搜档网
当前位置:搜档网 › Atmega16的SPI双机通信例程

Atmega16的SPI双机通信例程

Atmega16的SPI双机通信例程
Atmega16的SPI双机通信例程

之前做双机通信的时候,可是把我给弄惨了,怎么做都不行,从机接到的数据一至是零。在网上搜例程,然后copy到自己的程序里,居然运行结果还是一样。可谓一个纠结啊。结果还是自己给弄出来了。下面就是我的程序和电路接口。

电路接口(Protues仿真)

Pb4-pb7全部对接即可,那一个断码管是接在pc口上,如图。

PS:在PC端口和断码管之间需接200Ω电阻,为了简便,这里不接。

其中左边的为主机,右边的为从机。

本程序采用AVR Studio 4编写;

主机程序:

#include

#define DD_SS 4 //SS引脚

#define DD_MOSI 5 //MOSI引脚

#define DD_SCK 7 //SCK引脚

void SPI_MasterInit( ) //主机初始化

{

DDRB=(1<

SPCR=(1<

}

unsigned char SPI_MasterTransmit(char data) //数据发送

{

SPDR=data;

while(!(SPSR&(1<

return SPDR;

}

main()

{

unsigned char data;

unsigned char i=0x99; //需要发送的数据。自己任意修改

SPI_MasterInit( );

data=SPI_MasterTransmit(i);

}

从机程序:

#include

#define DD_MISO 6

void SPI_SlaveInit(void) //从机初始化

{

DDRB=(1<

SPCR=(1<

}

char SPI_SlaveReceive(void) //从机接收数据

{

while(!(SPSR&(1<

return SPDR; //返回接收的数据

}

main()

{

DDRC=0xff; //设置PC口为输出

SPI_SlaveInit();

PORTC=SPI_SlaveReceive(); //点亮断码管

}

仿真结果:

测试完成。

利用51单片机实现SPI总线通信

利用51单片机实现SPI总线通信 一:题目及要求 1:基本内容 1.1:理解51单片机和SPI总线通信的特性和工作原理; 1.2:以51单片机为核心分别设计SPI总线通信发送及接收电路; 1.3:熟练应用C语言或汇编语言编写程序; 1.4:应用Protues软件完成仿真,仿真结果需包括示波器波形,通过一定的 方式(如LED灯、LED显示器等)显示发送和接受数据结果; 1.5:下载程序到开发板,实现串口通信功能(选做); 1.6:提交设计报告。 2:基本要求 本设计采用三线式SPI总线,一条时钟线SCK,一条数据输入线MOSI,一条数据输出线MISO。时钟极性CPOL=0,时钟相位CPHA=0。 二:设计思路 1:掌握51单片机和SPI总线通信的工作原理; 2:利用1中的原理设计SPI总线通信发送和接受电路; 3:编程模拟SPI时序,包括串行时钟、数据输入和输出; 4:利用Protues软件仿真,观察结果; 5:顺利仿真后,下载到开发板实现串行通信功能。 三:设计过程及内容 1:SPI总线简介 SPI ( Serial Peripheral Interface ——串行外设接口) 总线是Motorola公司推出的一种同步串行接口技术。SPI总线系统是一种同步串行外设接口,允许MCU(微控制器)与各种外围设备以串行方式进行通信、数据交换。外围设备包括FLASHRAM、A/ D 转换器、网络控制器、MCU 等。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现

详解SPI总线应用

详解SPI总线规范 SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 SPI概述 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行. SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCX X系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASH RAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。

spi通信规范

竭诚为您提供优质文档/双击可除 spi通信规范 篇一:spi通讯协议介绍 spi通讯协议介绍 spiinterface spi接口介绍 spi是由美国摩托罗拉公司推出的一种同步串行传输规范,常作为单片机外设芯片串行扩展接口。spi有4个引脚:ss(从器件选择线)、sdo(串行数据输出线)、sdi(串行数据 输入线)和sck(同步串行时钟线)。spi可以用全双工通信方式同时发送和接收8(16)位数据,过程如下:主机启动发送 过程,送出时钟脉冲信号,主移位寄存器的数据通过sdo移入到从移位寄存器,同时从移位寄存器中的数据通过sdi移人到主移位寄存器中。8(16)个时钟脉冲过后,时钟停顿, 主移位寄存器中的8(16)位数据全部移人到从移位寄存器中,随即又被自动装入从接收缓冲器中,从机接收缓冲器满标志位(bF)和中断标志位(sspiF)置“1”。同理,从移位寄存器 中的8位数据全部移入到主寄存器中,随即又被自动装入到主接收缓冲器中.主接收缓冲器满标志位(bF)和中断标志位

