搜档网
当前位置:搜档网 › 一阶线性微分方程组

一阶线性微分方程组

一阶线性微分方程组
一阶线性微分方程组

第4章 一阶线性微分方程组

一 内容提要

1. 基本概念

一阶微分方程组:形如???????????===),,,,( ),,,,(),,,,(2121222111n n n n n y y y x f dx

dy y y y x f dx dy y y y x f dx dy (3.1) 的方程组,(其中n y y y ,,,21 是关于x 的未知函数)叫做一阶微分方程组。

若存在一组函数)(,),(),(21x y x y x y n 使得在[a,b]上有恒等式

),,2,1))((,),(),(,()(21n i x y x y x y x f dx

x dy n i i ==成立,则

)(,),(),(21x y x y x y n 称为一阶微分方程组(3.1)的一个解

含有n 任意常数n C C C ,,,21 的解 ???????===)

,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ??? 称为(3.1)通解。如果通解满方程组

???????=Φ=Φ=Φ0

),,,,,,,,(

0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x 则称这个方程组为(3.1)的通积分。

满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y === 的解,叫做初值问题的解。

令n 维向量函数

Y )(x =????

????????)( )()(21x y x y x y n ,F (x ,Y )=????????????),,,,( ),,,,(),,,,(21212211n n

n n y y y x f y y y x f y y y x f

?????????

???????????=dx dy dx dy dx dy dx x dY n )(21,??????????????????????=x x x x n x x x x dx x f dx x f dx x f x F 0000)( )()()(21 则(3.1)可记成向量形式 ),,(Y x F dx

dY = (3.2) 初始条件可记为

Y (0x )=0Y ,其中????

?

???????=no y y y Y 20100 则初值问题为:

?????==0

0)(),(Y x Y Y x F dx dY (3.3) 一阶线性微分方程组:形如???????????++++=++++=++++=)()()()( )()()()()

()()()(21211222221212112121111x f x a y x a y x a dx

dy x f x a y x a y x a dx dy x f x a y x a y x a dx dy n nn n n n n n (3.4)

的一阶微分方程组,叫做一阶线性微分方程组.

A (x )=??????????)(a )(a )(a )(nn n11n 11x x x x a 及F ()x =?????

???????)( )()(21x f x f x f n 则(3.4)的向量形式: )()(x F Y x A dx

dY += (3.5)

F (0)≡x 时 Y x A dx

dY )(= (3.6) 称为一阶线性齐次方程组,

(3.5)式称为一阶线性非齐次方程组。

在(3.5)式A (,的每一个元素都为常数)x 即

A (????

????????==nn n2

n12n 22211n 1211a a a a a a a a ) a A x )(x F AY dx

dY += (3.7) 叫做常系数线性非齐次微分方程组. AY dx

dY = (3.8) 叫做常系数线性齐次微分方程组.

2. 一阶线性微分方程组的通解结构.

定理1(一阶线性微分方程组解存在唯一性定理):如果线性微分方程组 )()(x F Y x A dx

dY +=中的A )(x 及F )(x 在区间I=[]b a ,上连续,则对于[]b a ,上任一点0x 以及任意给定的Y 0,方程组 )()(x F Y x A dx

dY +=的满足初始条件的解在[]b a ,上存在且唯一。

1)向量函数线性相关性及其判别法则

定义:设)(),(),(21x Y x Y x Y m 是m 个定义在区间I 上的n 维向量函数。如果存在m 个不全为零的常数,,,,21m C C C 使得0)()()(2211=+++x Y C x Y C x Y C m m 恒成立,则称这m 个向量函数在区间I 上线性相关;否则它们在区间I 上线性无关。

判别法则:①定义法

②朗斯基(Wronski )行列式判别法:

对于列向量组成的行列式

)

( )(

)

( )()(1111x y x y x y x y x W nn n n =

通常把它称为n 个n 维向量函数组)(),(),(21x Y x Y x Y n 的朗斯基(Wronski )行列式。

定理1 如果n 个n 维向量函数组)(),(),(21x Y x Y x Y n 在区间I 线性相关,则们的朗斯基(Wronski )行列式)(x W 在I 上恒等于零。

逆定理未必成立。

如: ??

