搜档网
当前位置:搜档网 › 红外眼睛图像瞳孔检测新算法

红外眼睛图像瞳孔检测新算法

红外眼睛图像瞳孔检测新算法
红外眼睛图像瞳孔检测新算法

红外眼睛图像瞳孔检测新算法

电子与信息工程学院

华南理工大学

中国广州

eehbqin@https://www.sodocs.net/doc/c82809130.html,

摘要

本文提出了一种新的基于霍夫变换,用于检测边缘梯度信息的瞳孔检测算法,其作用主要是为了提高眼睛注视跟踪技术的准确性。该算法在计算参数空间离散变换点时根据光瞳的像素特点,在红外角膜反射的情况下,利用二维霍夫变换结合了边缘梯度方向和固定范围内离散瞳半径可定位瞳孔中心。该算法有效地过滤掉了噪音,降低了离散变换点统计,并可计算瞳孔的参数。实验结果表明,该算法跟以前的相比具有更高的精度和真实性。

关键词:霍夫变换,瞳孔中心,梯度方向,参数空间

一、引言

本文主要研究如何准确检测凝视、非侵入式可视化过程中运动状态下眼睛的识别。我们可以从瞳孔检测的研究中扫视获得位置信息和监测不同的人,并把它作为人机交互的通道。眼睛运动状态的形式有四种,其中包括:辐辏运动,VOR,扫视和光滑的追求,这表现为移动的瞳孔中心。因此,移动的瞳孔中心主要信息特点是视线跟踪以及

直接影响视线跟踪系统的精度和准确度。

瞳孔角膜反射向量方法是视线传输的一种主要趋势。红外瞳孔中心角膜反射的提取从生物特征信息来说具有很大优势,但是由于头部运动,

环境影响和图案噪声,它在精度上缺乏保证。瞳孔检测是研究基于霍夫变换的参数并寻找出瞳孔三维空间的参数。这种方法可以保证瞳孔中心提取的高精确度,并且它的特征非常适合于提取运动的眼球。但是,它表现不佳的地方在于不能处理好噪声干扰,且涉及大量的统计计数,不能满足实时性的需求。在进行了对[3]的研究后,比较了两种光照条件下的图像差分算法(光明和黑暗的眼球效应),其中从一个特殊硬件电路设计得到了亮和暗的瞳孔交替图像,然后计算图像差分定位出瞳孔及瞳孔中心。这种方法需要复杂的硬件设计并且鲁棒性较差。瞳孔中心的计算在[4]说到利用圆边分割几何计算和局部阈值检测。该方法具有实时性能好但不能满足精度要求的视线跟踪。在[5]提到,利用面部结构的知识来检测眼睛区域,并且它的CDF通过自适应方法被用来提取眼睑和虹膜区域,以定位瞳孔中心。不过定位瞳孔中心的精度低。而[6]中,认为从阈值的瞳孔区域进行自适应的二值化,这会使得对瞳孔中心检测的高精确度,但是该系统是侵入式的。最近,瞳孔中心精确定位在[ 7 ]中也有提及,而它需要复杂的硬件。然而更重要的是随着视线跟踪技术的研究,运动眼球的信息提取已变得越来越重要,但是根据目前的研究现状来看,还没有一个完整的理论和方法有效地定位瞳孔中心。

本文提出了一种基于霍夫变换与边缘梯度方向信息变换的新型瞳孔检测算法。首先,边缘检测方法是基于canny算子将可用于提取瞳孔的轮廓,并计算边缘梯度方向信息。其次,根据红外角膜反射背景下的圆形瞳孔边界,用二维霍夫圆变换结合边缘梯度方向信息的方法来

搜索瞳孔中心的离散光瞳半径的固定范围。最后,就可以得到运动眼球瞳孔中心的信息。本文阐述的方法可以有效地滤除噪声,降低了离散变换点统计,显著提高了在计算瞳孔中心的准确性和实时性。

二、研究方法

从图1,瞳孔在红外光源的形状类似一个圆。基述暗瞳孔的几何和光度特性,在低分辨率条件下,检测瞳孔边缘的噪音。另一方面,霍夫变换的基本方法之一是几何识别在图像处理中的图像,其基本原理在于点和线的双重辨别。因此,基于霍夫变换检测瞳孔,结合边缘梯度方向信息可以有效地降低噪音干扰,提高精度和实时性。

瞳孔中心检测方法通过以下步骤:

首先,用高斯滤波器对虹膜图像进行预处理;其次,基于Canny算子的边缘检测算法进行了图像处理;第三,每个边缘点的梯度方向将制定;最后,根据梯度方向信息,瞳孔中心是由由于霍夫变换与的一系列离散的瞳孔的半径。流程图在图2显示

A.图像处理

1)图像平滑

如图所示,在红外有很多噪音图像。

因此,应该使用一个低通高斯滤波器结合霍夫变换之前找到瞳孔的中心以提高检测的准确性这个预处理步骤有节约瞳孔图像结构信息,同时可去除噪声。在实验中,我们采用的低通高斯滤波器(如式1)与σ=1.4。高斯滤波器的离散近似模板,如图3所示

图3离散近似高斯低通滤波器模板

2)边缘检测和梯度方向计算

从图2看出,因为边缘的性能检测算法和霍夫变换对梯度的方向有很大的影响,所以说边缘检测是定位瞳孔中心的前提。因此,Canny 算子是选择和开发一个多层次的边缘检测算法,其目的是找到一个最优的边缘检测算法,达到标准:信号- 噪声比,位置精度,单边缘响应。本文采用基于Canny算子相应的边缘检测算法主要有三个步骤:步骤1.使用2×2邻域的一阶差偏导数计算的数据阵列I(X,Y)的梯度的幅度和方向中的滤波处理后图像。在X轴的衍生物(DX)和Y 轴(Dy)是:

梯度和梯度方向

步骤2.非极大值梯度的抑制,遍历整个眼睛的图像,如果一个像素点的灰度值小于前后的像素点,那么它不是边缘像素。

步骤3.可能存在的孤立点中断后的图像‘非极大值抑制’