(sspiF)置“1”。主cpu检测到主接收缓冲器的满标志位或者中断标志位置1后,就可以读取接收缓冲器中的数据。同样,从cpu检测到从接收缓冲器满标志位或中断标志位置1后,就可以读取接收缓冲器中的数据,这样就完成了一次相互通信过程。这里设置dspic30F6014为主控制器,isd4002为从器件,通过spi口完成通信控制的过程。 spi总线协议 spi是一个环形总线结构,由ss(cs)、sck、sdi、sdo 构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。 假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。那么第一个上升沿来的时候数据将会是sdo=1;寄存器=0101010x。下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。 例子: 假设主机和从机初始化就绪:并且主机的sbuff=0xaa,从机的sbuff=0x55,下面将分步对spi的8个时钟周期的数据情况演示一遍:假设上升沿发送数据 第1页 程时钟;发送结束中断标志;写冲突保护;总线竞争保护

spi通信原理

SPI:高速同步串行口。3~4线接口,收发独立、可同步进行 SPI的通信原理: 主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。 在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。 SPI协议举例 SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。 假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。 那么第一个上升沿来的时候数据将会是sdo=1;寄存器中的10101010左移一位,后面补入送来的一位未知数x,成了0101010x。下降沿到来的时候,sdi上的电平将锁存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。

一文了解SPI总线工作原理应用案例

一文了解SPI总线工作原理应用案例 一文了解SPI总线工作原理应用案例将微控制器连接到传感器,显示器或其他模块时,您是否考虑过两个设备之间如何通信?他们到底在说什么?他们如何能够相互理解? 电子设备之间的通信就像人类之间的通信,双方都需要说同一种语言。在电子学中,这些语言称为通信协议。幸运的是,在构建大多数DIY电子项目时,我们只需要了解一些通信协议。在本系列文章中,我们将讨论三种最常见协议的基础知识:串行外设接口(SPI),内部集成电路(I2C)和通用异步接收器/发送器(UART)驱动通信。 首先,我们将从一些关于电子通信的基本概念开始,然后详细解释SPI的工作原理。 SPI,I2C和UART比USB,以太网,蓝牙和WiFi等协议慢得多,但它们更简单,使用的硬件和系统资源也更少。SPI,I2C和UART非常适用于微控制器之间以及微控制器和传感器之间的通信,在这些传感器中不需要传输大量高速数据。 串行与并行通信 电子设备通过物理连接在设备之间的导线发送数据位来相互通信,有点像一个字母中的字母,除了26个字母(英文字母表中),一个位是二进制的,只能是1或0。通过电压的快速变化,位从一个设备传输到另一个设备。在工作电压为5V的系统中,0位作为0V的短脉冲通信,1位通过5V的短脉冲通信。 数据位可以并行或串行形式传输。在并行通信中,数据位是同时发送的,每个都通过单独的线路。下图显示了二进制(01000011)中字母“C”的并行传输:

在串行通信中,通过单线逐个发送这些位。下图显示了二进制(01000011)中字母“C”的串行传输: 许多设备都采用了SPI通用通信协议。例如,SD卡模块,RFID读卡器模块和2.4GHz无线发送器/接收器都使用SPI 与微控制器通信。 SPI的一个独特优势是可以不间断地传输数据。可以连续流发送或接收任意数量的比特。使用I2C和UART,数据以数据包形式发送,限制为特定的位数。启动和停止条件定义每个数据包的开始和结束,因此数据在传输过程中会被 中断。

