扎钢管≤10-15 >10~20-20-15>20-15 普通碳素结构钢和优质碳素结构钢厚钢板的厚度负偏差,按热轧厚钢板厚度负偏差(GB709-65)的规定,见表2-3。 表2-3 热轧厚钢板的厚度负偏差 (毫米) 宽度 600~17001701~18001801~20002001~2500 厚度负偏差 厚度 4 ~ 5~7 8~10 11~25

管道壁厚计算

钢管壁厚测量仪OU1600型: OU1600超声波测厚仪是最新研发的智能型超声波测厚仪,采用最新的高性能、低功耗微处理器技术,基于超声波测量原理,可以测量金属及其它多种材料的厚度,并可以对材料的声速进行测量。可以对生产设备中各种管道和压力容器进行厚度测量,监测它们在使用过程中受腐蚀后的减薄程度,也可以对各种板材和各种加工零件作精确测量。本仪器可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。 技术参数 1.显示方法:高对比度的段码液晶显示,高亮度EL背光; 2.测量范围:0.75~300mm(钢中),公制与英制可选择; 5.示值精度:±(1%H+0.1)mm H为被测物实际厚度 6.测量周期:单点测量时4次/秒、扫描模式10次/秒; 7.存储容量:可存储20组(每组最多99个测量值)厚度测量数据。 8.工作电压:3V(2节AA尺寸碱性电池串联) 9.持续工作时间:约100小时(不开背光时) 10.外形尺寸:150×74×32 mm 主要功能 1.适合测量金属(如钢、铸铁、铝、铜等)、塑料、陶瓷、玻璃、玻璃纤维及其他任何超声波的良导体的厚度; 2.可配备多种不同频率、不同晶片尺寸的双晶探头使用; 3.具有探头零点校准、两点校准功能,可对系统误差进行自动修正;

4.已知厚度可以反测声速,以提高测量精度; 5.具有耦合状态提示功能; 6.有EL背光显示,方便在光线昏暗环境中使用; 7.有剩余电量指示功能,可实时显示电池剩余电量; 8.具有自动休眠、自动关机等节电功能; 9.小巧、便携、可靠性高,适用于恶劣的操作环境,抗振动、冲击和电磁干扰; 工作原理 OU1600超声波测厚仪对厚度的测量,是由探头产生超声波脉冲透过耦合剂到达被测体,一部分超声信号被物体底面反射,探头接收由被测体底面反射的回波,精确地计算超声波的往返时间,并按下式计算厚度值,再将计算结果显示出来。 工作条件 环境温度:操作温度-20~+50℃ 存储温度:-30℃~+70℃ 相对湿度≤90% 周围环境无强烈振动、无强烈磁场、无腐蚀性介质及严重粉尘。

ASME动力管道

第VI章检验检查和试验ASME标准(B31.1 动力管道) 第VI章检验、检查和试验

136 检验和检查; 136.1 检验 136,1.1 概述本规将“检查(examination)”和“检验(inspection)两术语加以区别。检验是业主的责任,除去第136.2节所要求的检验外,它可以由业主的雇员或业主授权的某一机构来执行。初始运行之前,应检验管道装置以保证其符合工程设计性能和本规的材料、加工、装配、检查和试验等方面的要求。 136.1,2 符合性验证当要求使用ASME锅炉及压力容器规第1卷规定的规钢印标记时,应由授权检验师检验其是否符合本规的要求。应采用本规的规则和ASME锅炉及压力容器规第1卷附录A—300的质量控制体系的要求。质量控制体系的要求见本规附录J。检验师的职责应按ASME锅炉及压力容器规第1卷PG—90的规定的执行。数据报告表的格式已附列在ASME锅炉及压力容器规第1卷附录,用于汇总必要的检查记录。检验师本人应确认管道系按照本规的有关要求进行制造的。 对焊缝进行无损检查,的人员应按雇主制定的认证人员大纲对每项检查方法进行评定和认证。大纲,应按下列最低要求制订: (A)无损检查方法基本原理方面的说明; (B)在职培训无损检查人员使熟悉焊缝缺陷显示的形状和评判。培训时间应确保能充分掌握所需要的检查知识; (C)无损检查人员应进行每年≥1次视力检查以确定其从事所要求检查的视觉能力;

(D)一旦完成上述(A)和(B)要求后,无损检查人员应接受雇主的口头或书面考试及操作技能考试以确定其是否有资格从事所要求的检查和结果的评判工作; (E)凡已取证的无损检查人员如有≥1年没有从事规定的检查方法工作,应按上述(D)项要求进行重新考核,同时还得通过(C)项的视力检查。若工艺或设备有实质性修改和变化,应对无损检查人员重新进行资格评定。 可以用下述标准作为替代上述大纲的另一种考评办法:SNT—TC—lA或CP—189和按AWS QCl进行焊缝目视检查人员资格评定。136.1.3 检验师的权利检验师应能随意出入正在从事管道制作的现场,包括管道的制造、加工、装配、安装和试验等场所。检验师应有权查阅在第136.1.1节检验要求中涉及的所有合格证件和档案记录包括焊工或焊接操作工评定及WPS评定的合格证明资料,136.1.4 业主检验师的资格评定 (A)业主检验师应由业主指定并应是业主的雇员、工程或科学组织的雇员或作为业主代理的公认保险或检验公司的雇员。业主雇员应既不代表管道制造商、制作者或安装者也不是其雇员,除非业主也 是制造商、制作者或安装者。 (B)业主检验师应有≥10年在设计、制造、安装、制作或检验动力管道的经验。由工程技术鉴定委员会认可的满意地完成工程等级的每1年相当于1年的经验,总共可达5年。 (C)在委派检验操作中,业主对指定人员所指派的检验功能经过

