搜档网
当前位置:搜档网 › Two-Dimensional Graphene

Two-Dimensional Graphene

Two-Dimensional Graphene
Two-Dimensional Graphene

Supporting Information

Two Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar

Cells

Nailiang Yang1, 2, Jin Zhai1, 3*, Dan Wang2*, Yongsheng Chen4, and Lei Jiang3

1 Beijing University of Aeronautics and Astronautics, Beijing 100191, P. R. China

2State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese

Academy of Sciences, Beijing 100190, P. R. China

3 Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Molecular Science, Institute

of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

4Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China E-mail: zhaijin@https://www.sodocs.net/doc/c33170737.html,, danwang@https://www.sodocs.net/doc/c33170737.html,

1.XRD Patterns of Graphite, GO, and Graphene

Figure S1 shows the XRD patterns of flake graphite, GO and graphene, respectively. The pattern of graphite has a peak centered at 2θ = 26.6o , corresponding to a d-spacing of 3.34 ? (Figure S1a ), which is absent in the GO sample (Figure S1b ). While a new peak at 2θ = 12.1o is arisen, corresponding to the (002) inter-planar spacing of 7.30 ?. So graphite has been exfoliated and pristine GO was formed. After reducing GO in hydrazine vapor , the basal spacing decreases from 7.30 ? of the pristine GO to 3.56 ? in the reduced samples (Figure S1c), indicating that graphene has been successfully obtained. 1 204060

I n t e n s i t y

2-Theat (deg)d=0.334nm 2-Theat=26.6O

20

4060

d=0.730nm 2-Theat=12.1

O

2-Theat (deg)I n t e n s i t y (a)

(b)

(c)

d=0.356nm 2-Theat=25.0O

y

t

i

s

n

e

t

n

I

204060

2-Theat(deg)

Figure S1. XRD Patterns of (a) Graphite, (b) GO, and (c) graphene

2. XPS Data.

The C 1s XPS spectrum of GO (Figure S2a) indicates the presence of four types of carbon bonds: C-C (284.8 eV), C-O (286.8 eV), C=O (287.5 eV), and O-C=O (289.0 eV). Although Electrode 2 has the same C 1s species (Figure S2b), the intensities of oxide species are much weaker. Besides, there is an additional peak at 285.8 eV, corresponding to the C in the C=N bonds of hydrazone.

Figure S2. The C 1s XPS spectrum of (a) GO and (b) Electrode 2

The XPS data shows the content of oxygen was decreased after the reduction. The weight lose is oxygen in majority, and the weight losing is about 25% (keep the content of C as a constant). Also, the graphene will lose another 7% weight after calcining at 450 o C in air.2 So after the treatment, the GO will have about 70% left.

Table S1. The XPS data of GO.

Name

Start BE

(eV) End BE

(eV)

Height Counts

FWHM

(eV)

Area (P)

CPS.(ev)

At. % SF

C1s 292.48 281.04 12417.87 2.1 54207.59 67.84 1 O1s 537.73 527.05 24492.12 2.19 60343.76 31.59 2.85 N1s 410.51 394.85 221.41 0.25 755.03 0.57 1.77

Table S2. The XPS data of graphene.

Name

Start BE

(eV) End BE

(eV)

Height Counts

FWHM

(eV)

Area (P)

CPS.(ev)

At. % SF

C1s 294.2281.0546997.54 1.52108204.587.051 O1s 538.91526.546680.79 3.4627021.268.53 2.93 N1s 407.49395.22627.7 3.139327.07 4.43 1.8

3. FT-IR Spectrum of GO and GR

Figure S3a and S3b show the FT-IR spectrum of GO and graphene. In Figure S3a, shows the FT-IR spectrum of GO.The spectrum confirms that the graphite has been oxidated successfully. The characteristic vibrations are the broad O-H stretching peak at 3411 cm-1, the strong C=O peak at 1730 cm-1, the 3o-C-OH peak at 1460 cm-1, the O-H deformation peak at 1390 cm-1, the C-OH stretching peak at 1240 cm-1, the C-O stretching peak at 1060 cm-1. The peak at 1622 cm-1is due to the skeletal vibrations of unoxidized graphitic domains. The spectrum of graphene confirms the reduction of GO (Figure S3b). The O-H peaks, the C-O peaks and the C=O peak have been decreased. And a new absorption band at 1550 cm-1 may be attributed to the skeletal vibration of the graphene sheets. 1

Figure S3. FT-IR Spectrum of (a) GO and (b) graphene

(a)

(b)

4. The transmittance of different electrodes

Figure S4shows the UV-vis spectrum of different electrodes. The Electrode CNT has the highest transmittance.