SPI的通信速率到底可以达到多少

S P I的通信速率到底可 以达到多少 Document number:PBGCG-0857-BTDO-0089-PTT1998

楼主提问:SPI的通信速率到底可以达到多少??? 按照手册上的说明,应该能到fosc/4,然而实际上由于SPI通信底层没有任何握手,不像I2C总线那样带ACK,所以SPI速率实际上根本不能达到fosc/4,除非发信端与收信端完全同步,然而事实上接收端往往要对接收到的数据进行一些判断和处理,所以在接收端往往会丢数,解决办法就是在发信端发完一个字节后人为加上延时等待接收端处理,但是如果这样的话,高速还有什么意义呢? 我做了一个试验,即使关掉所有其它中断,只作SPI通信处理,在fosc/4的通信速率下,接收端只能接收10个字节以内的数据,10个字节以上就会丢数,而在fosc/8的通信速率下,如果关闭所有其它中断,收发256个字节是没什么问题的,但是如果应用程序有1ms的时钟中断事件的话,spi通信成功率很低。 在前面很多帖子里,看到不少人说spi只是硬件底层,通信的可靠性要靠通信协议,诚然如此,但是我以为通信协议只是最后一道保障,如果底层不可靠,通信协议再完善也是惘然。 轮询和中断方式有本质区别吗?轮询就能保证不被其它中断干扰吗?主机自己掌握SPI节奏,它只知道自己发送出去了,并不知道从机是否处理完,如果从机还在处理上一个字节,这时候发下个字节显然会丢数据啊 解答者1回答: 是同步!不是异步! 也就是说MASTER提供时钟,所以完全由MASTER决定速率(当然大家都能达到的)

再有就是这个速率仅仅指一个BYTE的通讯速率,不是整个帧速率(2个BYTE以上)从机查询和中断无关,说白了就是移位寄存器! 楼主再问: 关键就在于这个速率要大家都能达到啊,如果都能达到就不用讲了,实测下来就是slave端达不到这个速率啊。如果这个速率是一个BYTE的指标那就没啥说的了,我认了,只能在字节之间加延时了。 解答者2: 我试过用fosc/2的时钟速率进行两机通讯(系统时钟16M),连续传了好多字节都没有问题。主机用查询方式发送;从机用中断接收,接收到的数据用液晶显示出来。 解答者1: 多字节是不可能达到fosc/2的!除非从机速率更快,有足够的时间去处理或保存(读取数据),要不然是吹牛的!影响速率达不到fosc/2就是从机提取数据!与系统时钟多少那无关!再有,?从机响应中断都要4个机器周期,更别说要存储,中断出来也要4个机器周期。 对于单字节来说是可以达到fosc/2,因为AVR可以使用倍率,本来是fosc/4的! 所以,数据手册里讲的可以达到fosc/4那是指单字节的速率! 楼主: 所以说手册给出来的指标很带有欺骗性,为了可靠起见(相信很多人的程序中都有个时钟在运行),建议放在fosc/16。

SPI通信

SPI通信程序 //這是主机C8051F005有硬件SPI的AT45DB041B的讀寫驅動 // SPI Configuration //SPI0CN = 0x02; // SPI Control Register //MSTEN = 1; // SPI 以主方式工作 //SPI0CFG = 0xC7; // SPI Configuration Register 第二邊沿采樣,SCK空閑高 //SPI0CKR = 0x00; // SPI Clock Rate Register SPIclk=24.5M/2 //SPIEN = 1; // SPI0CN |= 0x01; sbit FLASH_CS = P3^6; union long_union { //長整形聯合 unsigned long dat; unsigned int word[2]; unsigned char byte[4]; }opcode; //緩沖區1單字節寫cmd=0x84

void buff1_wr(unsigned int bfaddr,unsigned char dat) { unsigned char i; opcode.byte[0]=0x84; opcode.word[1]=bfaddr; FLASH_CS=0; SPI0CN&=0x03; for(i=0;i<4;i++) { SPI0DAT=opcode.byte[i]; while(!SPIF); SPIF=0;} //連續發送4個opcode SPI0DAT=dat; while(!SPIF); SPIF=0; //發送第5個字節(數据) FLASH_CS=1; } //緩沖區1單字節讀cmd=0xd4 unsigned char buff1_rd(unsigned int bfaddr)

SPI总线知识小结

SPI总线知识小结 同步外设接口(SPI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FRAM和显示驱动器之类的慢速外设器件通信。 SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。SPI 接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS(从使能信号)四种信号构成,CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。通讯时,数据由SDO 输出,SDI 输入,数据在时钟的上升或下降沿由SDO 输出,在紧接着的下降或上升沿由SDI 读入,这样经过8/16 次时钟的改变,完成8/16 位数据的传输。 SPI通信 该总线通信基于主-从配置。它有以下4个信号: MOSI:主出/从入 MISO:主入/从出 SCK:串行时钟 SS:从属选择 芯片上“从属选择”(slave-select)的引脚数决定了可连到总线上的器件数量。 在SPI传输中,数据是同步进行发送和接收的。数据传输的时钟基于来自主处理器的时钟脉冲,摩托罗拉没有定义任何通用SPI的时钟规范。然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA定义相对于SO-数据位的时钟相位。CPOL和CPHA的设置决定了数据取样的时钟沿。 数据方向和通信速度 SPI传输串行数据时首先传输最高位。波特率可以高达5Mbps,具体速度大小取决于SPI硬件。例如,Xicor公司的SPI串行器件传输速度能达到5MHz。 SPI总线接口及时序