压力管道管道厚度计算

根据GB50316-2000《工业金属管道设计规范》中金属管道组成件耐磨强度计算方法,计算我公司工艺气管线管壁厚度过程如下: 公式:T s=PD0/2([δ]t*Ej+PY) T sd=Ts+C C=C1+C2 公式中;T s——直管计算厚度(mm) P——设计压力(MPa) D0——管子外径(mm) [δ]t——在设计温度下材料的许用应力(MPa) Ej——焊接头系数 C——厚度附加量之和 C1——厚度减薄附加量,包括加工开槽和螺纹深度及材料厚度负偏差(mm) C2——腐蚀或磨蚀附加量(mm)(忽略) Y——系数 按表6.2.1查得Y系数为0.4 我们管道设计压力为27MPa,则P=27.5MPa 我们管子外径分别为φ6 、φ8 、φ22 、φ27 查GB150-1998 中表4-3(续)得0Cr18Ni9在150℃以下的许用应力为103MPa 则[δ]t=103 根据GB150-1998查得,我们φ6 与φ8管子无焊接工艺则焊接头系数Ej=100% ,我们φ22 和φ27管子有焊接工艺焊接后做局部

无损检测,则Ej=85% 带入值计算得; φ6管道壁厚计算得T s=0.72368 mm φ8管道壁厚计算得T s=0.96491 mm φ22管道壁厚计算得T s=3.06950 mm φ27管道壁厚计算得T s=3.76712 mm 根据刘工对不锈钢钢管检验得我们φ6的管道壁厚在0.8以上,故满足设计要求!验收应当按照GB/T 14976-2002《流体输送用不锈钢无缝钢管》标准验收,但是我们公司是按GB/T 8612-1999《结构用无缝钢管》标准采购钢管!据查,此标准里没有我们0Cr18Ni9牌号钢材标准!

ASME标准中文版

ASME标准中文版 ASME B16.20-1993 管法兰用环连接式.螺旋缠绕式及夹套式金属垫片 ASME B16.21-1992 管法兰用非金属平垫片 ASME SECTION-I ASME锅炉及压力容器规范第Ⅰ卷动力锅炉建造规范2004版+05+06增补 ASME SECTION-II A ASME锅炉及压力容器规范第Ⅱ卷A篇铁基材料2004版+05+06增补 ASME SECTION-II B ASME锅炉及压力容器规范第Ⅱ卷B篇非铁基材料2004版+05+06增补 ASME SECTION-II C ASME锅炉及压力容器规范第Ⅱ卷C篇焊条焊丝及填充材料2004版+05+06增补ASME SECTION-II D ASME锅炉及压力容器规范第Ⅱ卷D篇材料性能2004版+05+06增补 ASME SECTION-IV ASME锅炉及压力容器规范第Ⅳ卷采暖锅炉建造规范2004版+05+06增补 ASME SECTION-V ASME锅炉及压力容器规范第Ⅴ卷无损检测2004版+05+06增补 ASME SECTION-III NB 1995版ASME规范Ⅲ卷核动力装置设备制造准则一册NB分卷一级设备ASME SECTION-III NC 1995版ASME规范Ⅲ卷核动力装置设备制造准则一册NC分卷二级设备ASME SECTION-III NCA ASME规范Ⅲ卷(89版) 核动力设备建造规则NCA卷一册与第二册之总要求ASME SECTION-III ND 1995版ASME规范Ⅲ卷核动力装置设备制造准则一册ND分卷三级设备ASME SECTION-III NF 1995版ASME规范Ⅲ卷核动力装置设备制造准则一册NF分卷设备支承结构ASME SECTION-IX ASME锅炉及压力容器规范第Ⅸ卷焊接及钎焊评定标准2004版+05+06增补 ASME SECTION-VI ASME锅炉及压力容器规范第Ⅵ卷采暖锅炉维护和运行推荐规则2004版+05+06增补ASME SECTION-VII ASME锅炉及压力容器规范第Ⅶ卷动力锅炉维护推荐导则05年版 ASME SECTION-VIII-1 ASME锅炉及压力容器规范第Ⅷ卷1压力容器建造规则2004版+05+06增补 ASME SECTION-VIII-2 ASME锅炉及压力容器规范第Ⅷ卷2压力容器另一规则2004版+05+06增补 ASME SECTION-VIII-3 ASME锅炉及压力容器规范第Ⅷ卷3高压容器建造另一规则2004版+05+06增补ASME SECTION-XII ASME锅炉及压力容器规范第Ⅻ卷运输罐的建造和连续使用规则2004版+05+06增补CODE CASES 规范案例2004年版 TCED 41001-2000 ASME 压力容器规范实施导则 ASME B31.1-2004版动力管道 ASME B31.3-2004版工艺管道 ASME规范压力管道及管件B31、B16系列标准(上册)含5个标准 1.ASME B31.4-1998版液态烃和其他液体管线输送系统 2.ASME B31.5-1992(R1994) 制冷管道 3.ASME B31.8-1999版输气和配气管道系统 4.ASME B31.9-1996版建筑管道规范 5.ASME B31.11a-1989(R1998)版浆液输送管道系统 ASME B31G-1991版确定已腐蚀管线剩余强度的手册 (对ASME B31压力管道规范的补充文件) ASME规范压力管道及管件B31、B16系列标准(下册)含10个标准 1.ASME B16.1-1998版铸铁管法兰和法兰管件(25、125和250磅级) 2.ASME B16.3-1998版可锻铸铁螺纹管件(150和300磅级) 3.ASME B16.4-1998版灰铸铁螺纹管件(125和250磅级) 4.ASME B16.9-1993版工厂制造的锻钢对焊管件 5.ASME B1 6.10-1992版阀门的面至面和端至端尺寸 6.ASME B16.11-1996版承插焊式和螺纹式锻造管件 7.ASME B16.14-1991版钢铁管螺纹管堵、内外螺丝和锁紧螺母 8.ASME B16.28-1994版锻轧钢制对接焊小弯头半径弯头和180度弯头 9.ASME B18.2.1a-1999版方头及六角头螺栓和螺钉 10.ASME PTC25-1994 压力泄放装置性能试验规范