为了避免这种情况,可以应用双阈值设置处理两个延迟阈值。首先,1 T和低门槛高2应设置阈值T。1 T是用来去除在图像中的大部分噪声和获得清晰和更大的边缘。然而,一些有用的边缘信息也将被删除。T2是用来保护边缘的微小信息,因此可以得到一个理想的边缘信号。霍夫变换是基于三维瞳孔的参数计算。霍夫变换的原理在于对偶点之间并线,其关键是要找到一个合理的参数表达和参数空间适当的离散。标准霍夫变换可以被定义为一个公式。

{X1X2X3X4…Xn}表示特征点(边缘点)在图像中的空间。A(Ω)在参数空间中的位置Ω是霍夫变换的蓄电池.F(X,Ω)是一个小区A(Ω)的运算。因此,这种方法表现出良好抗噪声和具有改进的鲁棒性。图5出示了二维参数平面

2)用边缘梯度方向定位瞳孔中心

瞳孔边缘点的梯度方向偏离或朝向瞳孔中心如图6和图7所示。边缘梯度信息可用于预测中的瞳孔中心位置,参数空间造成局部有效的抑制在虚幻的瞳孔中心最大。因此,在对基于二维霍夫变换瞳孔的参数计算、方程组计算的过程中,它代表的边缘点梯度方向的点或偏离瞳孔中心,可以添加约束方程f(x,Ω)为了减少边缘点统计。

新增加的约束方程列出如下:

图6.梯度方向偏离中心

图7.梯度方向指向中心

式(8)是对应于图6和公式9是对应于图7,其中θ是边缘点的梯度方向在边缘检测中获得的基于Canny算子。根据边缘的点(x,y)和它的梯度方向,对于半径范围(N,R1,R2,R3,...,Rn)在参数空间,相应的瞳孔的中心(Ai,Bi)可以通过约束方程8和方程9。然后,所有的离散参数(Ai,Bi,Ri)可以列举与数位于圆的参数边缘点(Ai,Bi,Ri)会由累加器计数(Ai,Bi,Ri)。(A,B,R)对应的局部极大值A的(A,B,R)被取为在公式10和公式11所示的光瞳的参数。

D是一组离散的参数满足约束方程公式(8)或公式9中的半径范围(N1 R1)个,R和E是瞳孔的边缘点的公式(x-a)2+(y-b)2= R2。在瞳孔的参数的计算过程,边缘点方向决定的约束方程将被使用。

在图8中,我们采用边缘梯度方向信息为了提高三维霍夫变换。然后,我们可以搜索本地在离散二维参数空间最大的的而不是在三维参数空间中的所有参数。图8显著所示统计处理降低,从而促进精度和实时性能。

图8、二维霍夫变换与梯度方向

三、结果与分析

因为没有测试的瞳孔定位图像库算法,所以12人的眼睛在相同的红外光照条件下成相收集。所建立的形象库包括照明的干涉条件变化,不均匀的斑点,上下睫毛,运动模糊眼睛等。抽取1000个样品进行测试验证瞳孔中心检测算法的准确性。瞳孔中心检测模型基于二维霍夫变换结合瞳孔边缘的梯度信息储备的三维霍夫变换高精度的圆检测。只搜索瞳孔中心通过瞳孔边缘的约束条件下形成的块点和相应的梯度信息,也可以提高定位瞳孔中心的效率。在实验中瞳孔中心定位精度可以小于1个像素。如图9所示,与瞳孔中心相比基于霍夫变换在检测算法[8,9]时,此算法具有瞳孔定位的精确度更好。

图9、定位瞳孔中心的一些样品结果

本文模型和那些基于霍夫变换进行了对比见表1。通过边缘

梯度信息和瞳孔参数离散半径范围搜索,大量离散变换的点在无效的参数空间中被拆除,在参数空间中的边界点的影响是虚幻的。因此,

无效的处理大量减少,定位速度显著提高。这就是为什么提出的算法比基于霍夫变换计算瞳孔的参数具有更好的速度。

表精度和实时对比

霍夫变换[ 8,9 ]

椭圆拟合[10,11]

用椭圆拟合随机抽样[12]

本文的算法

由角膜形成的亮点,在收集红外光线的反射下的人眼图像,红外照明条件被称为浦肯野点。浦肯野点是在瞳孔边缘的影响下对瞳孔的边缘检测。虚幻的边缘点会产生在参数空间中的一些错误离散变点,这影响了瞳孔参数的统计处理和导致在定位瞳孔中心的精度较差。在图10的瞳孔中心的位置是2像素距离,是真正的瞳孔中心所引起的浦肯野点。因此,提出的瞳孔参数计算模型将实现高性能相结合的补偿浦肯野点的算法。

图10、瞳孔中心与本地化偏差

四、结论

本文提出了一种新的瞳孔定位算法与基于霍夫变换的边缘梯度中心方向。通过二维霍夫变换搜索瞳孔中心与边缘梯度信息和固定离散瞳孔的半径范围,优点是噪音会被有效的过滤掉,计算量会减少、准确性和速度将得到提高。所提出的算法也有一些缺点,如在浦肯野点眼睛图像导致对两个像素内定位精度偏差。所提出的瞳孔中心检测模型将实现更高的性能结合浦肯野点补偿算法。

红外光谱法测定样品方法

一、红外光谱法测定样品方法 红外光谱的试样可以是液体、固体或气体,一般应要求: 1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1. 气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。 2. 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3. 固体试样 (1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。 仪器操作 1. 样品准备(固体样品) 取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。 2. 模具准备 将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。 3. 制片方法 将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 样品测试过程中的注意事项 1. 测试样品一定要干燥,干燥不充分的样品可以在红外灯下烘烤1小时左右。样品研磨要充分,否则会损伤模具。 2. 所有用具应保持干燥、清洁;使用前可以用脱脂棉蘸酒精小心擦拭。 3. 压片过程应在红外灯照射下进行。 4. 操作过程中应保持模具表面干燥、清洁;防止药品腐蚀模具(KBr对模具表面腐蚀很严重) 5. 易吸水和潮解的样品不宜用压片法。 6. KBr在粉末状态下极易吸水、潮解,应放在干燥器中保存,定期在干燥箱中110℃或在真空烘箱中恒温干燥2小时。