SPI数据格式

497 Jz4755 Multimedia Application Processor Programming Manual, Revision 1.0 Copyright? 2005-2007 Ingenic Semiconductor Co., Ltd. All rights reserved. 23.5 Data Formats Four signals are used to transfer data between the processor and external peripheral. The SSI supports three formats: Motorola SPI, Texas Instruments SSP , and National Microwire. Although they have the same basic structure the three formats have significant differences, as described below. SSI_CE_/SSI_CE2_ varies for each protocol as follows: ? For SPI and Microwire formats, SSI_CE_/SSI_CE2_ functions as a chip select to enable the external device (target of the transfer), and is held active-low during the data transfer. ? For SSP format, this signal is pulsed high for one serial bit-clock period at the start of each frame. SSI_CLK varies for each protocol as follows: For Microwire, both transmit and receive data sources switch data on the falling edge of SSI_CLK, and sample incoming data on the rising edge. For SSP , transmit and receive data sources switch data on the rising edge of SSI_CLK, and sample incoming data on the falling edge. For SPI, the user has the choice of which edge of SSI_CLK to use for switching outgoing data, and for sampling incoming data. In addition, the user can move the phase of SSI_CLK, shifting its active state one-half period earlier or later at the start and end of a frame. While SSP and SPI are full-duplex protocols, Microwire uses a half-duplex master-slave messaging protocol. At the start of a frame, a 1 or 2-byte control message is transmitted from the controller to the peripheral. The peripheral does not send any data. The peripheral interprets the message and, if it is a READ request, responds with requested data, one clock after the last bit of the requesting message. The serial clock (SSI_CLK) only toggles during an active frame. At other times it is held in an inactive or idle state, as defined by its specified protocol. 23.5.1 Motorola’s SPI Format Details 23.5.1.1 General Single Transfer Formats The figures below show the timing of general single transfer format.

SPI总线 通俗易懂讲解

SPI总线通俗易懂讲解 SPI总线 MOTOROLA公司的SPI总线的基本信号线为3根传输线,即SI、SO、SCK。传输的速率由时钟信号SCK决定,SI为数据输入、SO为数据输出。采用SPI总线的系统如图8-27所示,它包含了一个主片和多个从片,主片通过发出片选信号-CS来控制对哪个从片进行通信,当某个从片的-CS信号有效时,能通过SI接收指令、数据,并通过SO发回数据。而未被选中的从片的SO端处于高阻状态。 图8-27 SPI总线的系统 主片在访问某一从片时,必须使该从片的片选信号有效;主片在SCK信号的同步下,通过SI线发出指令、地址信息;如需将数据输出,则接着写指令,由SCK同步在SI线上发出数据;如需读回数据,则接着读指令,由主片发出SCK,从片根据SCK的节拍通过SO发回数据。 因而对具有SPI接口的从片器件来讲,SCK、SI是输入信号,SO是输出信号。SCK 用于主片和从片通信的同步。SI用于将信息传输到器件,输入的信息包括指令、地址和数据,指令、地址和数据的变化在SCK的低电平期间进行,并由SCK信号的上升沿锁存。

SO用于将信息从器件传出,传出的信息包括状态和数据,信息在SCK信号的下降沿移出。 Microchip公司的25XX系列的串行E2PROM采用了SPI总线,该系列器件的性能如表8-2所示。 表8-2 Microchip公司的25XX系列的串行E2PROM 以25XX320为例,该器件是4K字节的E2PROM,结构如图8-28所示,接口信号为SCK、SI和SO,此外还具有-CS、-WP、-HOLD信号线。其中-CS为器件选中信号,当此信号为低电平时器件被选中,高电平时器件处于等待状态。 图8-28 25XX320的结构 与并行接口电路不同的是,在并行接口电路中对器件进行操作的控制信号,在串行接口电路中只能用指令实现,25XX320的操作指令有数据读指令、写操作的允许和禁止指令、