ASME管道理论壁厚和重量表

常用管件产品重量/体积表 使用说明 1本表的管件重量依据ASME B16.9/ASME B16.11等相关规范使用的外径和壁厚进行计算,计算中适当考虑了工艺选料和制造情况对产品重量的影响(如厚度补偿);故此表所列重量为单件产品的近似净重,供参考。 表格中管表号带S的为不锈钢管件重量,其余为碳钢重量;在查阅不锈钢管件重量时应 注意同一管表号的壁厚值碳钢与不锈钢可能不同。 2 90°弯头重量计算公式:W=9.685*10-6R(D2-d2) 式中:W — 90°弯头重量,kg; R —弯头的曲率半径(结构尺寸),mm; D —弯头外径,mm; d —弯头内径,mm。 弯头重量公式中采用碳钢比重,即7.85kg/dm3计算。 45°、180°弯头的重量分别按90°弯头重量的1/2和2倍计算。 3钢管重量计算公式:W=0.02466T(D-T) 式中:W —钢管每米长度的重量,kg/m; T —钢管壁厚,mm; D —钢管外径,mm。 钢管重量公式中采用碳钢比重,即7.85kg/dm3计算;奥氏体不锈钢管的重量为上式重量的1.015倍。 4对焊管件的重量表中列出的为常用规格的重量,对于未列入表中的同一公称通径、不同壁厚的产品重量,可用估算公式进行重量的大致估算:Q=Wt/T 式中:Q —估算的对焊管件重量,kg; W —表中同一公称通径已列出壁厚的产品重量,kg; t —估算的对焊管件的产品壁厚值,mm; T —表中同一公称通径已列出壁厚的产品壁厚值,mm。 5本表所列体积为单件产品外部轮廓体积并考虑了装箱时所占的空间,即表中所示的近似体积为单件产品所占包装物的近似体积,供参考;使用时应注意套装时体积的计算以及小件产 品体积是否需要考虑等因素。

JB4730.3-2005超声波标准和ASME标准对照

JB/T4730-2005 《承压设备无损检测》 第3部分超声检测ultrasonic [?ltr?′s?nik] 标准修改介绍以及与ASME标准对比 JB/T 4730.3-2005标准条款及技术内容 4.2 承压设备用钢锻件超声检测 4.2.1 范围 本条适用于承压设备用碳钢和低合金钢锻件的超声检测和质量等级评定。 本条不适用于奥氏体钢等粗晶材料锻件的超声检测,也不适用于内、外半径之比小于80%的环形和筒形锻件的周向横波检测。 国外标准的对应条款及技术内容,技术差异的简要评述 【1】对应条款:ASME2004-SA388-1.1 【2】相关技术内容: ASME规定:操作方法包括用直射波和斜射波技术对大型锻件作接触脉冲回波式超声 波检验程序。直射波法包括DGS(距离—增益—当量)法。 【3】简要评述:JB4730对适用范围作了限定,ASME没有那么明确。 JB/T 4730.3-2005标准条款及技术内容 4.2.2 探头 双晶直探头的公称频率应选用5MHz。探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2~5MHz,探头晶片一般为φ14~φ25mm。 主要修改内容: ①探头 2005版增加了有关探头的内容,即:双晶直探头的公称频率应选用5MHz。探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2MHz~5MHz,探头晶片一般为φ14mm~φ25mm。 解释:1994版没有对探头做出规定,选择余地较大,由此也可能造成检测结果的不一致,2005版对此作了规定。值得注意的是,锻件双晶直探头的检测范围是45mm。一般而言,用一个双晶直探头较难覆盖45mm,可能需要一个以上焦点不同的双晶直探头。 国外标准的对应条款及技术内容,技术差异的简要评述 【1】对应条款:ASME2004-SA388-4.2,7.2 【2】相关技术内容: ASME规定:a) 对于直射波扫查可采用换能器的最大有效面积为650mm2,其最小尺寸为20mm,最大为30mm。对于斜射波扫查,可采用换能器的尺寸从13×25mm至25×25mm。 b) 换能器应使用其标称频率。

管道壁厚等级与压力等级计算

管道壁厚等级与压力等级 1) 内压金属直管的壁厚 根据SH 3059-2001《石油化工管道设计器材选用通则》确定: 当S0< Do /6时,直管的计算壁厚为: S0 = P D0/(2[σ]tΦ+2PY) 直管的选用壁厚为: S = S0 + C 式中 S0――直管的计算壁厚, mm; P――设计压力, MPa; D0―直管外径, mm; [σ]t―设计温度下直管材料的许用应力, MPa; Φ―焊缝系数,对无缝钢管,Φ=1; S―包括附加裕量在内的直管壁厚, mm; C―直管壁厚的附加裕量, mm; Y―温度修正系数,按下表选取。 温度修整系数表 材料 温度℃ ≤482 510