红外图谱分析方法大全

红外光谱图解析 一、分析红外谱图 (1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。 公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子); T:化合价为3价的原子个数(主要是N原子); O:化合价为1价的原子个数(主要是H原子)。 F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了 举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔—2200~2100 cm^-1 烯—1680~1640 cm^-1 芳环—1600、1580、1500、1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。 (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。 二、记住常见常用的健值 1.烷烃 3000-2850 cm-1C-H伸缩振动 1465-1340 cm-1C-H弯曲振动 一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。 2.烯烃 3100~3010 cm-1烯烃C-H伸缩 1675~1640 cm-1C=C伸缩 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃 2250~2100 cm-1C≡C伸缩振动 3300 cm-1附近炔烃C-H伸缩振动 4.芳烃 3100~3000 cm-1芳环上C-H伸缩振动 1600~1450 cm-1C=C 骨架振动 880~680 cm-1C-H面外弯曲振动) 芳香化合物重要特征:一般在1600,1580,1500和1450 cm-1可能出现强度不等的4

如何提高照片像素 [数码拍摄提高照片像素的方法]

如何提高照片像素[数码拍摄提高照片像素的方法] 初玩摄影的朋友,是否为照片的像素不高而烦恼?以下是小编为你精心整理的数码拍摄提高照片像素的方法,希望你喜欢。 数码拍摄提高照片像素的方法 1. 尽量使用三脚架 很多情况下,照片图像模糊、不清晰的原因,是拍摄者在按动快门时产生“手振”或相机反光板抬升产生“机振”所造成的。如果使用了三脚架,无论快门速度设定到如何的“慢”,甚至长时间的曝光,即可防止图像由于“抖动”而产生的图像模糊。但要注意,使用三脚架时,要尽可能地使用快门线,忽视这一点,仍有可能在手指接触快门时产生的震动而影响清晰度。 2. 尽可能地使用高速快门 在手持照相机拍照的情况下,尽可能采用高速快门来拍摄。没有经验的拍摄者,快门速度设定在1/30s以下时,照片拍虚的概率较大。即使专业摄影工作者,也不能保证在低速快门拍摄时有百分之百的把握。提高快门速度,会相应提高照片清晰度的概率。当然,在手持照相机提高快门速度的情况下,势必开大光圈,因而会失去“大景深”,但为保证照片的清晰度,放弃景深是不得已的办法。 3. 尽可能使用“最佳光圈” 任何镜头都存在不同程度的成像误差,这些成像误差将使镜头的成像质量受到不同程度的影响。由于镜头球面的曲率不同,光线经过透镜中心和边缘时因折射率不同而不能聚焦于同一焦点,从而导致清晰度下降。如使用镜头的最大光圈拍摄,将导致该镜头像差缺陷的最大暴露,导致图像清晰度下降,而使用镜头的最小光圈拍摄,会产生光的衍射,也会导致图像清晰度下降。为改善像差而引起的清晰度下降问题,通常采用缩小光圈的办法来提高成像的质量。一般来说镜头的最佳光圈为该镜头最大光圈缩小2~3档左右,拍摄者可对某个镜头的最佳光圈进行比较。 4. 尽可能采用手动对焦 目前大多数相机具有自动对焦功能。然而,在景深特别小的情况下,自动对焦往往会聚焦不准确,特别是在向主体近距离对焦,使用长焦距镜头,采用大光圈拍摄人像特写的情况下,要特别小心。如果此时采用自动对焦,“靶子”非要对在人物的眼睛上,如果没有十分的把握,宁可放弃自动对焦,而采用手动对焦。人们不希望照片上人物的耳朵或鼻子是清晰的,而传神的眼睛是模糊的。 5. 尽量使用遮光罩 遮光罩的使用,很多人并不在意。在用正面光、前侧光或侧光时,遮光罩的作用并不明显。但是在逆光或侧逆光拍摄时,必须使用遮光罩,有时即便使用了遮光罩,阳光仍会直射到镜头上,造成画面“冲光”,产生雾翳,影响被摄体的色彩饱和度和清晰度。这时,应调整镜头角度,避开直射到镜头上的光线。此外,遮光罩还有助于防止镜头镜面损伤,同时避免手指接触到镜面。 6. 合理利用景深 景深的大小是根据拍摄者拍摄的目的来决定。如果是拍摄风光摄影,景深就要求大,目的是为让照片上景物的清晰范围从近至远都表现得很清楚。如果是拍摄特写,景深就要求小,目的是让照片上主体的背景虚化,突出被摄主体。用小景深来表现风光题材,或用大景深去表现被摄体特写,从摄影表现手法上来说适得其反。如何合理运用景深呢?请记住:采用小光圈、短焦距镜头、远距离对焦拍摄三种方法,景深就大。采用大光圈、长焦距镜头、近距离对焦拍摄三种方法,景深就小。采用其中一种或两种拍摄方法也行,但效果没有三

红外光谱测试条件

红外光谱分析采用Nicolet Impact 410 型红外光谱仪,样品的结构及骨架振动采用KBr 支撑片,在400-4000 cm-1范围内记录样品的骨架振动红外吸收峰。 吡啶FT-IR 分析:首先将压成自支撑薄片的样品(~20 mg)装入原位红外样品池中,在200 ℃,10-4mmHg 高真空条件下处理0.5 h 以活化样品,降温至室温。将吡啶引入真空系统中。吸附0.5 h 后,抽真空至10-4mmHg 清除吸附后余气,再利用Nicolet-Impact 410 型红外光谱仪进行红外扫描,测定吡啶吸附态的红外光谱。 采用美国Nicolet公司的Nexus 670型傅立叶变换红外光谱仪测试,测试分辨率为4cm-1,扫描次数为32次,测试范围为400-4000cm-1。 红外光谱制样方法: 1、用玛瑙研钵将KBr固体研成极细的粉末,放入玻璃小盒内,放到100℃烘箱里保存,以防KBr粉末潮解; 2、称取0.2g KBr粉末和2-4mg样品(无机材料),放入研钵内研磨,将二者充分混合; 3、用药匙加适量样品至压片磨具中,用圆柱体铁棒旋转压实。套上空心圈及顶盖; 4、讲磨具放到压片机上,拧到上方转盘固定,拧紧下方螺旋钮; 5、摆动右侧长臂,至压力为8-9MPa,等待30s即可取出。 注意事项: 1、KBr粉末不用时,最好放入烘箱中,否则易潮解; 2、若样品为有机物,则加入样品量1mg即可; 3、样品量过多会造成出现宽峰的情况,此时数据无效; 4、KBr粉末潮解后,压片以后容易粘在磨具上,无法取下导致压片失败; 5、压力过大可能导致压片破裂,视破裂程度也可能进行红外测定(中间未破损即可测量)。红外光谱测试方法: 测试分辨率:4cm-1,扫描次数:64次,测试范围400-4000cm-1 点测量快捷键,改文件名和保存路径; 改变设置:OPTIC→Aperture Setting→1.5mm(狭缝设置) OPTIC→preamp Gain→Ref(放大倍数) Check signal:1万以上(若低于1万有可能液氮量不够,补充液氮即可) Basic→Background Signal Channel(采背景,大概60s,此时不放置样品) Background→Save Background 装样品,点Sample Signal Channel 选中点,可变换颜色,点---校准峰 保存:选中图(变换颜色按钮),File→Save as→名称→路径 Mode→Data point table(保存以后为DPH文件,大小为69k)