????=??????=0)(Y 02)(221x x x x Y 朗斯基行列式)(x W 在I 上恒等于零,但它们却是线性无关。

定理2 如果n 个n 维向量函数组)(),(),(21x Y x Y x Y n 的朗斯基(Wronski )行列式)(x W 在区间I 上某一点0x 处不等于零,即,0)(0≠x W 则向量函数组)(),(),(21x Y x Y x Y n 在区间I 线性无关。

逆定理未必成立。同前例。

但如果)(),(),(21x Y x Y x Y n 是一阶线性齐次微分方程组

Y x A dx dY )(=的解,则上述两定理及其逆定理均成立。即

定理 3 一阶线性齐次微分方程组Y x A dx

dY )(=的解)(),(),(21x Y x Y x Y n 是线性无关的充要条件是它们的朗斯基(Wronski )行列式)(x W 在区间I 上任一点0x 处不等于零;解)(),(),(21x Y x Y x Y n 是线性相关的充要条件是它们的朗斯基(Wronski )行列式)(x W 在区间I 上任一点0x 处恒等于零

2).基本解组及其有关结论

定义:一阶线性齐次微分方程组Y x A dx

dY )(=的n 个线性无关解称为它的基本解组

判别:一阶线性齐次微分方程组Y x A dx

dY )(=的解)(),(),(21x Y x Y x Y n 是一个基本解组的充要条件是它们的朗斯基(Wronski )行列式)(x W 在区间I 上任一点0x 处不等于零。

结论:①一阶线性齐次微分方程组

Y x A dx dY )(=必存在基本解组。 ②基本解组有无穷多个。

3)一阶线性齐次微分方程组Y x A dx

dY )(=通解的结构 定理:如果)(),(),(21x Y x Y x Y n 是线性齐次微分方程组

Y x A dx dY )(=的基本解组,则其线性组合Y =)(x )()()(2211x Y C x Y C x Y C n n +++ 是线性齐次微分方程组Y x A dx

dY )(=的通解。 结论: 线性齐次微分方程组

Y x A dx dY )(=的解的全体构成一n 维线性空间。 4)解与系数的关系,即刘维尔公式

定理:如果)(),(),(21x Y x Y x Y n 是线性齐次微分方程组Y x A dx

dY )(=的解,则这n 个解的朗斯基行列式与线性齐次微分方程组

Y x A dx

dY )(=的系数的关系是: []?=+++x x nn dt t a t a t a e x W x W 02211)()()(0)()(

此式称为刘维尔(Liouville )公式.

由此公式可以看出n 个解的朗斯基行列式)(x W 或者恒为零,或者恒不为零

∑=n k kk x a

1)(称为矩阵A )(x 的迹。记作)(x trA 。

一阶线性非齐次方程组的通解结构

定理(通解结构定理):线性非齐次方程组)()(x F Y x A dx

dY +=的通解等于对应的

齐次微分方程组 Y x A dx dY )(= 的通解与)()(x F Y x A dx

dY +=的一个特解之和。即 )(x F AY dx

dY +=的通解为Y =)(x )()()(2211x Y C x Y C x Y C n n +++ )(~x Y + 其中)()()(2211x Y C x Y C x Y C n n +++ 为对应的齐次微分方程组Y x A dx

dY )(=的通解,)(~x Y 是)()(x F Y x A dx

dY +=的一个特解。 求通解的方法——拉格朗日常数变易法:对应的齐次微分方程组

Y x A dx dY )(=的一个基本解组)(),(),(21x Y x Y x Y n 构成基本解矩阵

????

??????=Φ)(y )(y )( (x))(nn n1111x x x y y x n 齐次微分方程组Y x A dx

dY )(=的通解为 C X x Y )()(Φ= 其中????

?