538 566 593 ≥621 铁素体钢 ` 0.4 0.5 0.7 0.7 0.7 0.7 奥氏体钢 0.4 0.4 0.4 0.4 0.5 0.7 当S0≥D0/6或P/[σ]t > 0.385时,直管壁厚应根据断裂理论、疲劳、热应力及材料特性等因素综合考虑确定。 2)对于外压直管的壁厚

应根据GB 150-1998《钢制压力容器》规定的方法确定。 公称直径管子外径设计压力许用应力t 焊缝系数修正系数Y 壁厚So 壁厚负偏差腐蚀裕量选 用厚度壁厚减薄量最终壁厚壁厚系列 15 22 1 130 1 0.4 0.084355828 0.5 1.5 2.084355828 4 20 27 1 130 1 0.4 0.103527607 0.5 1.5 2.103527607 4 25 34 1 130 1 0.4 0.130368098 0.5 1.5 2.130368098 4 32 42 6.4 130 1 0.4 1.013880507 0.5 1.5 3.013880507 4 40 48 32 137 1 0.4 5.126835781 0.5 0 5.626835781 4 50 60 6.4 163 1 0.4 1.159700411 0.5 1.5 3.159700411 3.5 65 76 6.4 163 1 0.4 1.468953854 0.5 1.5 3.468953854 4.5 80 89 7.5 163 1 0.4 2.010542169 0.5 1.5 4.010542169 4.5 100 114 32 137 1 0.4 12.17623498 0.6 1.5 14.27623498 5 125 140 6.4 163 1 0.4 2.705967625 0.6 1.5 4.805967625 6 150 159 4 130 1 0.4 2.416413374 0.5 2 4.916413374 7 200 219 7.5 163 1 0.4 4.947289157 0.7 1.5 7.147289157 8 250 273 6.4 130 1 0.4 6.590223295 0.8 1.5 8.890223295 10 300 323.9 6.4 130 1 0.4 7.818949909 0.9 1.5 10.21894991 8 350 355.6 6.4 130 1 0.4 8.584188292 0.5 1.5 10.58418829 8.8 400 406.4 6.4 130 1 0.4 9.810500905 0.5 1.5 11.81050091 10 450 457 7.4 130 1 0.4 12.7173586 0.5 1.5 14.7173586 11 500 508 7.4 130 1 0.4 14.13658243 0.5 1.5 16.13658243 12.5 550 559 7.4 153.3 1 0.4 13.23627288 0.5 2 15.73627288 12.5 600 610 7.4 153.3 1 0.4 14.44387559 0.5 2 16.94387559 14.2 650 660 7.4 153.3 1 0.4 15.62779982 0.5 2 18.12779982 14.2 700 711 7.4 153.3 1 0.4 16.83540253 0.5 2 19.33540253 16 注:计算得的结果为计算壁厚,最终厚度为:S=So+C,C为腐蚀裕量+壁厚负偏差+螺纹深 度。 修正系数Y请见下表: 温度对计算管子壁厚公式的修正系数Y 材料温度(℃) ≤482 510 538 566 593 铁素体钢 0.4 0.5 0.7 0.7 0.7 奥氏体钢 0.4 0.4 0.4 0.4 0.5 本公式的适用范围及其要求请参照SH 3059-2001 P21。 ------------------------------------------------------------------------------------------------------------ 弯管弯头外弧最小壁厚 公称直径管子外径设计压力许用应力t 焊缝系数修正系数弯曲半径腐蚀裕量壁厚Soo 700 711 6.4 450 1 0.4 4200 1.5 6.331236737

ASME与国产材料对照表

国产材料与ASME材料对照表check list of GB material and ASME material 国产材料GB material ASME材料ASME material 材料牌号Material trademark Q235-C板plate 材料牌号 Material trademark SA-414 C σb375 σb380 σS235 σS230 材料牌号 Material trademark 20R板plate 材料牌号 Material trademark SA-283 D SA-515 60 SA-516 60 σb400 σb415 σS235 σS230 材料牌号 Material trademark 20g板plate 材料牌号 Material trademark SA-283 D SA-515 60 SA-516 60 σb400 σb415 σS225 σS220 材料牌号Material trademark 16Mn板plate 材料牌号 Material trademark SA-537 SA-738 C σb470 σb485 σS305 σS315 材料牌号Material trademark 20# 管子piping 材料牌号 Material trademark SA-53 S/B σb392 σb415 σS226 σS240 材料牌号Material trademark 20G 管子piping 材料牌号 Material trademark SA-53 S/B σb402 σb415 σS216 σS240 材料牌号Material trademark 15CrMo板plate 材料牌号 Material trademark SA-662 C σb450 σb485 σS295 σS295 材料牌号 Material trademark 15CrMo管子piping 材料牌号 Material trademark SA-178 D SA-106 C SA-210 C σb441 σb485 σS226 σS275 ※ A516Gr.60-------------------------16MnR热轧板, A516Gr.70N-----------------------16MnR正火板。 A516Gr.4---------------------------16MnII锻件, A334Gr1----------------------------16Mn,

压力管道的强度计算.

