搜档网
当前位置:搜档网 › 常用寄存器

常用寄存器

常用寄存器
常用寄存器

T/C 控制寄存器- TCCR0

T/C 计数寄存器- TCNT0

输出比较寄存器- OCR0

异步状态寄存器- ASSR

定时器/ 计数器中断屏蔽寄存器- TIMSK

定时器/ 计数器中断标志寄存器- TIFR

定时器/ 计数器控制寄存器-TCCR2

定时器/ 计数器寄存器- TCNT2

输出比较寄存器- OCR2

定时器/ 计数器中断标志寄存器- TIFR

计数器计数溢出TOV0

比较匹配相等OCF0

OCIE2(OCIE0):T/C2(T/C0)输出比较匹配中断

允许标志位

TOIE2(TOIE0):T/C2(T/C0)溢出中断允许标志

OCF2(OCF0):T/C2(T/C0)比较匹配输出的中断标志位

TOV2(TOV0):T/C2(T/C0)溢出中断标志位

FOC0:强制输出比较

COM0[1:0]:比较匹配输出方式

MCU 控制寄存器- MCUCR:

GICR在A VR中称为通用中断控制寄存器。通用中断控制寄存器GICR的高3位为INT0,INT1,INT2的中断允许位。

GIFR为设置外部中断寄存器; 若GIFR|=0x80时,INT1为外部中断输入引脚;

o和2是外部中断,1和3是定时器中断。

所谓的定时器/计数器就是每经过一个机器周期就自动加一,而机器周期就等于12个晶振周

期,例如:89C51的晶振为11.0592兆,那么它的机器周期就等于12乘以11059200微秒,而赋初值是在你编写程序的时候赋的(例如:定义int类型需要定时5毫秒就等于(65536-50000)*12/11059200),当计数加满后就会促发中断,从而实现定时/计数的功能

STM32库函数操作和寄存器操作

STM32库函数操作和寄存器操作 首先,两个都是C语言。从51过渡过来的话,就先说寄存器操作。每个MCU都有自己的寄存器,51是功能比较简单的一种,相应的寄存器也比较少,我们常用的就那么几个,像P0 P1 SMOD TMOD之类的,这些存在于标准头文件reg.h里面,因为少,所以大家就直接这么去操作了,每一位对应的意义随便翻一下手册就看得到,甚至做几个小项目就记的很清楚了。所以做51开发的时候大多数都是直接操作寄存器。 到了STM32,原理一样,也是有自己的寄存器,但是作为一款ARM 内核的芯片,功能多了非常多,寄存器自然也就多了很多,STM32的手册有一千多页,这时候想去像51那样记住每个寄存器已经不现实了,所以ST的工程师就给大家提供了库函数这么一个东西。这是个神器。库函数里面把STM32的所有寄存器用结构体一一对应并且封装起来,而且提供了基本的配置函数。我们要去操作配置某个外设的时候不需要再去翻眼花缭乱的数据手册,直接找到库函数描述拿来就可以用,这样就能把精力放在逻辑代码的开发上,而不是去费力的研究一个芯片的外设要怎么配置寄存器才能驱动起来。简单讲就是这些了,库函数是为了让开发者从大量繁琐的寄存器操作中脱离出来的一个文件包,在使用一个外设的时候让开发者直接去调用相应的驱动函数而不是自己去翻手册一个一个配置寄存器。有人说用库函数掌握不到芯片的精髓,见仁见智了。熟悉一款芯片是在不断的开发使用中逐渐了解并掌握的,调试的过程中会遇到很多问题,会要求我们去跟踪相关寄存器的状态,在整个框架都已经建立起来的基础上再去对照手册做具体到寄存器每一位的分析,代码对照现象,很快就能积累起来经验,祝成功。

51系列单片机寄存器详解

AUXR:辅助寄存器 字节地址=8EH,不可位寻址 - - - WDIDLE DISRTO - - DISALE WDIDLE:WTD在空闲模式下的禁止/允许位 当WDIDLE=0时,WDT在空闲模式下继续计数 当WDIDLE=1时,WDT在空闲模式下暂停计数 DISRTO:禁止/允许WDT溢出时的复位输出 当DISRTO=0时,WDT定时器溢出时,在RST引脚输出一个高电平脉冲 当DISRT0=1时,RST引脚为输入脚 DISALE :ALE禁止/允许位 当DISALE=0时,ALE有效,发出恒定频率脉冲 当DISALE=1时,ALE仅在CPU执行MOVC和MOVX类指令时有效,不访问外寄存器时,ALE不输出脉冲信号 AUXR1:辅助寄存器1字节地址A2,不可位寻 - - - -- - - DPS DPS:数据指针寄存器选择位 当DPS=0时,选择数据指针寄存器DPRT0 DPRT1时,选择数据指针寄存器DPS 当= PSW:程序状态字 CY——进位标记 AC——半进位标记 F0——用户设定标记 RS1、RS0——4个工作寄存器区的选择位。 VO——溢出标记 P——奇偶校验标记 PCON:电源控制器及波特率选择寄存器 字节地址=87H,不可位寻址 SMOD - - POF GF1 GF0 PD IDL SMOD——波特率倍增位 GF1、GF0——用户通用标记 PD——掉电方式控制位,PD=1时进入掉电模式 IDL——空闲方式控制位,IDL=1时进入空闲方式 在AT89S51中PCON.4是电源断电标记位POF,上电是为1 IE:中断允许控制寄存器