???????=n 21C C C C 线性非齐次方程组)(x F AY dx

dY +=的通解为 ?-ΦΦ+Φ=x

x dt t F t x C x x Y 0)()()()()(1。

结论:线性非齐次方程组)()(x F Y x A dx

dY +=解的全体并不构成n+1维线性空间。 3. 常系数线性微分方程组的解法

常系数线性齐次微分方程组的解法:若当标准型方法(基本解组的求解方法)

① 求特征根:即特征方程式

det(A-0 )21222211n 1211=?????

???????---=λλλλnn n n n a a a a a a a a a E 的解。

②根据特征根的情况分别求解:特征根都是单根时,求出每一个根所对应的特征向量,即可求出基本解组;单复根时,要把复值解实值化;有重根时,用待定系数法求出相应的解。(详略)

常系数线性非齐次微分方程组的解法:

①求相应的齐次微分方程组的基本解组;

② 用待定系数法求特解。(详略)

二.典型例题及解题方法简介

(1)化一阶线性微分方程组:有些高阶线性微分方程或高阶线性微分方程组,可以通过合

理的函数代换,化为一阶线性微分方程组。

例1 化如下微分方程为一阶线性微分方程组:

0)()(2=++y x q dx

dy x p dx y d 解:令21dx

dy ,y y y ==则 0)()(dx dy ,d , 122221221=++==y x q y x p dx dy dx

y y dx dy ∴原微分方程化为等价的一阶线性微分方程组:

???????--==12221)()(y x q y x p dx

dy y dx dy 例2化如下微分方程组为一阶线性微分方程组:

???????=-=-02032

2x dt

dy t y dt x d 解:令,, dt

dx , 321x y x x x ===则有 dt

dx x dt dx 321dt dy , == ∴原微分方程组化为等价的一阶线性微分方程组:

????

?????===313322

12t x dt dx x dt dx x dt dx (一) 一般线性微分方程组的求解问题

对于一般线性齐次微分方程组 Y x A dx

dY )(= ,如何求出基本解组,至今尚无一般方法。一些简单的线性微分方程组可以化为前面两章学过的微分方程来求解。

消元法(化方程组为单个方程的方法)

例3 求解方程组

???????+-=+-=yt x dt

dy t yt x dt dx t 2

解:有前一个方程解出y 并求导,有 dt

dx t x y += 2221dt x d dt dx t t

x dt dy ++-= 代入后一方程化简得 0222

=dt x d t 假定,0≠t 则有02

2=dt x d ,积分得 t

C C C t t C C dt dx t x y t

C C x 1

2221212+=++=+=+= 原方程组的通解为 )0(2,2

121≠???+=+=t C t C y t C C x 常系数线性微分方程组在教材中介绍了若当标准型方法,其实两个方程构成的简单常系数线性微分方程组我们还可以用消元法求解。

例4 解方程组

???????+=+=11x dt

dy y dt dx 解:由前一方程得x y x y ''='∴-'= 1代入后一方程,得常系数二阶线性方程 01=--''x x

其通解为

121-+=-t t e C e C x

从而 1121--=-'=-t t e

C e C x y

所以通解为

?????--=-+=--1

12121t t t t e C e C y e C e C x 例5解方程组

??

???-==--='+='2y(0) ,6)0(383x y x y y x x

解:由第二式得y y x '--=3

y y x ''-'-='∴3 代入第一式得0='-''y y

从而可求得 t t e C e C y -+=21 代入y y x '--=3得

t t e C e C x ---=2124

将0=t 代入上述两式得??

?+=---=2

1212246C C C C 解得 121-==C C

所以原方程组的解为

?????--=+=--t t t t e e y e e x 24 (三)常系数线性齐次微分方程组

AY dx dY =的通解问题 虽然一般线性齐次微分方程组 Y x A dx

dY )(= ,如何求出基本解组,至今尚无一般方法,但是常系数线性齐次微分方程组AY dx

dY =通过若当标准型方法,从理论上已经完全解决,根据特征根情形分别采取不同的求解方法,教材上都一一作了详细的讲解,在此不再多讲。

在此我们介绍一种通用的方法——待定系数法

步骤:①解特征方程式

det(A-0 )21222211n 1211=?????