压力管道的强度计算 1.承受内压管子的强度分析 按照应力分类,管道承受压力载荷产生的应力,属于一次薄膜应力。该应力超过某一限度,将使管道整体变形直至破坏。 承受内压的管子,管壁上任一点的应力状态可以用3个互相垂直的主应力来表示,它们是:沿管壁圆周切线方向的环向应力σθ,平行于管道轴线方向的轴向应力σz,沿管壁直径方向的径向应力σr,如图2.1,设P为管内介质压力,D n为管子内径,S为管子壁厚。则3个主应力的平均应力表达式为 管壁上的3个主应力服从下列关系式: σθ>σz>σr 根据最大剪应力强度理论,材料的破坏由最大剪应力引起,当量应力为最大主应力与最小主应力之差,故强度条件为 σe=σθ-σr≤[σ] 将管壁的应力表达式代入上式,可得理论壁厚公式

图2.1 承受内压管壁的应力状态 工程上,管子尺寸多由外径D w表示,因此又得昂一个理论壁厚公式 2.管子壁厚计算 承受内压管子理论壁厚公式,按管子外径确定时为 按管子内径确定时为 式中: S l——管子理论壁厚,mm;

P——管子的设计压力,MPa; D w——管子外径,mm; D n——管子内径,mm; φ——焊缝系数; [σ]t——管子材料在设计温度下的基本许用应力,MPa。 管子理论壁厚,仅是按照强度条件确定的承受内压所需的最小管子壁厚。它只考虑了内压这个基本载荷,而没有考虑管子由于制造工艺等方面造成其强度削弱的因素,因此它只反映管道正常部位强度没有削弱时的情况。作为工程上使用的管道壁厚计算公式,还需考虑强度削弱因素。因此,工程上采用的管子壁厚计算公式为 S j=S l+C (2-3) 式中:S j——管子计算壁厚,mm; C——管子壁厚附加值,mm。 (1)焊缝系数(φ) 焊缝系数φ,是考虑了确定基本许用应力安全系数时未能考虑到的因素。焊缝系数与管子的结构、焊接工艺、焊缝的检验方法等有关。 根据我国管子制造的现实情况,焊缝系数按下列规定选取:[1] 对无缝钢管,φ=1.0;对单面焊接的螺旋线钢管,φ=0.6;对于纵缝焊接钢管,参照《钢制压力容器》的有关标准选取: ①双面焊的全焊透对接焊缝: 100%无损检测φ=1.0; 局部无损检测φ=0.S5。 ②单面焊的对接焊缝,沿焊缝根部全长具有垫板: 100%无损检测φ=0.9; 局部无损检测φ=0.8; (2)壁厚附加量(C) 壁厚附加量C,是补偿钢管制造:工艺负偏差、弯管减薄、腐蚀、磨损等的减薄量,以保证管子有足够的强度。它按下列方法计算: C=C1+C2 (2-4) 式中:C1——管子壁厚负偏差、弯管减薄量的附加值,mm; C2——管子腐蚀、磨损减薄量的附加值,mm。 ①管子壁厚负偏差和弯管减薄量的附加值: 在管子制造标准中,允许有一定的壁厚负偏差,为了使管子在有壁厚负偏差时的最小壁厚不小于理论计算壁厚,管子计算壁厚中必须计人管子壁厚负偏差的附加值。 在管子标准中,壁厚允许负偏差一般用壁厚的百分数表示,令α为管子壁厚负偏差百分数,则得

ASMEB管道壁厚自动计算

压力管道的壁厚选择是压力管道设计中最基本和最常见的问题,但是在实际设计过程中却非常混乱,经常出现凭经验估算、乱用SCH表、不经过演算随意套用某些手册数据的现象,还有的认为壁厚越大越好,随意扩大管道壁厚。管道壁厚选择的不合理,不但给安全带来隐患,而且也造成建设成本的提高和材料的浪费。 加蓬撬块项目设计过程中,需要对压力管道进行壁厚计算、校核,由于该工程压力等级多,计算工作量大。因此,我们采用Excel表格编写了一个可以自动计算管道壁厚的程序,只需要输入相应的参数,就会自动计算出结果,方便、快速、准确,自动生成计算书。 该工程采用ASME 《工艺管道规范》,是美国机械工程师学会《压力管道规范》ASME B31中的一卷。工艺管道包含了炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的典型管道。本规范规定了上述管道在材料、设计、制作、装配、安装、检查、检验和试验的要求。它适用所有流体的管道,如水、气、蒸汽、液化固体、低温流体等。 一、壁厚计算 (1)当直管壁厚t小于管子外径D的1/6时,根据ASME 《工艺管道规范》采用了如下公式: T——压力设计壁厚; P——设计内压(表压); D——管道外径; S——材料的许用压力,查表A-1; E——表A-1A或A-1B所列的质量系数; Y——从表查的系数,但限于t

(2)管道的直管部分所要求的厚度应按公式确定 tm——包括机加工、腐蚀和腐蚀裕量在内的所需最小壁厚; c——机械裕量(螺纹或沟槽深度)与腐蚀和磨蚀裕量的总和。对于带螺纹的组件,应采用公称螺纹深度(ASME 的尺寸h或相当的尺寸);对于没有规定公差的机加工表面或槽,应在规定的切削深度上加()的公差。 二、计算实例: 设计参数:设计压力:;设计温度:80℃;材料:A106 ;腐蚀裕量:3mm;公称直径:200mm; 三、计算结果