EA:中断允许总控制位 当EA=0时,中断总禁止。 当EA=1时,中断总允许后中断的禁止与允许由各中断源的中断允许控制位进行设置。 EX0( EX1):外部中断允许控制位 当EX0( EX1)=0 禁止外中断 当EX0( EX1)=1 允许外中断 ET0(EX1):定时/计数中断允许控制位 当ET0(ET1)=0 禁止定时(或计数)中断 当ET0(ET1)=1 允许定时(或计数)中断 ET2:定时器2中断允许控制位,在AT89S52、AT89C52中 ES:串行中断允许控制位 当ES=0 禁止串行中断 当ES=1 允许串行中断 IP:中断优先级控制寄存器 PX0——外部中断0优先级设定位 PT0——定时中断0优先级设定位 PX1——外部中断1优先级设定位 PT1——定时中断1优先级设定位 PS——串口中断优先级设定位 优先级设定位2PT2——定时器SCON:串行口控制寄存器 SM0、SM1:串行口工作方式选择位 SM2:多机通信控制位 REN:允许/禁止串行口接收的控制位 TB8:在方式2和方式3中,是被发送的第9位数据,可根据需要由软件置1或清零,也可以作为奇偶校验位,在方式1中是停止位。

汇编寄存器功能详解

数据寄存器(AX、BX、CX、DX) 1.寄存器AX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、 除、输入/输出等操作,它们的使用频率很高; 2.寄存器BX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 3.寄存器CX称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次数;在位 操作中,当移多位时,要用CL来指明移位的位数; 4.寄存器DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算, 也可用于存放I/O的端口地址; 变址寄存器(SI、DI) 寄存器SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便 指针寄存器(BP、SP) 寄存器BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。指针寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们主要用于访问堆栈内的存储单元,并且规定: BP为基指针(Base Pointer)寄存器,用它可直接存取堆栈中的数据; SP为堆栈指针(Stack Pointer)寄存器,用它只可访问栈顶 段寄存器(CS、DS、ES、SS、FS、GS) 段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址 CS 代码段寄存器(Code Segment Register),其值为代码段的段值 DS 数据段寄存器(Data Segment Register),其值为数据段的段值; ES 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 SS 堆栈段寄存器(Stack Segment Register),其值为堆栈段的段值; FS 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 GS 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 在16位CPU系统中,它只有4个段寄存器,所以,在此环境下开发的程序最多可同时访问4个段; 在32位CPU系统中,它共有6个段寄存器,所以,在此环境下开发的程序最多可同时访问6个段. 指令指针寄存器 指令指针EIP、IP(Instruction Pointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。 16位标志寄存器 9个标志位,它们主要用来反映CPU的状态和运算结果的特征。 1.进位标志CF(Carry Flag) 进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的 最高位产生了一个进位或借位,那么,其值为1,否则其值为0。 2.奇偶标志PF(Parity Flag)奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为 偶数,则PF的值为1,否则其值为0 3.辅助进位标志AF(Auxiliary Carry Flag) 在发生下列情况时,辅助进位标志AF的值被置为1,否 则其值为0:

51单片机

51单片机入门学习笔记 有一段时间不碰单片机了,现在重新整理。一是回忆知识,重新拾起来。二是给想入门单片机的朋友一点参考。一部分资料源于网络。 一、51单片机简介 目前学习板上常用的是STC89C52单片机。封装是DIP40。

主要参数 1. 增强型8051单片机,6 时钟/机器周期和12 时钟/机器周期可以任意选择,指令代码完全兼容传统8051。 2. 工作电压:5.5V~ 3.3V(5V单片机)/3.8V~2.0V(3V 单片机) 3.工作频率范围:0~40MHz,相当于普通8051 的0~80MHz,实际工作频率可达48MHz 4. 用户应用程序空间为8K字节 5. 片上集成512 字节RAM 6. 通用I/O 口(32 个),复位后为:P0/P1/P2/P3 是准双向口/弱上拉,P0 口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O 口用时,需加上拉电阻。 7. ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,数秒即可完成一片 8. 具有EEPROM 功能 9. 共3 个16 位定时器/计数器。即定时器T0、T1、T2 10.外部中断4 路,下降沿中断或低电平触发电路,Power Down 模式可由外部中断低电平触发中断方式唤醒 11. 通用异步串行口(UART),还可用定时器软件实现多个UART 12. 工作温度范围:-40~+85℃(工业级)/0~75℃(商业级) 二、I/O介绍 P0内部不带上拉电阻,其余三组带内部上拉电阻。P0是双向8位三态I/O口。由于内部没有上拉电阻。所以默认是高阻态(指的是电路的一种输出状态,既不是高电平也不是低电平,如果高阻态再输入下一级电路的话,对下级电路无任何影响,和没接一样,如果用万用表测的话有可能是高电平也有可能是低电平,随它后面接的东西定。电路分析时高阻态可做开路理解),所以使用时外部必须接上拉电阻。 三、寄存器 存器51单片机共有21个并且都是可寻址的列表如下(其中带*号的为52系列所增加的特殊功能寄存器): MCS-51单片机的特殊功能寄存器 符号地址功能介绍