Figure S4. The UV-vis transmittance spectrum of different electrodes.

References

https://www.sodocs.net/doc/c33170737.html,hravathi, C.; Rajamathi, M. Chemically Modified Graphene Sheets Produced by the

Solvothermal Reduction of Colloidal Dispersions of Graphite Oxide. Carbon2008, 46, 1994-1998.

2.Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.;

Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon2007, 45, 1558-1565.

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯graphenems建模方法

1、打开material studio,新建一个工程,导入石墨(也可以自己build,然后添加原子)。 2、build->make p1(目的是消除对称性,这样才能够删除一层原子)。 3、删除一层原子(选中原子->delete)。 4、修改晶格参数:build->crystal->rebuild crystal,设置方位角,, 5、构建supercell(方便掺杂,也为了好看):build->symetry->supercell,构建一个5x5x1的超原胞。 6、cleave surface(为了能够添加真空层):build->surface->cleave surface,(h,k,l)改为(0,0,-1) 7、添加20埃真空层(添加真空层是为了减小层与层之间的影响,至少20埃,大点没关系,最多是计算时时间长一点):build->srystal->build vacuum。 构建好后,模型如下: 两种模型的建立方法:第一种,导入软件内置模型执行file – import –structure –ceramics –,获得双层石墨烯,层间距为,将其扩充为6层,选定一层,将其移动到模型正中央,模型厚度为*3nm;第二种方法,建立晶胞,选择模型为第183型,设置参数为、和,然后将碳原子添加进去,设置坐标为、和,获得厚度为的晶胞,将其扩充为6层,因此它的厚度与第一种一样。 现在要确定两种模型的结点个数,为使体积接近,分别将其扩充为145和128个结点。 如图,显而易见,第一种模型边沿布满结点,而第二种模型边沿没有结点。 为使模型稳定,对它们初步先进行几何结构优化。优化以前,键角都是120°键长均为。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽频的光吸收和非线性光学性质, 以及室温下的量子霍尔效应等。常温

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

石墨烯制备方法研究

石墨烯制备方法研究 具有优良的力学、电学、热学及电子学性质的石墨烯,近些年来成为研究的热点。简单介绍了石墨烯制备的主要方法,包括微机械分离法、化学插层法、加热SiC法及气相沉积法。 标签:石墨烯;制备方法 0 引言 自2004年Novoselov,K. S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯以来,碳元素同素异形体又增加了新的一员,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。 石墨烯又称单层石墨,是只有一个C原子层厚度的石墨,是构建其他碳质材料的结构单元。通过SP2杂化成键,碳原子与周围三个碳原子以C-C单键相连,同时每个碳原子中未成键的一个π电子形成与平面垂直的π轨道。结构决定性质,石墨烯具有强度很大的C-C键,因此其具有极高的强度(其强度为130GPa,而无缺陷的石墨烯结构的断裂强度是42N/m)。而其可自由移动的π电子又赋予了石墨烯超强的导电性(石墨烯中电子的典型传导速率为8×105m/s)。同时,石墨烯还具有一系列奇特的电子特性,如反常的量子霍尔效应,零带隙的半导体以及电子在单层石墨片层内的定域化现象等。 规模化制备大批量石墨烯是石墨烯材料应用的第一步,已成为当前研究的重点。按照石墨烯的制备途径,可以将其制备方法分为两类:自上而下制备以及自下而上制备。顾名思义,简单地说自上而下途径是从石墨中获得石墨烯的方法,主要依靠物理过程处理石墨使其分层来得到石墨烯。自下而上途径是从碳的化合物中断裂化学键生长石墨烯的方法,主要依靠加热等手段使含碳化合物分解从而生长石墨烯。 1 自上而下制备石墨烯途径 自上而下途径是从石墨出发(又可称之为石墨途径),用物理手段如机械力、超声波、热应力等破坏石墨层与层之间的范德华力来制备单层石墨的方法。根据石墨处理方法的不同,又可细分为机械剥离法和化学插层法。前者是直接使用机械方法将石墨分层来获得石墨烯的方法。后者则是将石墨先用化学插层剂处理转换为容易分层的形式如石墨插层化合物,然后再对其处理来获得石墨烯。 这类方法的优点是原料来源广泛,制备操作较为简单,制备一般不需高温,对设备要求不是很高,但是这类方法是通过石墨分层得到的,得到的单层石墨混在石墨片层中,其分离比较困难,而且生成的石墨烯尺寸不可控。 1.1 机械剥离法

石墨烯是什么

石墨烯是什么? 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。 虽然名字里带有石墨二字,但它既不依赖石墨储量也完全不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来神奇材料的风范。如果再把它的潜在用途开个清单——保护涂层,透明可弯折电子元件,超大容量电容器,等等——那简直是改变世界的发明。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 更多的描述 石墨烯的碳原子排列与石墨的单原子层相同,是碳原子以sp2杂化轨道呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子网格。石墨烯的命名来自英文的graphite(石墨)+-ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形);如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月,佐治亚理工学院研究员宣布,他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路。 石墨烯的问世引起了全世界的研究热潮。它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。 它诞生至今都十年了,但透明手机在哪呢?