管路压力与壁厚计算方式——管道压力测试

碳钢、合金钢无缝钢管和焊接钢管在受内压时,共壁厚按下式计算: PD δ = ────── + C 200[σ]φ+P (2-1) 式中d——管璧厚度(毫米); P——管内介质工怍压力(公斤/厘米2);在压力不高时,式中分母的P值可取p=0,以简化计算; D——管子外径(毫米); φ——焊缝系数,无缝钢管φ=1,直缝焊接钢管φ=0.8,螺旋缝焊接钢管φ=0.6; [σ]——管材的许用应力(公斤/毫米2),管材在各种温度下的许用应力值详见表2-5; C——管子壁厚附加量(毫米)。 管子壁厚附加量按下式确定: C = C1 + C2 + C3 (2-2) 式中 C1——管子壁厚负偏差附加量(毫术)。 无缝钢管(YB231-70)和石油裂化用钢管(YB237-70)壁厚负偏差见表2-1。 冷拔(冷轧)钢管>1 -15 热轧钢管 3.5-20 -15 >20 -12.5 不锈钢、耐酸钢无缝钢管(YB 804-70)壁厚负偏差见表2-2。 冷拨(冷扎)钢管≤1 -0.15毫米 -0.10毫米>1-3 -15 -10 >3 -12.5 -10 热扎钢管≤10 -15 -12.5 >10~20 -20 -15 >20 -15 -12.5 普通碳素结构钢和优质碳素结构钢厚钢板的厚度负偏差,按热轧厚钢板厚度负偏差(GB709-65)的规定,见表2-3。

4 -0.4 4.5~ 5.5 -0.5 -0.5 5~7 -0.6 -0.6 -0.6 8~10 -0.8 -0.8 -0.8 -0.8 11~25 -0.8 -0.8 -0.8 -0.8 26~30 -0.9 -0.9 -0.9 -0.9 C2——腐蚀裕度(毫米); 介质对管子材料的腐蚀速度≤0.05毫米/年时(包括大气腐蚀),单面腐蚀取C2=1.5毫米,双面腐蚀取C2=2~2.5毫米。 当管子外面涂防腐油漆时,可认为是单面腐蚀,当管子内外壁均有较严重的腐蚀时,则认为是双面腐蚀。 介质对管子材料的腐蚀速度大于0.05毫米/年时,由设计者根据腐蚀速度与设计寿命决定C2值。 C3——管子加工减薄量(毫米)。 车螺纹的管子,C3即为螺纹的深度;如管子不车螺纹,则C3=O.55°圆锥状管螺纹(YB822-57)的螺纹深度见表2-4。 ? 1.162 ? 1 1.479 1? 1? 2 2? 3 4 5 6

ASME标准对照表

ASME标准对照表 SA-6/SA-6M 结构用轧制钢板、型钢、板桩和棒钢通用要求 SA-20/SA-20M 压力容器用钢板通用要求 SA-29/SA-29M 热加工与冷精整碳钢和合金钢棒材通用要求 SA-36/SA-36M 碳素结构钢 SA-47 铁素体可锻铸铁件 SA-53/SA-53M 无镀层及热浸镀锌焊接及无缝公称钢管 SA-105/SA-105M 管道元件用碳钢锻件 SA-106 高温用无缝碳钢公称管 SA-134 电弧熔焊公称钢管(尺寸≥NPS 16) SA-135 电阻焊公称钢管 SA-178/SA-178M 电阻焊碳钢和碳锰钢锅炉及过热器管子 SA-179/SA-179M 换热器及冷凝器用无缝冷拔低碳钢管子 SA-181/SA-181M 一般管道用碳钢锻件 SA-182/SA-182M 高温用锻制或轧制合金钢管道法兰、锻制管配件、阀门和零件 SA-192/SA-192M 高压用无缝碳钢锅炉管子 SA-193/SA-193M 高温用合金钢和不锈钢螺栓材料 SA-194/SA-194M 高温高压螺栓用碳钢和合金钢螺母 SA-199/SA-199M 热交换器及冷凝器用无缝冷拔中合金钢管子 SA-202/SA-202M 压力容器用铬锰硅合金钢板 SA-203/SA-203M 压力容器用镍合金钢板

SA-204/SA-204M 压力容器用钼合金钢板 SA-209/SA-209M 锅炉和过热器用无缝碳钼合金钢管子 SA-210/SA-210M 锅炉和过热器用无缝中碳钢管子 SA-213/SA-213M 锅炉、过热器和换热器用无缝铁素体和奥氏体合金钢管子 SA-214/SA-214M 换热器和冷凝器用电阻焊碳钢管子 SA-216/SA-216M 可熔焊高温用碳钢铸件 SA-217/SA-217M 高温承压零件用马氏体不锈钢和合金钢铸件 SA-225/SA-225M 压力容器用锰钒镍合金钢板 SA-226/SA-226M 高压锅炉和过热器用电阻焊碳钢管子 SA-232/SA-232M 铬钒合金钢阀门弹簧品级钢丝 SA-234/SA-234M 中、高温用锻制碳钢和合金钢管道配件 SA-240 压力容器用耐热铬及铬镍不锈钢板、薄板和钢带 SA-249/SA-249M 锅炉、过热器、换热器和冷凝器用焊接奥氏体钢管子 SA-250/SA-250M 锅炉和过热器用电阻焊铁素体合金钢管子 SA-263 耐腐蚀铬钢复合钢板、薄板及钢带 SA-264 不锈铬镍钢复合钢板、薄板和钢带 SA-265 镍和镍基合金复合钢板 SA-266/SA-266M 压力容器部件用碳钢锻件 SA-268/SA-268M 一般用途无缝和焊接铁素体和马氏体不锈钢管子 SA-275/SA-275M 钢锻件磁粉检验 SA-278 温度至650°F 承压零件用灰口铁铸件 SA-283/SA-283M 中、低强度碳素钢板件