51单片机特殊功能寄存器功能一览表

51单片机特殊功能寄存器功能一览表 21个特殊功能寄存器(52系列是26个)不连续地分布在128个字节的SFR存储空间中,地址空间为80H-FFH,在这片SFR空间中,包含有128个位地址空间,地址也是80H-FFH,但只有83个有效位地址,可对11个特殊功能寄存器的某些位作位寻址操作(这里介绍一个技巧:其地址能被8整除的都可以位寻址)。 在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器(SFR)。这样的特殊功能寄存器51单片机共有21个并且都是可寻址的列表如下(其中带*号的为52系列所增加的特殊功能寄存器):

分别说明如下: 1、ACC---是累加器,通常用A表示 这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢?或许是因为在运算器做运算时其中一个数一定是在ACC中的缘故吧。它的名字特殊,身份也特殊,稍后在中篇中我们将学到指令,可以发现,所有的运算类指令都离不开它。自身带有全零标志Z,若A=0则Z=1;若A≠0则z=0。该标志常用作程序分枝转移的判断条件。 2、B--一个寄存器 在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。 3、PSW-----程序状态字。 这是一个很重要的东西,里面放了CPU工作时的很多状态,借此,我们可以了解CPU的当前状态,并作出相应的处理。它的各位功能请看下表: 下面我们逐一介绍各位的用途 CY:进位标志。 8051中的运算器是一种8位的运算器,我们知道,8位运算器只能表示到0-255,如果做加法的话,两数相加可能会超过255,这样最高位就会丢失,造成运算的错误,怎么办?最高位就进到这里来。这样就没事了。有进、借位,CY=1;无进、借位,CY =0 例:78H+97H(01111000+10010111) AC:辅助进、借位(高半字节与低半字节间的进、借位)。

寄存器(register)

寄存器 Scope of register: 寄存器是CPU内部用来存放数据的一些小型存储区域,用来暂时存放参与运算的数据和运算结果。其实寄存器就是一种常用的时序逻辑电路,但这种时序逻辑电路只包含存储电路。寄存器的存储电路是由锁存器或触发器构成的,因为一个锁存器或触发器能存储1位二进制数,所以由N个锁存器或触发器可以构成N位寄存器。寄存器是中央处理器内的组成部份。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。 1、寄存器- 特点及原理 寄存器又分为内部寄存器与外部寄存器,所谓内部寄存器,其实也是一些小的存储单元,也能存储数据。但同存储器相比,寄存器又有自己独有的特点: ①寄存器位于CPU内部,数量很少,仅十四个; ②寄存器所能存储的数据不一定是8bit,有一些寄存器可以存储16bit数据,对于386/486处理器中的一些寄存器则能存储32bit数据; ③每个内部寄存器都有一个名字,而没有类似存储器的地址编号。 寄存器的功能十分重要,CPU对存储器中的数据进行处理时,往往先把数据取到内部寄存器中,而后再作处理。外部寄存器是计算机中其它一些部件上用于暂存数据的寄存器,它与CPU之间通过“端口”交换数据,外部寄存器具有寄存器和内存储器双重特点。有些时候我们常把外部寄存器就称为“端口”,这种说法不太严格,但经常这样说。 外部寄存器虽然也用于存放数据,但是它保存的数据具有特殊的用途。某些寄存器中各个位的0、1状态反映了外部设备的工作状态或方式;还有一些寄存器中的各个位可对外部设备进行控制;也有一些端口作为CPU同外部设备交换数据的通路。所以说,端口是CPU和外设间的联系桥梁。CPU对端口(Ports)的访问也是依据端口的“编号”(地址),这一点又和访问存储器一样。不过考虑到机器所联接的外设数量并不多,所以在设计机器的时候仅安排了1024个端口

ATPCS中寄存器使用

ATPCS中各寄存器的使用规则及其名称 参数传递规则 1. 参数不超过4个时,可以使用寄存器R0~R3来传递参数,当参数超过4个时,还可 以使用数据栈来传递参数。 2. 结果为一个32位整数时,可以通过寄存器R0返回 3. 结果为一个64位整数时,可以通过寄存器R0和R1返回,依次类推。 汇编程序、C程序及C++程序相互调用 C 程序调用汇编程序: ?汇编程序的设置要遵循ATPCS 规则,保证程序调用时参数的正确传递。 ?在汇编程序中使用EXPORT 伪指令声明本子程序,使其它程序可以调用此子程序。 ?在C 语言程序中使用extern 关键字声明外部函数(声明要调用的汇编子程序),即可调用此汇编子程序。 ?调用汇编的C 函数: ?示例 #include extern void strcopy(char *d,const char *s) //声明外部函数,即要调用的汇编 //子程序 int main(void) { const cha r *srcstr=“First string-source”;//定义字符串常量 char dstsrt[] =“Second string-destination”;//定义字符串变量 printf(“Before copying:\n”); printf(“?%s?\n …%s\n,”srcstr,dststr); //显示源字符串和目标字符串的内容strcopy(dststr,srcstr); //调用汇编子程序,R0=dststr,R1=srcstr printf(“Aft er copying:\n”) printf(“?%s?\n …%s\n,”srcstr,dststr); //显示strcopy 复制字符串结果 return(0);