红外图像的处理及其MATLAB实现

红外图像的处理及其MATLAB 函数实现 0.引言 随着红外技术日新月异的发展,红外技术在军事及人们日常生活中有着越来越广泛的应用。但由于红外探照灯及红外探测器件的限制,红外成像系统的成像效果仍然不够理想。在民用监测应用中,主要表现为夜视距离近,图像背景与被监测目标之间对比度模糊,被监测目标细节难以辨认,图像特征信息不明确等方面。为使图像更适于人眼观测、适用于图像后续目标识别及跟踪处理,有必要在红外图像采集和处理上做进一步的研究,来增强红外图像视觉效果。 1. 红外图像的获取及其特点 1.1 红外图像的获取 红外图像主要是由红外热像仪采集的。红外热像仪是一种二维热图像成像装置。热成像系统是一个光学一电子系统,可用于接收波长在m 100~75.0之间的电磁辐射,它的基本功能是将接收到的红外辐射转换成电信号,再将电信号的大小用灰度等级的形式表示,最后在显示器上显示出来。图1.1就是一张采集到的红外图像。 图1.1 输入的红外图像

1.2 红外图像的特点 红外图像反映了目标和背景不可见红外辐射的空间分布,其辐射亮度分布主要由被观测景物的温度和发射率决定,因此红外图像近似反映了景物温度差或辐射差。 根据其成像原理,总结红外图像特点如下: (1)红外热图像表征景物的温度分布,是灰度图像,没有彩色或阴影(立体感觉),故对人眼而言,分辨率低、分辨潜力差; (2)由于景物热平衡、光波波长、传输距离远、大气衰减等原因,造成红外图像空间相关性强、对比度低、视觉效果模糊; (3)热成像系统的探测能力和空间分辨率低于可见光CCD阵列,使得红外图像的清晰度低于可见光图像; (4)外界环境的随机干扰和热成像系统的不完善,给红外图像带来多种多样的噪声,比如热噪声、散粒噪声、f 1噪声、光子电子涨落噪声等等。噪声来源多样,噪声类型繁多,这些都造成红外热图像噪声的不可预测的分布复杂性。这些分布复杂的噪声使得红外图像的信噪比比普通电视图像低; (5)由于红外探测器各探测单元的响应特性不一致等原因,造成红外图像的非均匀性,体现为图像的固定图案噪声、串扰、畸变等。 由以上五点可知,红外图像一般较暗,且目标与背景对比度低,边缘模糊,视觉效果差。 通过以上比较分析,可以总结:可见光图像与红外图像的成像机理虽然不同(可见光图像是利用物体对光线的反射来获得的,而红外图像是靠物体自身的红外辐射获取的),但在低照度情况下,可见光图像与红外图像的视觉效果和直方图特征均相同,因此可以采用低照度可见光图像的处理方法来处理红外图像。 2. 红外图像的增强 2.1 图像增强 图像增强是指对图像的某些特征,如边缘、轮廓、对比度等进行强调或突显,以便于观察或做进一步的分析与处理。图像增强不意味着能增加原始的信息,有时甚至会损失一些信息,但图像增强的结果却能加强对特定信息的识别能力,便图像中感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 图像增强方法的分类如图2.1所示:

如何利用PS增强人物照片的清晰度

如何利用PS增强人物照片的清晰度 最近经常发现网友发的自拍作品有点对焦不清的感觉,照片有少量的重影。总体感觉不是很清晰。如果要让照片清晰,单纯用锐化是不行的,个人总结了以下两种方法,供大家参考。 第一种方法针对灰度较大的照片调清晰,主要用调色工具和蒙版来控制需要清晰的部分,方法非常简单实用。 以这种图片为例吧 先看看经过ps后的效果

1、打开图片,观察直方图:图中红圈出,说明亮部和暗部匀无细节。 2、创建色阶调整层(此处也可用自动色阶,自动色阶对好多图片会起到很好的作用).方法如图所示:按住红圈中的滑块向箭头方向移动。

3、创建色彩平衡调整层:对阴影高光分别进行调整。 4、用曲线来提亮皮肤,添加蒙板后察出不需提亮部分。 5、盖印图层,进行适当的磨皮修饰,再创建色相/饱和度调整图层参数设置如下图,确定后完成最终效果。

如果要让照片清晰,单纯按照上面的方法还是是不行的,个人认为需要慢慢把五官的轮廓找出来,慢慢修正,这样照片的效果会好很多。 以这种图片为例,看起来比较随意比较模糊的一种自拍照 先看看经过ps后的效果