ASME B36.1M-1996标准尺寸及重量对照表

124不锈钢——按照ASME B36 10M-1996标准尺寸及重量对照表标准尺寸及重量对照表外径壁厚重量 英寸毫米. 单位毫米. 英寸. 公斤/米. 磅/英尺. 1/8” 10.3 10S 1.24 0.049 0.28 0.19 1/8” 10.3 STD-40 1.73 0.068 0.37 0.25 1/8” 10.3 XS-80 2.41 0.095 0.48 0.32 1/4”13.7 10S 1.65 0.065 0.50 0.34 1/4” 13.7 STD-40 2.24 0.088 0.64 0.43 1/4” 13.7 XS-80 3.02 0.119 0.81 0.55 3/8” 17.1 10S 1.65 0.065 0.64 0.43 3/8” 17.1 STD-40 2.31 0.091 0.85 0.57 3/8” 17.1 XS-80 3.20 0.126 1.11 0.75 1/2” 21.3 5S 1.05 0.042 0.53 0.36 1/2” 21.3 10S 2.11 0.083 1.01 0.68 1/2” 21.3 STD-40 2.77 0.109 1.28 0.86 1/2” 21.3 XS-80 3.73 0.147 1.63 1.10 1/2” 21.3 160 4.78 0.188 1.97 1.33 1/2” 21.3 XXS 7.47 0.294 2.57 1.73 3/4” 26.7 5S 1.65 0.065 1.03 0.69 3/4” 26.7 10S 2.11 0.083 1.29 0.87 3/4” 26.7 STD-40 2.87 0.113 1.70 1.14 3/4” 26.7 XS-80 3.91 0.154 2.22 1.49 3/4” 26.7 160 5.56 0.219 2.93 1.97 3/4” 26.7 XXS 7.82 0.308 3.68 2.48 1” 33.4 5S 1.65 0.065 1.31 0.88 1” 33.4 10S 2.77 0.109 2.12 1.42 1” 33.4 STD-40 3.38 0.133 2.53 1.70 1” 33.4 XS-80 4.55 0.179 3.27 2.18 1” 33.4 160 6.35 0.250 4.28 2.88 1” 33.4 XXS 9.09 0.358 5.51 3.71 1 1/4” 42. 2 5S 1.65 0.065 1.67 1.12 1 1/4” 42. 2 10S 2.77 0.109 2.72 1.83 1 1/4” 42. 2 STD-40 3.56 0.140 3.4 3 2.31 1 1/4” 42. 2 XS-80 4.85 0.191 4.51 3.03 1 1/4” 42. 2 160 6.35 0.250 5.67 3.81 1 1/4” 42. 2 XXS 9.70 0.382 7.85 5.28 1 1/2” 48.3 5S 1.65 0.065 1.9 2 1.29 1 1/2” 48.3 10S 2.77 0.109 3.14 2.11 1 1/2” 48.3 STD-40 3.68 0.145 4.09 2.75 1 1/2” 48.3 XS-80 5.08 0.200 5.47 3.68 1 1/2” 48.3 160 7.14 0.281 7.3 2 4.92 1 1/2” 48.3 XXS 10.15 0.400 9.65 6.49 2” 60.3 5S 1.65 0.065 2.41 1.62 2” 60.3 2.11 0.083 3.06 2.06

管道设计与ASME标准

工程设计/llljq 发表于2007-08-14, 21:54 作者:李敬琦 一、压力管道设计常用ASME标准 这里有两个标准,一个是组件尺寸型式标准(我国也有相应组件形式标准),另一个是材料标准(我国没有对材料形成专门的标准化)。 型式标准规定了组件的型式、系列、尺寸、公差、试验要求,以及该组件可采用的材料标准等。材料标准规定了适用的对象、原材料(坯料)品种(采用锻轧Wrought或锻件Forged)、化学成分、机械性能、制造工艺(包括焊接)、热处理、无损检查、取样和性能检验、质量证书、标志等。 1. 典型的组件型式标准 1)钢管 ANSI/ASME B36.10M 无缝及焊接钢管 ANSI/ASME B36.19M 不锈钢无缝及焊接钢管 2)管件 ANSI/ASME B16.9 工厂制造的钢对焊管件 ANSI/ASME B16.1 承插焊和螺纹锻造管件 ANSI/ASME B16.28 钢制对焊小半径弯头和回弯头 3)阀门 ANSI/ASME B16.34 法兰连接、螺纹连接和焊接连接的阀门 API 599 法兰或对焊连接的钢制旋塞阀 API 600 法兰或对焊连接的钢制闸阀 API 602 紧凑型碳钢闸阀 API 609 凸耳型对夹蝶阀 4)法兰 ANSI/ASME B16.5 管法兰和法兰管件 ANSI/ASME B16.36 孔板法兰 ANSI/ASME B16.42 球墨铸铁法兰和法兰管件 ANSI/ASME B16.47 大直径钢法兰 API 601 突面管法兰和法兰连接用金属垫片 5)垫片 ANSI/ASME B16.20 管法兰用缠绕式、包覆式垫片和环槽式用金属垫片 ANSI/ASME B16.21 管法兰用非金属平垫片 6)紧固件 ANSI/ASME B18.2.1 方头和六角头螺栓和螺纹 ANSI/ASME B18.2.2 方头和六角头螺母 7)管件 ASMEI B16.9 工厂制造的锻钢对焊管件