DSP GPIO相关寄存器的设置最详细的一份资料了

每个通用I/O 端口都受多路复用(MUX),方向(DIR),数据(DAT),置位(SET),清除(CLEAR),以及切换(TOGGLE)寄存器的控制。 下面介绍这些寄存器的功能。 GPxMUX 寄存器(x=A,B,D,E,F,G) 每个I/O 端口都有一个MUX(多路复用)寄存器。这个寄存器用来在每个引脚(PIN)的外设操作及I/O 操作之间进行选择。复位时所有通用I/O 引脚都配置成数字I/O 功能。任何一个引脚都可通过16 位的多路复用寄存器 GPxMUX 进行外设或GPIO 功能的设置: 当GPxMUX.bit = 0,相应的一个引脚配置成I/O 功能; 当GPxMUX.bit = 1,相应的一个引脚配置成外设功能。 GPxDIR 寄存器(x=A,B,D,E,F,G)

每个I/O 端口都有一个方向控制寄存器。不论是将相应的I/O 引脚配置成输入还是输出,都由方向寄存器控制。复位时,所有通用I/O 引脚均配置成输入。 当GPxDIR.bit = 0,引脚配置成输入; 当GPxDIR.bit = 1,引脚配置成输出。 在采用GPxDIR 寄存器位将输入端口改变成输出端口之前,引脚的当前电平反映到GPxDAT 寄存器中。当端口的方向从输入改变成输出时,GPxDAT 寄存器的值用来确定引脚的电平。 例如,如果引脚已经从内部上拉,则复位后上拉将致使GPxDAT 寄存器对应位为1用于反映引脚的当前高电平。当端口的方向从输入改变成输出时,GPxDAT 寄存器已经为1 的位强迫该引脚为同一高电平。这样,在电平不变的情况下,引脚能够从输入转换为输出。 GPxDAT 寄存器(x=A,B,D,E,F,G)

51单片机寄存器地址查询

适合初学好东西一起分享 中断使能寄存器IE 中断总开关EA=1;启动有中断EA=0;关闭所有中断 保留 TF2中断开关ET2=1;启动ET2=0;关 闭(8052) 串行口中断开关ES=1启动串口ES=0 关闭串口 TF1中断开关ET1=1;启动ET1=0;关闭 INT1中断开关EX1=1; 启动EX1=0;关闭 TF0中断开关ET0=1;启动ET0=0;关闭 INT0中断开关EX0=1; 启动EX0=0;关闭 中断优先级寄存器IP EA — ET2 ES ET1 EX1 ET0 EX0 IE 寄存器 IP.7 IP .6 IP .5 IP .4 IP .3 IP .2 IP .1 IP .0 IP 寄存器 — — PT2 PS PT1 PX1 PT0 PX0 保留 保留 TF2中断先级 PT2=1;TF2为高优先级(8052) 串行口中断优先级PS1=1;为高优先级 TF1中断先级PT1=1;TF1为高优先级 INT1中断优先级PX1=1;为最高优先 级 TF0中断先级PT0=1;TF1为高优先级 INT0中断优先级PX0=1;为最高优先 级 定时器/计数器控制寄存器TCON Timer1中断标志CPU 设置 Timer1启 动开关TR1=1;启动Timer1 TR1=0;关闭Timer1 Timer0中断标志CPU 设置 Timer0启动开关TR0=1;启动Timer1 TR0=0;关闭Timer0 INT1中断标志CPU 设置 INT1信号种类IT1=1;负边沿触发IT1=0;低电平触发 INT0中断标志CPU 设置 INT0信号种类IT0=1;负边沿触发IT0=0;低电平触发 定时器/计数器功能 外部中断功能 定时器/计数器方式寄存器TMOD

单片机寄存器汇总表图文稿

单片机寄存器汇总表 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

51单片机寄存器功能一览表 21个特殊功能寄存器(52系列是26个)不连续地分布在128个字节的SFR存储空间中,地址空间为80H-FFH,在这片SFR空间中,包含有128个位地址空间,地址也是80H-FFH,但只有83个有效位地址,可对11个特殊功能寄存器的某些位作位寻址操作(这里介绍一个技巧:其地址能被8整除的都可以位寻址)。 在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器(SFR)。这样的特殊功能寄存器51单片机共有21个并且都是可寻址的列表如下(其中带*号的为52系列所增加的特殊功能寄存器):