SPI通信协议(SPI总线)学习

SPI通信协议(SPI总线)学习 各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟! SPI通信协议(SPI总线)学习1、什么是SPI?SPI是串行外设接口(Serial Peripheral Interface)的缩写。是Motorola 公司推出的一种同步串行接口技术,是一种高速的,全双工,同步的通信总线。2、SPI优点支持全双工通信通信简单数据传输速率块3、缺点没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据可靠性上有一定的缺陷。4、特点1):高速、同步、全双工、非差分、总线式2):主从机通信模式5、协议通信时序详解1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。(1)SDO/MOSI –主设备数据输出,从设备数据输入;(2)SDI/MISO –主设备数据输入,从设备数据输出;(3)SCLK –时钟信号,由主设备产生;(4)CS/SS –从设备使能信号,由主设备控制。当有多个从设备的时候,因为每个从设备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需要将从设备对应的片选引脚电平拉低或者是拉高。2):需要说明的是,我们SPI通信有4种不同的模式,不

同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下:Mode0:CPOL=0,CPHA=0Mode1:CPOL=0,CPHA=1Mode2:CPOL=1,CPHA=0Mode3:CPOL=1,CPHA=1时钟极性CPOL 是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA是用来配置数据采样是在第几个边沿:CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK处于高电平时CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK处于低电平时CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿例如:CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。CPOL=0,CPHA=1:此时空闲态时,SCLK 处于低电平,数据发送是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在下降沿,数据发送是在上升沿。CPOL=1,CPHA=0:此时空闲态时,SCLK处于高电平,数据采集是在第1个边沿,也就是SCLK由高电平到低电平的跳变,所以数据采集是在下降沿,数据发送是在上升沿。CPOL=1,CPHA=1:此时空闲态时,SCLK处于高电平,数据发送是在第

总线I2C和SPI详解

IIC vs SPI 现今,在低端数字通信应用领域,我们随处可见IIC (Inter- Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。 原因是这两种通信协议非常适合近距离低速芯片间通信。Philips(for IIC)和Motorola(for SPI)出于不同背景和市场需求制定了这两种标准通信 协议。 IIC 开发于1982年,当时是为了给电视机内的CPU和外围芯片提供更 简易的互联方式。电视机是最早的嵌入式系统之一,而最初的嵌入系统是使 用内存映射(memory-mapped I/O)的方式来互联微控制器和外围设备的。 要实现内存映射,设备必须并联入微控制器的数据线和地址线,这种方式在 连接多个外设时需大量线路和额外地址解码芯片,很不方便并且成本高。 为了节省微控制器的引脚和和额外的逻辑芯片,使印刷电路板更简单, 成本更低,位于荷兰的Philips实验室开发了‘Inter-Integrated Circuit’,IIC 或 IIC ,一种只使用二根线接连所有外围芯片的总线协议。最初的标准定义总线速度为100kbps。经历几次修订,主要是1995年的 400kbps,1998的3.4Mbps。 有迹象表明,SPI总线首次推出是在1979年,Motorola公司将SPI总 线集成在他们第一支改自68000微处理器的微控制器芯片上。SPI总线是微 控制器四线的外部总线(相对于内部总线)。与IIC不同,SPI没有明文标准,只是一种事实标准,对通信操作的实现只作一般的抽象描述,芯片厂商 与驱动开发者通过data sheets和application notes沟通实现上的细节。SPI 对于有经验的数字电子工程师来说,用SPI互联两支数字设备是相当直

SPI通信

二、通信的SPI 概念 2.1、SPI:高速同步串行口 SPI:高速同步串行口。是一种标准的四线同步双向串行总线。 SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(用于单向传输时,也就是半双工方式)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK 提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从