A Graphene Field-Effect Device

282IEEE ELECTRON DEVICE LETTERS,VOL.28,NO.4,APRIL2007 A Graphene Field-Effect Device Max C.Lemme,Senior Member,IEEE,Tim J.Echtermeyer,Matthias Baus,and Heinrich Kurz Abstract—In this letter,a top-gated?eld-effect device(FED) manufactured from monolayer graphene is investigated.Ex-cept for graphene deposition,a conventional top-down CMOS-compatible process?ow is applied.Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from the top-gated Graphene-FEDs.The extracted values exceed the universal mobility of silicon and silicon-on-insulator MOSFETs. Index Terms—Field effect,graphene,mobility,MOSFET, transistor. I.I NTRODUCTION M OORE’S LAW,the scaling rule of thumb turned dogma, has dictated ambitious innovation cycles in silicon tech-nology over the last four decades[1],[2].Along the way,it has provided the fundamental CMOS technology for today’s global information society.While the end of silicon has been predicted a number of times for technological reasons,it has not only persevered but is in fact set to remain the driving technology for at least15more years.Even beyond this silicon horizon,a demise of CMOS technology is unlikely.Instead,a range of add-on technologies is envisioned to boost the silicon workhorse. One of the most promising future options to enhance silicon is the introduction of carbon-based electronics[3].In recent years,intriguing electrical properties have been found in car-bon nanotubes(CNTs)[4].The major disadvantage of CNTs, however,is their random distribution,which clearly hampers their utilization as a replacement for silicon as a substrate. This leaves two options for carbon-electronics:either self-organization methods for CNTs or carbon“substrates,”thin layers with similar properties to CNTs. Two-dimensional carbon sheets of single and few layers (graphene)have only recently been demonstrated to be thermo-dynamically stable[5].Monolayer graphene consists of sp2-bonded carbon atoms arranged in a dense honeycomb crystal structure.It is a semimetal with an extremely small overlap between the valence and the conduction band(zero-gap mate-rial).In its3-D graphite structure,graphene sheets are weakly coupled between the layers with van der Waals forces. Manuscript received December6,2006;revised January11,2007.This work was supported by the German Federal Ministry of Education and Research (BMBF)under Contract NKNF03X5508(“ALEGRA”).The review of this letter was arranged by Editor B.Yu. M. C.Lemme is with the Advanced Microelectronic Center Aachen (AMICA),AMO GmbH,52074Aachen,Germany(e-mail:lemme@amo.de). T.J.Echtermeyer and M.Baus are with the Institute of Semiconductor Electronics,RWTH Aachen University,52074Aachen,Germany. H.Kurz is with the Advanced Microelectronic Center Aachen(AMICA), AMO GmbH,52074Aachen,Germany and also with the Institute of Semicon-ductor Electronics,RWTH Aachen University,52074Aachen,Germany. Digital Object Identi?er10.1109/LED.2007.891668 The2-D nature of graphene has been con?rmed by exper- imental observation of the quantum Hall effect[6].Excellent electronic properties with reported carrier mobilities between 3000and27000cm2/V·s make it an extremely promising material for future nanoelectronic devices[5],[7].The carrier transport in graphene takes place in theπ-orbitals perpendicular to the surface[8],and the extraordinary transport properties have been attributed to a single spatially quantized subband populated by electrons with a mass of m e≈0.06m0or by light and heavy holes with masses of m h≈0.03m0and m h≈0.1m0[5].With a mean-free path for carriers of L=400nm at room temperature,ballistic devices seem feasible,even at relaxed feature sizes compared to the state-of-the-art CMOS technology.The major advantage of graphene over CNTs is its planar form,which generally allows for highly developed top- down CMOS-compatible process?ows. So far,experimental data have been mainly obtained from mono-or few-layer graphene on oxidized silicon wafers (graphene-on-insulator)or decomposed intrinsic silicon carbide [5]–[7].Here,the so-called pseudo-MOS structures have been investigated where the surface of the graphene has been left un- covered.This is not a realistic device situation since a graphene transistor would require an insulator and an electrode on top of the graphene.In contrast to the previous work on back-gated graphene,a top-gated graphene?eld-effect device(Graphene- FED)is presented in this letter.The effect of the top gate on carrier transport is studied.In addition,the carrier mobility in graphene is compared to the universal mobility of silicon and to the literature data of ultrathin body silicon-on-insulator(SOI) devices. II.E XPERIMENT P-type silicon wafers(100)with a boron doping concen- tration of N A=1015cm?3have been thermally oxidized to a SiO2thickness of t ox=300nm.Graphene has then been deposited onto the silicon dioxide according to the method described in[5]and visually inspected to identify a suitable few-layer graphene?ake.Titanium(Ti)/gold(Au)contacts have been evaporated after optical lithography and structured by lift-off.Next,electron beam lithography has been used to de?ne a gate electrode on top of the graphene.Finally,a gate stack of silicon dioxide(20nm),Ti(10nm),and Au(100nm) has been evaporated followed once again by a lift-off process. A scanning electron microscope(SEM)image of the FED is shown in Fig.1.The graphene?ake has a total length from source to drain of L=7.3μm,a width of W=265nm at the gate region,and a gate length of L=500nm.A graphene thickness of t=1.5nm has been determined by the atomic force microscopy after electrical characterization.Raman 0741-3106/$25.00?2007IEEE