分别说明如下: 1、ACC---是累加器,通常用A表示 这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢或许是因为在运算器做运算时其中一个数一定是在ACC中的缘故吧。它的名字特殊,身份也特殊,稍后在中篇中我们将学到指令,可以发现,所有的运算类指令都离

不开它。自身带有全零标志Z,若A=0则Z=1;若A≠0则z=0。该标志常用作程序分枝转移的判断条件。 2、B--一个寄存器 在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。 3、PSW-----程序状态字。 这是一个很重要的东西,里面放了CPU工作时的很多状态,借此,我们可以了解CPU的当前状态,并作出相应的处理。它的各位功能请看下表: 下面我们逐一介绍各位的用途 CY:进位标志。 8051中的运算器是一种8位的运算器,我们知道,8位运算器只能表示到0-255,如果做加法的话,两数相加可能会超过255,这样最高位就会丢失,造成运算的错误,怎么办最高位就进到这里来。这样就没事了。有进、借位,CY=1;无进、借位,CY=0 AC:辅助进、借位(高半字节与低半字节间的进、借位)。 例:57H+3AH(01010111+00111010)

西门子s7-200常用寄存器使用基础知识

西门子s7-200常用寄存器使用基础知识 1、S7-200将1个字长(16位)数字值按比例转换为电流或电压。可以用区域标识符(AQ)、数据长度(W)及字节的起始地址来改变这些值。因为模拟量为1个字长,且从偶数字节(如0、 2、4)开始,所以必须用偶数字节地址(如AQW0、AQW2、AQW4)来改变这些值。模拟量输出值为只写数据。模拟量转换的实际精度是12位。格式:AQW[起始字节地址]。例如:AQW4 2、在S7-200 CPU中,计数器用于累计从输入端或内部元件送来的脉冲数。它有增计数器、减计数器及增/减计数器3种类型。由于计数器频率扫描周期的限制,当需要对高频信号计数时可以用高频计数器(HSC)。 计数器有以下两种寻址形式。 当前值寻址:16位有符号整数,存储累计脉冲数。 计数器位寻址:根据当前值和预置值的比较结果置位或者复位。同定时器一样,两种寻址方式使用同样的格式,即C+计数器编号。例如:C0 (1)每个高速计数器都有一个32位当前值和一个32位预置值,当前值和预设值均为带符号的整数值。要设置高速计数器的新当前值和新预置值,必须设置控制字节(表6-7),令其第五位和第六位为1,允许更新预置值和当前值,新当前值和新预置值写入特殊内部标志位存储区。然后执行HSC指令,将新数值传输到高速计数器。当前值和预置值占用的特殊内部标志位存储区如表1所示。 表1 HSC0-HSC5当前值和预置值占用的特殊内部标志位存储区 除控制字节以及新预设值和当前值保持字节外,还可以使用数据类型HC(高速计数器当前值)加计数器号码(0、1、2、3、4或5)读取每台高速计数器的当前值。因此,读取操作可直接读取当前值,但只有用上述HSC指令才能执行写入操作。 (2)执行HDEF指令之前,必须将高速计数器控制字节的位设置成需要的状态,否则将采用默认设置。默认设置为:复位和起动输入高电平有效,正交计数速率选择4×模式。执行HDEF指令后,就不能再改变计数器的设置,除非CPU进入停止模式。

stm32 BKP寄存器操作操作寄存器+库函数

stm32 BKP 寄存器操作操作寄存器+库函数 BKP 是BACKUP 的缩写,stm32f103RCTE 的内部配备了10 个16 位宽度 的BKP 寄存器。在主电源切断或系统产生复位时间时,BKP 寄存器仍然可以 在备用电源的支持下保持其内容。BKP 在实际应用中可以存入重要数据,防止 被恶意查看,或用于断电等。本例实现对BKP 寄存器的读写操作,和入侵检 测和处理。主程序中写入寄存器后,依次打印出10 个BKP 寄存器数据,然后 触发GPIOC13 的入侵中断(输入低电平),在中断中打印出入侵事件发生后的 寄存器内容(复位为0 )。直接操作寄存器用到的寄存器描述如下:备份数据 寄存器x(BKP_DRx) (x = 1 10):低16 位[15:0]有效,用来写入或读出备份数据。备份控制寄存器(BKP_CR):低两位有效。TPAL[1]:侵入检测TAMPER 引脚有效电平(TAMPER pin active level)0:侵入检测TAMPER 引脚上的高电平会清除所有数据备份寄存器(如果TPE 位为1) 1:侵入检测TAMPER 引脚 上的低电平会清除所有数据备份寄存器(如果TPE 位为1)TPE[0]:启动侵入检 测TAMPER 引脚(TAMPER pin enable)0:侵入检测TAMPER 引脚作为通用IO 口使用1:开启侵入检测引脚作为侵入检测使用备份控制/状态寄存器 (BKP_CSR): TIF[9]:侵入中断标志(Tamper interrupt flag) 0:无侵入中断1:产生侵入中断当检测到有侵入事件且TPIE 位为1 时,此位由硬件置1。通过向CTI 位 写1 来清除此标志位(同时也清除了中断)。如果TPIE 位被清除,则此位也会被 清除。TEF[8]:侵入事件标志(Tamper event flag) 0:无侵入事件1:检测到侵入事件当检测到侵入事件时此位由硬件置1。通过向CTE 位写1 可清除此标 志位TPIE[2]:允许侵入TAMPER 引脚中断(TAMPER pin interrupt enable)0:禁止侵入检测中断1:允许侵入检测中断(BKP_CR 寄存器的TPE 位也必须被置1)注