1、首先磨皮,打开原图,按Ctrl + J把背景图层复制一层,执行:滤镜 > 模糊 > 高斯模糊,数值为4,确定后按住Alt键加上图层蒙版,然后用白色画笔在人物脸部有杂点的部位涂抹。 新建一个图层,按Ctrl + Alt + Shift + E盖印图层,然后把图层混合模式改为“滤色”,图层不透明度改为:30%。 3、新建一个图层,盖印图层,下面开始处理五官之一眼睛,先用钢笔工具把眼睛主体部分抠出来,转为选区,选择加深工具曝光度为:10%左右,贴着边缘线把边缘部分稍微加深一点。 4、双眼皮部分的处理,用钢笔工具勾出双眼皮的区域,转为选区如图4,选择减淡工具,曝光度为:10%,涂抹下图箭头位置,稍微涂白一点,制作出下眼皮的高光部分,涂好后不要取消选区。 5、按Ctrl + Shift + I反选,选择加深工具涂抹,下图箭头所示位置,稍微加深一点即可,加深的时候要贴住边缘线,用力摇均匀。

行人检测算法综述(2007 清华大学 好文)

第33卷第1期自动化学报Vol.33,No.1 2007年1月ACTA AUTOMATICA SINICA January,2007 车辆辅助驾驶系统中基于计算机视觉的 行人检测研究综述 贾慧星1章毓晋1 摘要基于计算机视觉的行人检测由于其在车辆辅助驾驶系统中的重要应用价值成为当前计算机视觉和智能车辆领域最为活跃的研究课题之一.其核心是利用安装在运动车辆上的摄像机检测行人,从而估计出潜在的危险以便采取策略保护行人.本文在对这一问题存在的困难进行分析的基础上,对相关文献进行综述.基于视觉的行人检测系统一般包括两个模块:感兴趣区分割和目标识别,本文介绍了这两个模块所采用的一些典型方法,分析了每种方法的原理和优缺点.最后对性能评估和未来的研究方向等一系列关键问题给予了介绍. 关键词行人检测,车辆辅助驾驶系统,感兴趣区分割,目标识别 中图分类号TP391.41 A Survey of Computer Vision Based Pedestrian Detection for Driver Assistance Systems JIA Hui-Xing ZHANG Yu-Jin Abstract Computer vision based pedestrian detection has become one of the hottest topics in the domain of computer vision and intelligent vehicle because of its potential applications in driver assistance systems.It aims at detecting pedestrians appearing ahead of the vehicle using a vehicle-mounted camera,so as to assess the danger and take actions to protect pedestrians in case of danger.In this paper,we give detailed analysis of the di?culties lying in the problem and review most of the literature.A typical pedestrian detection system includes two modules:regions of interest(ROIs) segmentation and object recognition.This paper introduces the principle of typical methods of the two modules and analyzes their respective pros and cons.Finally,we give detailed analysis of performance evaluation and propose some research directions. Key words Pedestrian detection,driver assistance system,ROIs segmentation,object recognition 1引言 车辆辅助驾驶系统中基于计算机视觉的行人检测是指利用安装在运动车辆上的摄像机获取车辆前面的视频信息,然后从视频序列中检测出行人的位置.由于它在行人安全方面的巨大应用前景,成为智能车辆、计算机视觉和模式识别领域的前沿研究课题.欧盟从2000年到2005年连续资助了PROTECTOR[1]和SAVE-U[2]项目,开发了两个以计算机视觉为核心的行人检测系统;意大利Parma[3]大学开发的ARGO智能车也包括一个行人检测模块;以色列的MobilEye[4]公司开发了芯 收稿日期2006-3-14收修改稿日期2006-6-17 Received March14,2006;in revised form June17,2006 国家自然科学基金(60573148),教育部高等学校博士学科点专项科研基金(20060003102)资助 Supported by National Natural Science Foundation of P.R.China(60573148),Specialized Research Fund for the Doc-toral Program of Higher Education(20060003102) 1.清华大学电子工程系北京100084 1.Department of Electronic Engineering,Tsinghua University, Beijing100084 DOI:10.1360/aas-007-0084片级的行人检测系统;日本本田汽车公司[5]开发了基于红外摄像机的行人检测系统;国外的大学如CMU[6]、MIT[7,8]和国内的西安交通大学[9]、清华大学[10]也在该领域做了许多研究工作. 车辆辅助驾驶系统中基于计算机视觉的行人检测属于计算机视觉中人体运动分析的研究范畴,其主要任务是在运动摄像机下快速准确地检测行人.本文主要针对这一特定领域对相关的文献进行综述,重点分析常用方法的原理和优缺点,以期对相关的科技人员起到指导作用.对监控系统和体育运动分析领域中人体检测感兴趣的读者可以参考综述文献[11~14]. 行人检测除了具有一般人体检测具有的服饰变化、姿态变化等难点外,由于其特定的应用领域还具有以下难点:摄像机是运动的,这样广泛应用于智能监控领域中检测动态目标的方法便不能直接使用;行人检测面临的是一个开放的环境,要考虑不同的路况、天气和光线变化,对算法的鲁棒性提出了很高的要求;实时性是系统必须满足的要求,这 c 2007by Acta Automatica Sinica.All rights reserved.