???????---=λλλλnn n n n a a a a a a a a a E ,得特征根; ②根据根的重数,求出对应于每一个根的解式

设λ是线性齐次微分方程组 AY dx

dY =是k 重根(单根为k=1),则线性齐次微

分方程组 AY dx

dY =对应λ的解式为 ???????+++=+++=+++=---t

k nk n n n

t k k t

k k e t C t C C x e t C t C C x e t C t C C x λλλ)(

)()(12112222121112111 其中ij C ),,2,1,,,2,1(k j n i ==为待定常数,将此解式代入AY dx

dY =中,比较两端同类项的系数,得一关于ij C 的线性代数方程组,解之即可定出ij C 。

③ 把对应于每一个根的解式相加,即可得到AY dx

dY =的通解。 例6 (均为单根的情形,教材170页例3.5.1)解方程组

??

???+-='-+-='+-='z y x z z y x y z y x x 353

解:特征方程为 λ

λλ-------3 1 1 1 5

1

1 1 3=0

即036361123=-+-λλλ

解之得特征根6,3,2321===λλλ(均为一重) 21=λ时令待定解为t t t e z e y e x 211211211,,γβα===代入原方程组,化简得

?????=+-=-+-=+-0030111

11111γβαγβαγβα

解得0,111=-=βαγ,若11C =α为任意常数,11C -=γ

对应于21=λ的解式为:

?????-===t t

e

C z y e C x 21112110

同理对应于32=λ的解式为:

?????===t t t

e

C z e C y e C x 322322322

对应于63=λ的解式为:

?????=-==t t t

e

C z e C y e C x 6336336332

通解为: ??

???++-=-=++=t t t t t t

t t e C e C e C z e C e C y e C e C e C x 63322163326332212

例7 (特征方程有复根的情形)解方程组:

?

??-='-='y x y y x x 25 解:特征方程为 λλ----1 2

5 1=0

即092=+λi 32,1±=λ都是单根象例6可得对应i 31=λ的特解:

it it e i y e x 3131)31(,5-==

因为原题是实系数的方程组,所以 it it e i y y e x x 312312)31(,5--+====

是i 32-=λ的特解

且1111Im ,Im Re ,Re y x y x 及为原题的实线性无关解。(注:若bi a z +=则记Rez=a,Imz=b )

所以复通解为

?????++-=+=--it it it it e

C i e C i y e C e C x 32313231)31()31(55 实通解为:

???-++=+=)

3cos 33(sin )3sin 33(cos 3sin 53cos 52121t t C t t C Y t C t C x 例8 (特征方程有重根的情形)解方程组

?

??-='+='x y y y x x 42 解:特征方程为λ

λ---4 1 1 2=0 即;0962

=+-λλ解得λ=3是两重根 即k=2

对应的待定解式为

?????+=+=t t e t y e t x 322311)()(βαβα 代入原方程并比较两边的同次幂的系数,得

???????-=+=-=++=+1

22211

1222211143234323ββββββααβαααβα 解得,12112 ,βββαα=

+=。

令2111 C C ==βα 得

通解为

?????++=+=t t e t C C C y e t C C x 3221321)()( (四)常系数线性非齐次微分方程组

)(x F AY dx

dY +=的通解问题 根据常系数线性非齐次方程组)(x F AY dx

dY +=的通解等于对应的常系数齐次微分方程组 AY dx dY = 的通解与)(x F AY dx dY +=的一个特解之和。即 )(x F AY dx

dY +=的通解为Y =)(x )()()(2211x Y C x Y C x Y C n n +++ +)(~x Y 其中)()()(2211x Y C x Y C x Y C n n +++ 为对应的齐次微分方程组

AY dx dY =的通解。前面已经介绍了对应的齐次微分方程组

AY dx

dY =的通解问题,只须用拉格朗日常数变易法求出一个特解即可。

例9解方程组

???++='++='t e

y x y t

y x x 823532 解:特征方程为 λλ--2 3

3 2=0542=--λλ

特征根为1,521-==λλ

易于求得对应的对应的齐次微分方程组的通解为

?????-=+=--t t t t e

C e C y e C e C x 251251 根据拉格朗日常数变易法,令原方程组的特解为

?????-=+=--t t t t e

t C e t C y e t C e t C x )()(~)()(~251251 代入原方程组得

?????='-'='+'--t t t t t e

e t C e t C t e t C e t C 8)()(5)()(251251 解之得 ???