51单片机寄存器汇总表

51单片机寄存器功能一览表 21个特殊功能寄存器(52系列是26个)不连续地分布在128个字节的SFR存储空间中,地址空间为80H-FFH,在这片SFR空间中,包含有128个位地址空间,地址也是80H-FFH,但只有83个有效位地址,可对11个特殊功能寄存器的某些位作位寻址操作(这里介绍一个技巧:其地址能被8整除的都可以位寻址)。 在51单片机部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O 口,中断系统,以及一个部的时钟电路。在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器(SFR)。这样的特殊功能寄存器51单片机共有21个并且都是可寻址的列表如下(其中带*号的为52系列所增加的特殊功能寄存器):

分别说明如下: 1、ACC---是累加器,通常用A表示 这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢?或许是因为在运算器做运算时其中一个数一定是在ACC中的缘故吧。它的名字特殊,身份也特殊,稍后在中篇中我们将学到指令,可以发现,所有的运算类指令都离不开它。自身带有全零标志Z,若A=0则Z=1;若A≠0则z=0。该标志常用作程序分枝转移的判断条件。 2、B--一个寄存器 在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。 3、PSW-----程序状态字。 这是一个很重要的东西,里面放了CPU工作时的很多状态,借此,我们可以了解CPU 的当前状态,并作出相应的处理。它的各位功能请看下表: 下面我们逐一介绍各位的用途 CY:进位标志。

C51单片机21个特殊功能寄存器

21个特殊功能寄存器(52系列是26个)不连续地分布在128个字节的SFR存储空间中,地址空间为80H-FFH,在这片SFR空间中,包含有128个位地址空间,地址也是80H-FFH,但只有83 个有效位地址,可对11个特殊功能寄存器的某些位作位寻址操作(这里介绍一个技巧:其地址能被8整除的都可以位寻址)。 在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器(SFR)。这样的特殊功能寄存器51单片机共有21个并且都是可寻址的列表如下(其中带*号的为52系列所增加的特殊功能寄存器):

分别说明如下: 1、ACC---是累加器,通常用A表示 这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢?或许是因为在运算器做运算时其中一个数一定是在ACC中的缘故吧。它的名字特殊,身份也特殊,稍后在中篇中我们将学到指令,可以发现,所有的运算类指令都离不开它。自身带有全零标志Z,若A=0则Z=1;若A≠0则z=0。该标志常用作程序分枝转移的判断条件。 2、B--一个寄存器 在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。 3、PSW-----程序状态字。 这是一个很重要的东西,里面放了CPU工作时的很多状态,借此,我们可以了解CPU的当前状态,并作出相应的处理。它的各位功能请看下表: 下面我们逐一介绍各位的用途CY:进位标志。,如果做加法的话,两数位运算器只能表示到0-255中的运算器是一种8位的运算器,我们知道,88051,这样最高位就会丢失,造成运算的错误,怎么办?最高位就进到这里来。这样就没事了。有相加可能会超过2550 CY==1;无进、借位,进、借位,CY )78H+97H(01111000+10010111例: 。(高半字节与低半字节间的进、借位)AC:辅助进、借位)(01010111+0011101057H+3AH例::用户标志位F0 由用户(编程人员)决定什么时候用,什么时候不用。 :工作寄存器组选择位、RS0RS1现场保两位的状态,就能任选一个工作寄存器区。这个特点提高了MCS-51中的RS1、RS0通过修改PSW不需的工作效率和响应中断的速度是很有利的。若在一个实际的应用系统中,护和现场恢复的速度。对于提高CPU 要四组工作寄存器,那么这个区域中多余单元可以作为一般的数据缓冲器使用。 0V:溢出标志位0。什么是溢出我们后面的章节会讲到。运算结果按补码运算理解。有溢出,OV=1;无溢出,OV= :奇偶校验位P。运算结果有,否则为0P=1ALU它用来表示运算结果中二进制数位“1”的个