几种有机化合物的红外光谱测定

几种有机化合物的红外光测定 一、实验目的 1、学习红外光谱的理论知识,了解红外光谱仪的工作原理及使用操作; 2、初步掌握固体样品和液体样品的红外光谱测定方法; 3、初步学习根据红外光谱图进行结构分析的方法。 二、红外吸收的基本原理 红外光谱分析是研究分子振动和转动信息的分子光谱。当化合物受到红外光照射时,化合物中某个化学键的振动或转动频率与红外光频率相当等,就会吸收光能,并引起分子永久偶极矩的变化, 产生分子振动和转动能级从基态到激发态的跃迁, 使相应频率的透射光强度减弱;分子中不同的化学键振动频率不同,会吸收不同频率的红外光,检测并记录透过光强度与波数(1/cm)或波长的关系曲线,就可得到红外光谱,根据谱带的位置、峰形及强度,对待测样品进行分析。红外光谱反映了分子化学键的特征吸收频率,可用于化合物的结构分析和定量测定。 在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称基频峰)基本上出现在同一频率区域内。但同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使基频峰频率发生一定移动。因此,掌握各种原子基团基频蜂的频率及其位移规律,就可应用红外吸收光谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。红外光谱中吸收谱带的位置与分子中组成化学键的原子之间的振动频率有关。每个化合物有着彼此不相同的谱图,通过化合物的红外光谱可以测定化合物的结构。 衰减全反射(ATR)装置是将红外光照射在有较高折射率的晶体上,光穿过晶体折射到样品表面一定深度后,反射回表面;当样品的折射率小于晶体的折射率,入射光的入射角大于临界角时,即可产生全反射现象,收集此时的反射光,可获得样品的衰减全反射光谱。此方法特别适合于材料分析,如塑料、橡胶、纸张等,也可用于液体和固体粉末样品的检测。 三、仪器与试剂 1、仪器:TENSOR27 FT-IR红外光谱仪;透射(TR)装置,衰减全反射(ATR)装置等。 2、样品:聚乙烯(PE)薄膜, 聚苯乙烯薄膜,无水乙醇,苯甲酸。 四、实验步骤 (一)透射法(TR)测试 1.安装透射装置。 2. 打开OPUS软件,点击高级测量选项,检查测量参数,选择MIR_TR.XPM。 3.检查信号,保存峰位。 4.在高级测量中输入文件名(即样品名称)和文件存放路径。 5.再在基本测量里输入样品描述和形态。 6.用TR装置,盖上盖子,先测量背景单通道光谱(注意不同样品,应选择适宜的参照物为背景)。 7.再将样品(聚乙烯或聚苯乙烯)模具卡装在样品架上,盖上盖子,测定样品单通道光谱。 8.扫谱结束后,取出压片模具、试样架等,用无水乙醇擦拭干净,置于干燥器中保存。 (二)衰减全反射法(A TR)测试 1.安装衰减全反射装置。 2. 打开OPUS软件,点击高级测量选项,检查测量参数,选择MIR_ATR.XPM。 3.检查信号,保存峰位。 4.在高级测量中输入文件名(即样品名称)和文件存放路径。 5.再在基本测量里输入样品描述和形态。

红外检测

目录 1.绪论 (1) 1.1背景 (1) 1.2现状 (2) 2.系统总体设计 (5) 2.1系统测量的基本原理 (5) 2.2系统总体结构 (6) 3.系统硬件设计 (9) 3.1光源系统 (9) 3.2调制器的设计 (10) 3.3 红外滤光片的选择 (13) 3.4 液体池 (13) 3.5 红外传感器的设计 (13) 3.5.1 红外传感器类型 (14) 3.5.2 红外传感器主要性能指标 (14) 3.5.3 硒化铅(Pbse)光电导探测器的选择 (16) 3.6信号检测电路 (16) 3.6.1 前置放大电路 (17) 3.6.2带通滤波电路设计 (17) 3.6.3相敏检测电路设计 (18) 3.7 单片机系统设计 (20) 3.7.1 单片机系统总体设计 (20)

3.7.2 A/D转换电路设计 (21) 3.7.3实时时钟电路设计 (23) 3.7.4看门狗、存储器电路设计 (24) 3.7.5人机接口电路设计 (25) 3.7.6串行通信接口电路设计 (27) 3.8电源电路设计 (27) 4软件的设计与实现 (29) 4.1系统程序设计概述 (29) 4.2单片机程序设计 (29) 4.2.1主程序 (30) 4.2.2数据采集程序设计 (30) 4.2.3时钟读取程序设计 (34) 4.2.4数据存储程序设计 (35) 4.2.5显示和打印程序设计 (39) 4.3上位机程序设计 (42) VB 6.0的MSComm通信控件提供了一系列标准通信命令的接口,它允许建立串口连接,可以连接到其他通信设备(如Modem)、还可以发送命令、进行数据交换以及监视和响应在通信过程中可能发生的各种错误和事件,从而可以用它创建全双工的、事件驱动的、高效实用的通信程序。 (43) 4.3.1 MSComm控件的主要属性及事件 (43) 4.3.2用MSComm控件进行串口通信一般步骤 (43)

红外图谱解析

红外图谱解析 首先应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。 对一张已经拿到手的红外谱图: (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), F、T、O分别是英文4,3,1的首字母。 举个例子:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm-1一般为饱和C-H 伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔2200~2100 cm-1 烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不唠叨了。 这是一个令人头疼的问题,有事没事就记一两个吧: 1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1)

开题报告--监控系统中的行人检测算法的实现

开 题 报 告 -- 监 控 系 统 中 的 行 人 检测算法的实现

毕业设计(论文)开题报告
题 目 监控系统中的行人检测算法的实现
学院
通信工程
专业
信息对抗技术
姓名
班级
学号
指导教师

一、综述本课题国内外研究动态,说明选题的依据和意义
科学技术的快速发展,在给人带来利益和便利的同时,也给人带来了安全隐患。 如为保护某些具有较高的经济价值或技术优势的核心技术及机密而设立的禁区,交 通工具的快速行驶等都会给人们带来安全隐患。因此,监控系统(特别是智能监控 系统)越来越受到人们的重视。纵观各种影响社会安全稳定的事件,给人们带来严 重损失的除不可控因素(地震、火山喷发等)外,主要是人的行为。因此,在监控 系统中实现行人检测将可以避免巨大的人身、经济等损失,也成为了国内外研究的 热点。
目前,清华大学、浙江大学、上海交通大学计算机实验室以及中国科学院自动 化研究所等是国内在行人检测研究上比较著名的高校或研究机构。而且,中国科学 院自动化研究所的生物识别与安全技术研究中心开发的人脸识别系统已经投入使用 (2008 年北京奥运会和 2010 年上海世博会等重大活动)。浙江大学人工智能研究 所采用了单目视觉的方法[1] ,中科院的李和平、胡占义等提出基于监督学习的异常 检测和行为建模算法[2]。国外著名的智能监控系统有 IBM 的智能监控系统和以色列 的 IOImage 公司推出的智能监控系统。另外,卡耐基梅隆大学开发的 NabLab.10 系统已经应用 于汽车的检测系统。虽然国内的监控系统行业近些年发展较快,但是和国外相比仍 有一定的差距。
监控系统中行人检测技术研究至今,比较成熟的算法主要有 Leibe 等人基于“局 部特性的编码”进行的行人检测、Oliver 等人利用边缘图像来对不同的形状模型进行 匹配(ASM)和 Dalal 与 Triggs 提出的基于梯度直方图 HOG+支持向量机 SVM 的行 人检测算法等。而在所有的行人检测技术,基本都包括了运动目标检测和运动目标 识别两个关键技术。
运动目标检测是指通过比较视频图像中像素点的变化判断是否有运动物体,并 通过图像处理技术将运动目标分割出来。运动目标的检测是运动目标识别的前提和 保障,目前主要有光流法和帧差法(包括对称帧差法和背景减除法)。运动目标识别 是对运动目标检测阶段获得的运动目标进行处理,识别出其是行人还是其他的物体。 目前主要有基于运动的方法、基于模板匹配的方法、基于统计学习方法[3]等。
OpenCV 是著名的开源的计算机视觉的函数库,由大量的 C 函数和 C++类构 成作为接口,实现了图像处理和计算机视觉方面的很多通用算法。而且 OpenCV 中 的机器学习函数库实现了机器学习研究领域中比较常见、应用较为广泛的学习方法, 包括了贝叶斯分类器、K 邻近算法、支持向量机、决策树、Adaboost 算法以及神经 网路算法,基本上覆盖了机器学习领域中的主流算法。因此,使用 OpenCV 能够较 灵活的实现行人检测。