SPI串行通信协议

SPI串行通信协议 同步串行外设接口(S PI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FRAM和显示驱动器之类的慢速外设器件通信。 SPI(Serial Peripheral Interface)是一种串行串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。SPI 接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS(从使能信号)四种信号构成,CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。通讯时,数据由SDO 输出,SDI 输入,数据在时钟的上升或下降沿由SDO 输出,在紧接着的下降或上升沿由SDI 读入,这样经过8/16 次时钟的改变,完成8/16 位数据的传输。 总线协议 该总线通信基于主-从(所有的串行的总线均是这样,USB,IIC,SPI等)配置,而且下面提到的方向性的操作合指代全部从主设备的角度说得。它有以下4个信号: MOSI:主出/从入 MISO:主入/从出 SCK:串行时钟 SS:从属选择;芯片上“从属选择”(slave-select)的引脚数决定了可连到总线上的器件数量。 在SPI传输中,数据是同步进行发送和接收的。数据传输的时钟基于来自主处理器的时钟脉冲(好像也可以是IO上的电平的模拟时钟),摩托罗拉没有定义任何通用SPI的时钟规范。然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA定义相对于SO-数据位的时钟相位。CPOL和CPHA的设置决定了数据取样的时钟沿。 数据方向和通信速度 SPI传输串行数据时首先传输最高位。波特率可以高达5Mbps,具体速度大小取决于SPI硬件。例如,Xicor公司的SPI 串行器件传输速度能达到5MHz。 SPI总线接口及时序 SPI总线包括1根串行同步时钟信号线以及2根数据线。 SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设音时钟相位和极性应该一致。SPI接口时序如图3、图4所示。

SPI总线协议SPI时序图详解

SPI总线协议及SPI时序图详解 SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。 下面为一种情况例举: 上升沿发送、下降沿接收、高位先发送。 上升沿到来的时候,sdo上的电平将被发送到从设备的寄存器中。 下降沿到来的时候,sdi上的电平将被接收到主设备的寄存器中。 假设主机和从机初始化就绪:并且主机的sbuff=0xaa (10101010),从机的sbuff=0x55 (01010101),下面将分步对spi的8个时钟周期的数据情况演示一遍(假设上升沿发送数据)。 --------------------------------------------------- 脉冲主机sbuff 从机sbuff sdi sdo --------------------------------------------------- 0 00-0 10101010 01010101 0 0 --------------------------------------------------- 1 0--1 0101010x 10101011 0 1 1 1--0 0101010010101011 0 1 --------------------------------------------------- 2 0--1 1010100x 01010110 1 0 2 1--0 1010100101010110 1 0 --------------------------------------------------- 3 0--1 0101001x 10101101 0 1 3 1--0 0101001010101101 0 1 --------------------------------------------------- 4 0--1 1010010x 01011010 1 0 4 1--0 1010010101011010 1 0 --------------------------------------------------- 5 0--1 0100101x 10110101 0 1 5 1--0 0100101010110101 0 1 --------------------------------------------------- 6 0--1 1001010x 01101010 1 0 6 1--0 1001010101101010 1 0 --------------------------------------------------- 7 0--1 0010101x 11010101 0 1 7 1--0 0010101011010101 0 1 --------------------------------------------------- 8 0--1 0101010x 10101010 1 0 8 1--0 01010101 10101010 1 0 这样就完成了两个寄存器8位的交换,上面的0--1表示上升沿、1--0表示下降沿,sdi、 sdo相对于主机而言的。根据以上分析,一个完整的传送周期是16位,即两个字节,因为,首先主机要发送命令过去,然后从机根据主机的名准备数据,主机在下一个8位时钟周期才把数据读回来。 SPI总线是Motorola公司推出的三线同步接口,同步串行3线方式进行通信:一条时钟线SCK,一条数

SPI通信协议(SPI总线)学习

SPI通信协议(SPI总线)学习 1、什么是SPI? SPI是串行外设接口(Serial Peripheral Interface)的缩写。是Motorola 公司推出的一 种同步串行接口技术,是一种高速的,全双工,同步的通信总线。 2、SPI优点 支持全双工通信 通信简单 数据传输速率块 3、缺点 没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据可靠性上有一定的缺陷。 4、特点 1):高速、同步、全双工、非差分、总线式 2):主从机通信模式 5、协议通信时序详解 1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。 (1)SDO/MOSI – 主设备数据输出,从设备数据输入; (2)SDI/MISO – 主设备数据输入,从设备数据输出; (3)SCLK – 时钟信号,由主设备产生; (4)CS/SS – 从设备使能信号,由主设备控制。当有多个从设备的时候,因为每个从设 备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需 要将从设备对应的片选引脚电平拉低或者是拉高。 2):需要说明的是,我们SPI通信有4种不同的模式,不同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下: Mode0:CPOL=0,CPHA=0 Mode1:CPOL=0,CPHA=1 Mode2:CPOL=1,CPHA=0 Mode3:CPOL=1,CPHA=1 时钟极性CPOL是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA 是用来配置数据采样是在第几个边沿: CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK处于高电平时 CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK处于低电平时 CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿 CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿 例如: CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。

相关主题