????-='+='--t

t t t e te t C e te t C 22451425)(425)( 积分得 ???

????--=---=--t

t t t e e t t C e e t t c 224512)2525()()10121()( 代入 ?????-=+=--t t t t e

t C e t C y e t C e t C x )()(~)()(~251251 即得一个特解 ???

????++-=--=t t e t y e t x 5123~35132~ 所以,已知方程组的通解为

???

????++--=--++=--t

t t t t t e t e C e C t y e t e C e C t x 5123)(35132)(251251

说明:本章的理论相对来说不难理解,但在求解时非常繁琐,所以在求通解时要特别仔细,在实际解题时我们也只能求解未知函数个数较少的常系数线性微分方程组,两个或三个的情形。根据教学大纲的要求,本章的重点是:含有两个未知函数的常系数线性微分方程组且特征根是单根情形的通解。

微分方程习题及答案

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222 t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1) (22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程

1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3)23xy xy dx dy =-; (4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1)1 ,022=-==x y y x xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-='y x y

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

微分方程复习题(1)

常微分方程复习题 一、填空题 1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________. 答:1 2.形如_ 的方程称为齐次方程. 答: )(x y g dx dy = 3.方程04=+''y y 的基本解组是 . 答:cos 2,sin 2x x . 1. 二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 答:线性无关(或:它们的朗斯基行列式不等于零) 2. 方程02=+'-''y y y 的基本解组是 . 答:x x x e ,e 3. 若()t ?和()t ψ都是()X A t X ''=的基解矩阵,则()t ?和()t ψ具有的关系是 。 4.一阶微分方程0),(),(=+dy y x N dx y x M 是全微分方程的充分必要条件是 。 5. 方程0),(),(=+dy y x N dx y x M 有只含x 的积分因子的充要条件是 。有只含y 的积分因子的充要条件是 。 6. 一曲线经过原点,且曲线上任意一点()y x ,处 的切线斜率为y x +2,则曲线方程为 。 7. 称为n 阶齐线性微分方程。 8. 常系数非齐线性方程()(1)11()n n x n n m y a y a y a y e P x α--'+++=(其中()m P x 是m 次多项式)中,则方程有形如 的特解。 9. 二阶常系数线性微分方程32x y y y e '''-+=有一个形如 的特解。

10. 微分方程4210y y y ''''''+-=的一般解为 。 9. 微分方程4 230xy y y ''''++=的阶数为 。 10. 若()(0,1,2, ,)i x t i n =为齐次线性方程的n 个线性无关解,则这一齐线性方程的 通解可表为 . 11. 设()x t 为非齐次线性方程的一个特解, ()(0,1,2, ,)i x t i n =是其对应的齐次线性 方程的一个基本解组, 则非齐线性方程的所有解可表为 . 12. 若()(0,1,2, ,)i x t i n =是齐次线性方程()(1)11()()()0 n n n n y a x y a x y a x y --'+++=的n 个解,)(t w 为其朗斯基行列式,则)(t w 满足一阶线性方程 。 答:1()0w a x w '+= 13. 函数 是微分方程02=-'-''y y y 的通解. 14. 方程02=+'-''y y y 的基本解组是 . 15. 常系数方程有四个特征根分别为11,0,1λ=-(二重根),那么该方程有基本解组 . 16. ()Y A x Y '=一定存在一个基解矩阵()x Φ,如果()x ψ是()Y A x Y '=的任一解,那么()x ψ= 。 17.若)(t Φ是()X A t X '=的基解矩阵,则向量函数)(t ?= 是 ()()X A t X F t '=+的满足初始条件0)(0=t ?的解;向量函数)(t ?= 是()()X A t X F t '=+的满足初始条件η?=)(0t 的解。 18. 设12(),()X t X t 分别是方程组1()()X A t X F t '=+,2()()X A t X F t '=+的解,则满足方程12()()()X A t X F t F t '=++的一个解可以为 。 19. 设* X 为非齐次线性方程组()()X A t X F t '=+的一个特解, )(t Φ是其对应的齐次线性方程组()X A t X '=的基解矩阵, 则非齐线性方程组()()X A t X F t '=+的所有解可表为 . 20.方程组()X A t X '=的n 个解12(),(), ,()n X t X t X t 线性无关的充要条件