红外光谱仪验证方案

第1 页共4 页1主题内容 本方案规定了FTIR—8300红外光谱仪的验证方案及实施。 2适用范围 本方案适用于FTIR—8300红外光谱仪的到货后的首次验证。 3职责 工程部计量管理员:负责安装确认。 QC仪器验证责任人:参与安装确认,并负责功能试验及适用性试验。 验证协调员:组织协调验证工作的开展,并根据验证情况,出具验证报告。 4内容 4.1简介 本仪器为日本岛津制作所生产,该公司生产科学仪器及材料试验的工厂均已取得ISO9001认证,产品在国内及国际上有一定知名度。该仪器型号为FTIR—8300,它以MS—Windows 为基础,操作简便,数据处理功能齐全,并可进行光谱图库检索,可用于定性及定量测试。 我公司现主要用于西药原料、中间体或成品的定性分析。因其性能直接关系到分析结果的可信度,故依据我公司验证管理程序(1205·001)及GMP要求,制定本方案对该仪器进行验证,以保证应其能满足使用要求。制定依据为《中国药典》1995年版二部附录P19页及中国药品生物制品检定所1999年1月编《药品检验仪器检定规程》P12页。 4.2安装确认 4.2.1建立完整的设备档案,专人妥善保管。并记录设备档案编号。 药品生产质量管理文件

4.2.3仪器应置于平稳的工作台上,安放处无强振动源,无强光直射。室内应清洁,无腐蚀性气 体,无强电磁场干扰。室温15~30℃;相对湿度≤65%;供电电源:电压为AC(220±22)V,频率为(50±1)Hz。安装及安装环境其他方面也应符合GMP要求及仪器供应商要求。 4.2.4 是否建立相应的仪器使用SOP、维护保养SOP等文件。 4.2.5是否对操作人员进行了必要的培训,并记录培训人员名单。 4.2.6维修服务单位 单位名称: 地址: 联系人:电话: 4.2.7仪器校验情况 4.2.8安装确认结论 检查人:复核人:日期: 4.3运行确认 4.3.1功能试验(应在开机预热稳定后进行) 4.3.1.1按仪器使用说明书,运行仪器各项功能,要求每种功能至少运行一次,各项功能均应能正常运行,无误操作或死机等异常现象。

一分钟教会你图片文件怎么保持清晰度压缩的方法

一分钟教会你图片文件怎么保持清晰度压缩的方法图片怎么保持清晰度压缩呢?在很多的时候,我们想要将图片进行保持清晰度压缩,但是找不到好的方法,图片保持清晰度压缩的方法很简单,下面教给大家保持清晰度的图片压缩的方法。 操作选用工具:迅捷压缩软件 迅捷压缩软件:https://https://www.sodocs.net/doc/c82809130.html,/compress 具体操作步骤如下: 1:先在浏览器搜索图片压缩,找到在线压缩图片的网站,进入到网站的首页。 2:在网站的首页可以找到文档处理,鼠标移动到文档处理,就会看到图片压缩,点击图片压缩进入到压缩的页面。

3:在压缩的页面找到选择文件,点击选择文件选择需要进行压缩的图片文件,最多可以选择四张。 4:添加文件后,在下面会看到压缩的选项,将选项调整到清晰度优先的格式,点击开始压缩,你需要进行压缩的文件就会在压缩的过程中。

在线网站进行压缩图片可以添加的图片少,可以使用下面方法进行多张图片压缩 1:找到一款压缩软件,将压缩软件下载到指定的电脑位置中。打开软件,找到图片压缩,进入到压缩的页面。 2:在压缩的页面可以看到添加文件以及添加文件夹,将需要压

缩的图片文件添加到压缩的页面中。 3:在下面会看到压缩的选项以及输出的格式,将压缩选项调整到清晰度优先即可。 4:在底部可以看到保存至,设置好自己文件需要保存的路径,