PLC的文件寄存器的使用

PLC文件寄存器与HMI的配方的功能对比 摘要:在我们编程的过程中,有时会遇到PLC数据处理和数据运算所需的数据寄存器不足的情况,这时候,我们如果有HMI作为上位监控的情况下,我们会使用HMI的配方功能来处理一些数据运算,以此分担PLC的运算负担,但是,如果数据量较大,将HMI的配方传输到PLC中会花费比较长的时间。藉此我们可以使用文件寄存器来实现数据的快速响应。 关键词:PLC,HMI,文件寄存器,配方 一、介绍 在有些情况下,我们会因为处理的数据量比较大而用到HMI的配方,比如自动弹钢琴系统,但是,这时会产生一个问题就是将HMI中的配方下载到PLC中时会比较慢。在运行系统的时候会有一段等待的时间,这样就造成了客户在参观时的尴尬状态。 鉴于以上的问题,我们就可以使用PLC中的文件寄存器来代替配方。 文件寄存器(file register):当PLC处理数据和数值运算所需的数据寄存器不足时,可以利用文件寄存器来存储数据和各类参数。每个文件寄存器内为16位,即存有一个字,处理双字用相邻编号的两个文件寄存器。文件寄存器SA/SX/SC 系列机种一共有1600个,EH/EH2/SV系列机种一共有10000个。文件寄存器并没有实际的装置编号,所以需透过指令API 148 MEMR、API 149 MEMW或是透过周边装置HPP02及WPLSoft来执行晚间寄存器的读写功能。 注:装置表示:K0~K9999,无装置符号,顺序以十进制编号。 MEMR m D n文件寄存器数据读出 m: 欲读取文件寄存器的编号 D: 存放读取数据的位置,指定的D开始编号(D寄存器的起始编号为D2000)n : 一次读取的数据笔数 MEMW S m n 文件寄存器数据写入 S: 欲写入数据的位置,指定的D开始编号(D寄存器的起始编号为D2000)m: 欲写入文件寄存器的编号 n : 一次写入数据笔数 二、软件操作: 1、开启WPLSoft,选到通讯选项卡,如图(一) 图(一)

单片机寄存器名称

【转】【51单片机特殊功能寄存器功能一览表】 Posted on 2011-03-26 15:07 香格里拉\(^o^)/阅读(688) 评论(0)编辑收藏 【转】【51单片机寄存器功能一览表】 21个特殊功能寄存器(52系列是26个)不连续地分布在128个字节的SF R存储空间中,地址空间为80H-FFH,在这片SF R空间中,包含有128个位地址空间,地址也是80H-FFH,但只有83个有效位地址,可对11个特殊功能寄存器的某些位作位寻址操作(这里介绍一个技巧:其地址能被8整除的都可以位寻址)。 在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有R OM,用来存放程序,有R AM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能 寄存器(SF R)。这样的特殊功能寄存器51单片机共有21个并且都是可寻址的列表如下(其中带*号的为52系列所增加的特殊功能寄存器):

分别说明如下: 1、ACC---是累加器,通常用A表示 这是个什么东西,可不能从名字上理解,它是一个寄存器,而不是一个做加法的东西,为什么给它这么一个名字呢?或许是因为在运算器做运算时其中一个数一定是在ACC中的缘故吧。它的名字特殊,身份也特殊,稍后在中篇中我们将学到指令,可以发现,所有的运算类指令都离不开它。自身带有全零标志Z,若A=0则Z=1;若A≠0则z=0。该标志常用作程序分枝转移的判断条件。 2、B--一个寄存器 在做乘、除法时放乘数或除数,不做乘除法时,随你怎么用。 3、PSW-----程序状态字。 这是一个很重要的东西,里面放了CPU工作时的很多状态,借此,我们可以了解CPU的当前状态,并作出相应的处理。它的各位功能请看下表: 下面我们逐一介绍各位的用途 CY:进位标志。 8051中的运算器是一种8位的运算器,我们知道,8位运算器只能表示到0-255,如果做加法的话,两数相加可能会超过255,这样最高位就会丢失,造成运算的错误,怎么办?最高位就进到这里来。这样就没事了。有进、借位,CY=1;无进、借位,CY=0 例:78H+97H(01111000+10010111) AC:辅助进、借位(高半字节与低半字节间的进、借位)。

通用寄存器的作用

通用寄存器的作用 数据寄存器不讲,简单的说,段寄存器(ES,CS,SS,DS,FS,GS)和变址寄存器(SI,DI)是配合使用访问段数据的,指针寄存器(BP,SP)是用来操作堆栈的,BP指向栈的基址,SP则永远指向栈顶。 另外指令指针EIP存放的是要执行的下一条指令在代码段里的偏移量,在实方式下,每个段的最大范围都是64K,所以EIP的高16位都是0。 寄存器的分类寄存器主要用途 通用寄存器 数据 寄存器 AX 乘、除运算,字的输入输出,中间结果的缓存 AL 字节的乘、除运算,字节的输入输出,十进制算术运算 AH 字节的乘、除运算,存放中断的功能号 BX 存储器指针 CX 串操作、循环控制的计数器 CL 移位操作的计数器 DX 字的乘、除运算,间接的输入输出 变址 寄存器 SI 存储器指针、串指令中的源操作数指针 DI 存储器指针、串指令中的目的操作数指针 变址 寄存器 BP 存储器指针、存取堆栈的指针 SP 堆栈的栈顶指针 指令指针IP/EIP 标志位寄存器Flag/EFlag 32位CPU的段寄存器16位CPU的 段寄存器 ES 附加段寄存器 CS 代码段寄存器 SS 堆栈段寄存器 DS 数据段寄存器新增加的 段寄存器 FS 附加段寄存器 GS 附加段寄存器