【习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 x 2-1已知f(x) f(t)dt 1, x 0,试求函数f (x)的一般表达式。 0 x 解 对方程f(x) f (t)dt 1,两边关于x 求导得 x f (x) f (t)dt f 2(x) 0, f (X)丄 f(x) f 2(x) 0 , 分离变量,可求得 代入原方程可得 C 0,从而f(x)的一般表达式为f (x) 评注:本题中常数的确定不能直接通过所给积分方程得到, 确定。 解由导数的定义可得 x(t s) x(t) x (t) lim s 0 s 2 |im x(s) x (t)x(s) s 0 [1 x(t)x(s)]s lim 丄辿型 s 01 x(t)x(s) s 显然可得x(0) 0,故 分离变量,再积分可得 x(t) [1 2 x (t)] !i 叫 x(s) x(0) s x (0) [1 x 2(t)] f(x) 、2(x C)' 1 2x 。 而是需将通解代回原方程来 2-2求具有性质x(t S) x(t) x(s) 1 x(t)x(s) 的函数x(t),已知x (0)存在。

x(t) tan[x(O)t C], 再由x(0) 0,知C 0,从而x(t) ta n[x(0)t]。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若M(x,y)x N(x,y)y 0,证明齐次方程M (x, y)dx N(x,y)dy 0 有积分因 1 xM(x,y) yN(x, y) 证方法1用凑微分法求积分因子。 我们有恒等式 M (x, y)dx N (x, y)dy 1 dx dv 2 {(M(x,y)x N(x,v)v)U 寺(M(x,v)x 鱼din (xy), x y 空翌din仝, x y y 所以原方程变为 -{( M (x, y)x N (x, y)y)d ln(xy) (M (x, y)x N (x, y)y)d ln —} 0。 2 y 1 1 M (x, y)x N(x, y)y「x -d ln(xy) d in 0, 2 2 M(x,y)x N(x,y)y y 由于M( x ,y) x N(x, y)y 为零次齐次函数,故它可表成仝的某一函数,记为f (上),M (x,y)x N(x, y)y y y I X MX" N(x,y)y % 巧F(in^), M(x,y)x N(x,y)y y y N (x,y)y)(¥3)} y 用(x,y) 1 M(x,y)x 乘上式两边,得 N(x,y)y

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1)(22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程 1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3) 23xy xy dx dy =-; (4)0)22()22 (=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)2 1 ,12= =+'=x y y y y x

3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1) 1 ,0 22=-==x y y x xy dx dy ; (2)1 ,02)3(0 22==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-= 'y x y (4)0)1()1(22=++++dy y x xy x dx xy y 6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常? 9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

【典型例题】 第三章 一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, | 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值