管道壁厚计算

管道: 管道是用管子、管子联接件和阀门等联接成的用于输送气体、液体或带固体颗粒的流体的装置。 名义壁厚: 名义壁厚,是根据设计壁厚并综合考虑腐蚀裕度、材料及制造等因素,由设计图样规定的气瓶壁厚。 英文名:nominal wall thickness. 计算厚度:按设计规范钢管(直管)厚度计算公式计算所得厚度; 设计厚度:计算厚度+厚度减薄附加量+腐蚀或磨蚀附加量; 名义厚度:设计厚度向上圆整至钢管标准所列厚度。 钢管壁厚测量仪OU1600型: OU1600超声波测厚仪是最新研发的智能型超声波测厚仪,采用最新的高性能、低功耗微处理器技术,基于超声波测量原理,可以测量金属及其它多种材料的厚度,并可以对材料的声速进行测量。 技术参数 1.显示方法:高对比度的段码液晶显示,高亮度EL背光; 2.测量范围:0.75~300mm(钢中),公制与英制可选择; 5.示值精度:±(1%H+0.1)mm H为被测物实际厚度 6.测量周期:单点测量时4次/秒、扫描模式10次/秒; 7.存储容量:可存储20组(每组最多99个测量值)厚度测量数据。 8.工作电压:3V(2节AA尺寸碱性电池串联) 9.持续工作时间:约100小时(不开背光时)

10.外形尺寸:150×74×32 mm 主要功能 1.适合测量金属、塑料、陶瓷、玻璃、玻璃纤维及其他任何超声波的良导体的厚度; 2.可配备多种不同频率、不同晶片尺寸的双晶探头使用; 3.具有探头零点校准、两点校准功能,可对系统误差进行自动修正; 4.已知厚度可以反测声速,以提高测量精度; 5.具有耦合状态提示功能; 6.有EL背光显示,方便在光线昏暗环境中使用; 7.有剩余电量指示功能,可实时显示电池剩余电量; 8.具有自动休眠、自动关机等节电功能; 9.小巧、便携、可靠性高,适用于恶劣的操作环境,抗振动、冲击和电磁干扰; 工作原理 OU1600超声波测厚仪对厚度的测量,是由探头产生超声波脉冲透过耦合剂到达被测体,一部分超声信号被物体底面反射,探头接收由被测体底面反射的回波,精确地计算超声波的往返时间,并按下式计算厚度值,再将计算结果显示出来。 工作条件 环境温度:操作温度-20~+50℃ 存储温度:-30℃~+70℃ 相对湿度≤90%

管道材料等级制定与ASME标准

管道材料等级制定与ASME标准 一、压力管道设计常用ASME标准 这里有两个标准,一个是组件尺寸型式标准(我国也有相应组件形式标准),另一个是材料标准(我国没有对材料形成专门的标准化)。 型式标准规定了组件的型式、系列、尺寸、公差、试验要求,以及该组件可采用的材料标准等。材料标准规定了适用的对象、原材料(坯料)品种(采用锻轧Wrought或锻件Forged)、化学成分、机械性能、制造工艺(包括焊接)、热处理、无损检查、取样和性能检验、质量证书、标志等。 1. 典型的组件型式标准 1)钢管 ANSI/ASME B36.10M 无缝及焊接钢管 ANSI/ASME B36.19M 不锈钢无缝及焊接钢管 2)管件 ANSI/ASME B16.9 工厂制造的钢对焊管件 ANSI/ASME B16.1 承插焊和螺纹锻造管件 ANSI/ASME B16.28 钢制对焊小半径弯头和回弯头 3)阀门 ANSI/ASME B16.34 法兰连接、螺纹连接和焊接连接的阀门 API 599 法兰或对焊连接的钢制旋塞阀 API 600 法兰或对焊连接的钢制闸阀 API 602 紧凑型碳钢闸阀 API 609 凸耳型对夹蝶阀 4)法兰 ANSI/ASME B16.5 管法兰和法兰管件 ANSI/ASME B16.36 孔板法兰

ANSI/ASME B16.42 球墨铸铁法兰和法兰管件 ANSI/ASME B16.47 大直径钢法兰 API 601 突面管法兰和法兰连接用金属垫片 5)垫片 ANSI/ASME B16.20 管法兰用缠绕式、包覆式垫片和环槽式用金属垫片 ANSI/ASME B16.21 管法兰用非金属平垫片 6)紧固件 ANSI/ASME B18.2.1 方头和六角头螺栓和螺纹 ANSI/ASME B18.2.2 方头和六角头螺母 7)管件 ASMEI B16.9 工厂制造的锻钢对焊管件 ASME B16.11 承插焊和螺纹锻钢管件 MSS-SP-43 锻制不锈钢对焊管件 2. 材料标准 ASTM/ASME材料标准主要集中收录在ASME II A篇铁基材料,B篇非铁基材料,C篇焊条、焊丝填充金属,D篇性能,以及一些增补内容。 与压力管道设计相关的典型的为A篇、D篇等。 A篇的主要分类有:钢板、薄板和钢带,公称管(Pipe),管子(Tube),钢法兰、配件、阀门及零件,压力容器用钢板、薄板和钢带,结构钢,钢棒材,钢螺栓材料,钢坯和锻件,钢铸件,耐腐蚀钢和耐热钢,锻轧铁、铸铁和可锻铸铁,以及方法标准等。 材料表示方法用"标准号-级别"及UNS。 如304是级别。TP316前面的TP表示管材,英文单词TUBE &PIPE的首个字母。F316前面的F表示锻件,是FORGING的缩写。一般在ASME里,很多都是引用ASTM标准,并在前面加个S,如A312被ASME纳入后为SA312。在ASTM标准中,A表示为A系列材料,当然还有B、C 等。 美国高合金钢用UNS牌号表示,它是按美国钢铁协会AISI的编号表示方法转过来的,比如,AISI把18-8不锈钢记为UNS No S 30400(3代表镍铬钢),ASTM引用过来叫它为304型,

相关主题