最好是可以随时找到的文件夹。 5:点击开始压缩,需要进行压缩的图片文件就会在压缩的过程中,请耐心等待。压缩完成的文件会直接保存带指定的文件夹中。

希望以上的操作对您有所帮助。按照上面的方法操作会比较简单。

交通信息采集系统中的行人检测算法

现 代计算机(总第二六三期) MODERNCOMPUTER2007.7 *基金项目:广东省科技计划项目(2002A1010308)收稿日期:2007-05-08修稿日期:2007-06-29 作者简介:曹江中(1976-),男,湖南郴州人,硕士,助教,研究方向为图像信息处理技术及应用 0引言 行人检测是交通信息采集系统的一个重要部分。 高速公路属于全封闭的安全通道,加强对行人的检测对于保障高速公路行车安全是有重要意义的。当检测到路面有行人时,监控中心马上做出相关处理,从而可以迅速地避免交通事故的发生。 1行人检测 1.1背景更新 用于检测行人的视频来自交通信息采集系统,采 用位置固定的摄像机,交通视频的背景相对静止,但由于室外光照的变化和车辆经过时的振动都会引起视频背景的变化,因此需要对背景不断进行更新。根据高速公路行车的特点,设计一个基于像素的背景更新算法[3] ,其基本思路是:给检测区的每一个像素设置 一个计数器Count(i,j),对该计数器作如下操作: ifCti,!"j-Bti,!" j>gray_thr Count(i,j)+1elseCount(i,j)=0 其中Bti,!"j、Cti,!" j分别表示t时刻的背景和采集的图像对应于位置(i,j)处的像素值,gray_thr是灰度阈值,可以根据当时CCD摄像机的电位噪声和地面光照强度来动态设定。 当gray_thr>N时就将当前像素值作为背景(Ct i,!"j←Bt i,!" j),也即:若检测区中像素的灰度连续N 次的变化小于阈值gray_thr。则将该当前像素值作为背景,其中N的值可以根据经验确定,但必须满足下 式: N>50mVmax×! "t式中t为采集连续两帧图像的时间间隔。Vmax为高速公路车辆允许的最大速度。 这种背景更新算法,对于云层阴影、 固定物体的影子、路面水迹等具有较好的适应性,但运动目标进入检测区域后停滞时间较长时会被误认为背景,因此,还需考虑不对运动目标区域进行更新。 1.2运动目标检测 针对高速公路上的行人在视频图像中有效面积较小,运动缓慢的情况,本文采用背景帧差法来检测运动目标。假定获取的背景图像为B,当前图像为C,则在理想情况下当前图像减去背景图像后,像素值发生改变的就是前景区域(运动目标),但在实际应用中,由于采集的图像存在着较大的噪声干扰,往往需要引入一个抑止噪声的阈值thr_gray,如式(1)。图像I中像素值为255的区域则为运动目标区域。 Ii,!" j 255ifabsCij-Bij!">thr_gray 0 ifabsCij-Bij!"<thr_gra$ y (1) 由于运动目标的某些区域往往在灰度上与背景相差不大,检测出的运动区域并不总是一个联通区域,因此还需对其进行后处理,使整个目标区域联通。后处理通常采用的是数学形态学的方法[4]。数学形态学在图像处理方法上表现为邻域运算形式,因此计算量较大,并且交通信息采集系统中的行人检测目的是判断行人的存在与否,并不一定要检测出行人的轮廓,因此我们采用了一种网格降维的方法,将检测区域网格化,划分为互不重叠的5×5的小块,统计小块 交通信息采集系统中的行人检测算法* 曹江中1,戴青云1,谭志标2,邸磊2 (1.广东工业大学信息工程学院,广州510090;2.广东新粤智能交通研究院,广州510101) 摘 要:根据高速公路行人运动的先验知识,设计了一种基于视频检测技术的高速公路行人检测算 法。该算法采用背景帧差分法获取运动目标区域,采用跟踪链实现运动目标跟踪,根据行人运动的先验知识在运动目标中检测行人。算法已嵌入到交通信息采集系统中,在高速公路上进行的现场测试结果表明,算法具有较好的实时性和实效性。 关键词:行人检测;视频检测;运动检测;目标跟踪! "

红外检测方法

红外检测方法 红外线的划分 1672年英国著名科学家牛顿首次用三棱镜将太阳光分解为红、橙、黄、绿、青、兰、紫七色,开始了可见光光谱学的研究.英国著名天文学家赫胥尔在研究太阳光谱中各单色光的热效应时,发现最大的热效应是出现在红色光谱以外,从而发现了红外线的存在。英国著名物理学家马克斯威尔在研究电磁理论时,证实了可见光及看不见的红外线,紫外线等均属于电磁波段的一部分,从而把人们的认识统一到电磁波理论中。从波长为数千米的无线电波, 到波长为10-8A ~10-10A(1A=10-4 μm )的宇宙射线均属于电磁波的范围,而可见光谱的波长从0.4~0.76μm 仅占电磁波中极窄的一部波段。红外光谱的波段为0.76~1000μm ,要比可见光波段宽得多。为了研究和应用的方便。根据红外辐射与物质作用时各波长的响应特性和在大气中传输吸收的特性,可把红外线按波长划分为四部分: ①近红外线——波长为0.76~3 μm ; ②中红外线——波长为3~6 μm ; ③远红外线——波长为6~15 μm ; ④超远红外线——波长为15~1000 μm 目前,600 ℃以上的高温红外线仪表多利用近红外波段。600℃以下的中、低温测温仪表面热成像系统多利用中、远红外线波段,而红外线加热装置则主要利用远红外线波段。超远红外线的利用尚在开发研究中。 红外线辐射的基本定理 ①辐射能 Q ——辐射源以电磁波形式所辐射的能量(J)。 ②辐射功率 P ——辐射源在单位时间内向整个半球空间所发射的能量 (w /s)。 ③辐射度M ——辐射源单位面积所发射的功率, ( W/m -2 )。一般,源的表面积A 越大,发射的功率也越多。因此辐射度M 是描述辐射功率P 沿源表面分布的特性。辐射度在某些文献上又称为辐出度或辐射出射度等。 ④光谱辐射度M λ——表示在波长λ处单位波长间隔内,辐射源单位面积所发射的功率。即 单位波长的辐射度, ( W/m 2·μm ),通常辐射源所发出的红外电磁波都是由多种波长成分所组成(全波辐射)。前述的辐射度M 是描述全波辐射的,因此又称为全辐射 度。而光谱辐射度则是描述某一特定波长成分的辐射度。而光谱辐射度则是描述某一特定波长成分的辐射度。 ⑤黑体的概念——黑体是为了研究方便而引入的一种理想物体。它定义为能在任何温度下将辐射到它表面上的任何波长的热辐射能全部吸收;并与其它任何物体相比,在相同温度和相同表面积的情况下其辐射功率为最大的一种物体。黑体辐射可用黑体炉来模拟。对 此,19世纪末叶的物理学家们曾做了大量实验工作,为非黑体辐射的研究奠定了基础。 ⑥比辐射率 ——定义为在相同温度及相同的条件下,实际物体(非黑体)与黑体的辐射度的比值,即: 黑体的辐射度实际物体的辐射度==b M M ε 有的文献还定义了光谱比辐射率 黑体的光谱辐射度实际物体的光谱辐射度== b λλεM M Q P t ?=?P M A ?=?M M λλ?=?

相关主题