--------------------------------- 1、数据寄存器 数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。 32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。对低16位数据的存取,不会影响高16位的数据。这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。 4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。 寄存器AX和AL通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。 累加器可用于乘、除、输入/输出等操作,它们的使用频率很高; 寄存器BX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 寄存器CX称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次 数;在位操作中,当移多位时,要用CL来指明移位的位数; 寄存器DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数 参与运算,也可用于存放I/O的端口地址。 在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,但在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果,而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。详细内容请见第3.8节——32位地址的寻址方式。 2、变址寄存器 32位CPU有2个32位通用寄存器ESI和EDI。其低16位对应先前CPU中的SI 和DI,对低16位数据的存取,不影响高16位的数据。 寄存器ESI、EDI、SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式(在第3章有详细介绍),为以不同的地址形式访问存储单元提供方便。 变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。具体描述请见第5.2.11节。 3、指针寄存器 32位CPU有2个32位通用寄存器EBP和ESP。其低16位对应先前CPU中的SBP 和SP,对低16位数据的存取,不影响高16位的数据。 寄存器EBP、ESP、BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式(在第3章有详细介绍),为以不同的地址形式访问存储单元提供方便。

PIC18F4550单片机三个操作寄存器的使用方法

PIC18F4550单片机三个操作寄存器的使用方法 试验芯片:Microchip PIC 18F4550 集成开发环境:MPLAB IDE v8.53 编译器:Microchip C18 PIC18系列单片机是美国微芯公司(Microchip)8位单片机系列中的高档系列,其任一I/O 引脚允许的最大灌电流或最大拉电流达25mA,可以直接驱动LED和继电器。PORTA、PORTB和PORTE的最大灌电流或最大拉电流总和为200mA,PORTC和PORTD的最大灌电流或最大拉电流总和为200mA,PORTF和PORTG的最大灌电流或最大拉电流总和为100mA(注:PIC18F4550没有这两个端口)。 单片机和外设的交互都是通过I/O端口进行,每个I/O端口均有三个操作寄存器: 1、TRISx———数据方向寄存器 用来控制I/O引脚的方向,即用来控制PORTx是输入还是输出。 2、PORTx———端口寄存器 用来锁存输出数据。当读PORTx时,器件直接读I/O引脚电平(而不是锁存值)。 3、LATx———输出数据锁存器 写端口就是写该锁存器(LATx)。数据锁存器也可以直接读写。如果外设没有使用该引脚,并且TRISx位配置该引脚为输出,则将锁存器内的数据输出到引脚。 在复位状态下,TRISx的复位值为0xff,即TRISx寄存器的8个位(D0 ~ D7)的值均为1。此时相应的PORTx引脚被定义为输入,相应的输出驱动器呈现高阻状态。设置为0时表示相应的引脚定义为输出。 这里应注意的是写PORT就是写LAT,但读PORT和读LAT不同。读PORT读的是引脚的状态,无论该引脚设置为输入引脚还是输出引脚。而读LAT得到的是输出数据锁存器的存储值,读LAT得到的值可能和读PORT得到的值存在不同。

51单片机寄存器功能查看(带目录)

【51单片机寄存器功能一览表】 21个特殊功能寄存器(52系列是26个)不连续地分布在128个字节的SFR存储空间中,地址空间为80H-FFH,在这片SFR空间中,包含有128个位地址空间,地址也是80H-FFH,但只有83个有效位地址,可对11个特殊功能寄存器的某些位作位寻址操作(这里介绍一个技巧:其地址能被8整除的都可以位寻址)。 在51单片机内部有一个CPU用来运算、控制,有四个并行I/O口,分别是P0、P1、P2、P3,有ROM,用来存放程序,有RAM,用来存放中间结果,此外还有定时/计数器,串行I/O口,中断系统,以及一个内部的时钟电路。在单片机中有一些独立的存储单元是用来控制这些器件的,被称之为特殊功能寄存器(SFR)。这样的特殊功能寄存器51单片机共有21个并且都是可寻址的列表如下(其中带*号的为52系列所增加的特殊功能寄存器): MCS-51单片机的特殊功能寄存器

PSW-----程序状态字

它用来表示ALU运算结果中二进制数位“1”的个数的奇偶性。若为奇数,则P=1,否则为0。运算结果有奇数个1,P=1;运算结果有偶数个1,P=0。 例:某运算结果是78H(01111000),显然1的个数为偶数,所以P=0。 4、DPTR(DPH、DPL)--------数据指针 可以用它来访问外部数据存储器中的任一单元,如果不用,也可以作为通用寄存器来用,由我们自已决定如何使用。分成DPL(低8位)和DPH(高8位)两个寄存器。用来存放16位地址值,以便用间接寻址或变址寻址的方式对片外数据RAM或程序存储器作64K字节范围内的数据操作。 5、P0、P1、P2、P3--------输入输出口(I/O)寄存器 这个我们已经知道,是四个并行输入/输出口(I/O)的寄存器。它里面的内容对应着管脚的输出。6、IE-----中断充许寄存器 7、IP-----中断优先级控制寄存器

相关主题