a ab b 21 2= 。 此时,)21,min()2, min(a a ab b a h ==,当且仅当a a 21 = ,即22==b a 时,h 取得最大值为 2 2 。 评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。特别地,对其中的b y a x D y x f M M b a h D y x ≤≤==∈,:),,(max ),, min(),(等常数意义的理解和对逐次逼近函数列? -+=x x n n dx x y x f y x y 0 ))(,()(10的构造过程的理 解。 例3-2 证明下列初值问题的解在指定区间上存在且唯一。 1) 2 1 0,0)0(cos 2 2≤ ≤=+='x y x y y ,。 2) 32 2 )2 1 (0,0)0(≤≤=+='x y y x y , 。 | 证 1) 以原点为中心作闭矩形区域1,2 1 :≤≤ y x D 。 易验证2 2 cos ),(x y y x f +=在区域D 上满足解的存在唯一性定理的条件,求得 2cos m ax 22),(=+=∈x y M D y x ,则2 1 )21,21min(==h 。 因此初值问题 ?? ?=+='0 )0(cos 2 2y x y y 的解在]21,21[- 上存在唯一,从而在区间]2 1 ,0[上方程 cos 22, x y y +='满足条件0)0( =y 的解存在唯一。 2) 以原点为中心作闭矩形区域b y a x D ≤≤,:。 易验证x y y x f +=2 ),(在D 上满足解的存在唯一性定理的条件,并求得 22),(m ax b a x y M D y x +=+=∈,

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

微分方程习题及解答

第十二章 微分方程 §12.1 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解? . 答:是 .

2.微分方程3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5.'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答:Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++= 解: 解: 2.求下列微分方程满足所给初始条件的特解: (1) 20,0x y x y e y -='==; (2) 2 sin ln ,x y x y y y e π='==; 解: 解: (3) 2d 2d 0,1x x y y x y =+==; (4) d 10d x y y x +=. 解: 解: 3*.设连续函数20()d ln 22x t f x f t ?? =+ ????,求()f x 的非积分表达式. 答:()ln 2x f x e =?.

微分方程的例题分析及解法

微分方程的例题分析及解法 本单元的基本内容是常微分方程的概念,一阶常微分方程的解法,二阶常微分方程的解法,微分方程的应用。 一、常微分方程的概念 本单元介绍了微分方程、常微分方程、微分方程的阶、解、通解、特解、初始条件等基本概念,要正确理解这些概念;要学会判别微分方程的类型,理解线性微分方程解的结构定理。 二、一阶常微分方程的解法 本单元介绍了三种类型的一阶微分方程的求解方法:变量可分离型,齐次型,线性方程。 对于一阶微分方程,首先要看是否可以经过恒等变形将它的变量分离; 对于一阶线性微分方程,先用分离变量法求解其相应的齐次方程,再用常数变易法求解非齐次方程;当然也可直接代下列通解公式: ()()?? ????+??=?-C dx e x q e y dx x p dx x p )( 齐次型微分方程 )(x y f y =' 令x y u =,则方程化为关于未知数u 与自变量x 的变量可分离的微分方程。 三、二阶微分方程的解法

1.特殊类型的二阶常微分方程 本章介绍了三种特殊类型的二阶方程的求解方法: (1))(x f y ='',直接积分; (2)),(y x f y '='',令p y =', (3)),(y y f y '='',令p y =',则p dy dp y ='' 这三种方法都是为了“降价”,即降成一阶方程。 2.二阶线性常系数微分方程 二阶线性常系数微分方程求解的关键是: (1)特征方程 对于相应的齐次方程,利用特征方程 02=++q p λλ 求通解: (2)对于非齐次方程,根据下列形式自由项的特点 )()(x P e x f m x μ= 和 []x x p x x P e x f n l ax ββsin )(~ cos )()(+= 设置特解*y 的形式,然后使用待定系数法。 四、微分方程的应用 求解应用问题时,首先需要列微分方程,这可根据有关科学知识,分析所研究的变量应该遵循的规律,找出各量之间的等量关系,列出微分方程,然后根据微分方程的类型的用相应的方法求解,还应注意,有的应用问题还含有初始条件。 一、疑难解析

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

微分方程习题及解答

第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解 . 答:是 . 2.微分方程3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5'的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是 . 答:Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++= 解: 解: 2.求下列微分方程满足所给初始条件的特解: (1) 20,0x y x y e y -='==; (2) 2sin ln ,x y x y y y e π='==; 解: 解: (3) 2d 2d 0,1x x y y x y =+==; (4) d 10d x y y x +=. 解: 解:

相关主题