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯纤维纱的性能及其应用

石墨烯纤维纱的性能及其应用 石墨烯的发现 石墨烯是目前发现的最薄、最坚硬、导电性能最强的新型纳米材料,从2004年石墨烯在实验室被正式制备以来,受到全球广泛关注,被誉为“新材料之王”。在国内,相关技术人员通过打开分子链,嵌入金属模板,利用高科技高温煅烧这一航天技术,成功从玉米芯纤维素中研制出生物质石墨烯,全球首创,成为2016年纤维新秀。 用石墨烯纤维面料的独特功效 1、体温即可激发的远红外 石墨烯特有人体体温激发远红外功能,促进血液微循环,加速新陈代谢,有效放松肌肉缓解疲劳,用石墨烯纤维面料制作贴身衣物,亲肤能改善血液微循环,缓解慢性疼痛,有效改善人体亚健康。 2、抗菌抑菌 石墨烯纤维特有抗菌抑菌功能,有效抑制真菌的滋生,抑菌除臭功能显著。 3、吸湿透气 石墨烯纤维同时具有祛湿透气功能,能持久保持肌肤干爽,透气舒适,有效保护私处健康。 4、抗静电 天然抗静电功能,让穿着更舒适。 5、防紫外线 石墨烯纤维同时具防紫外线功能,无论制作贴身衣物还是外穿时装,功能同样出众。

石墨烯纤维的应用范围 、墨烯内暖纤维石墨烯内暖纤维是由生物质石墨烯与各类纤维复合而成的一种智能多功能纤维新材料,具备超越国际先进水平的低温远红外功能,集防静电等作用于一身。 石墨烯内暖纤维长丝、短纤规格齐全,短纤可与棉毛丝麻等纤维以及涤纶腈纶等其他各种纤维等其他各种纤维搭配混纺,长丝可与各种纤维交织,制备不同功能需求的纱线面料。 在纺织领域,可以制成袜类、婴幼服饰、家居面料、户外服装等。石墨烯内暖纤维的用途服装领域,还可以应用于车辆内饰、美容卫材、摩擦材料、过滤材料等。 墨烯内暖绒材料石墨烯内暖绒是由生物质石墨烯均匀分散于涤纶空白切片中进行共混纺丝生产而成。该技术既充分利用了可的低成本生物质资源,又将生物质石墨烯的功能充分展现到纤维中,获得了高性能、高附加值的新型纺织材料。石墨烯内暖绒材料具有远红外升温、保暖透气、抗静电等多功能特性,作为填充材料应用于棉被、羽绒服等,对提升纺织工业创新能力和推动高附加值产品开发具有重大意义和市场价值。

石墨烯graphenems建模方法

2、build->make p1(目的是消除对称性,这样才能够删除一层原子)。 3、删除一层原子(选中原子->delete)。 4、修改晶格参数:build->crystal->rebuild crystal,设置方位角,, 5、构建supercell(方便掺杂,也为了好看):build->symetry->supercell,构建一个5x5x1的超原胞。 6、cleave surface(为了能够添加真空层):build->surface->cleave surface,(h,k,l)改为(0,0,-1) 7、添加20埃真空层(添加真空层是为了减小层与层之间的影响,至少20埃,大点没关系,最多是计算时时间长一点):build->srystal->build vacuum。 构建好后,模型如下: 两种模型的建立方法:第一种,导入软件内置模型执行file – import –structure –ceramics –,获得双层石墨烯,层间距为,将其扩充为6层,选定一层,将其移动到模型正中央,模型厚度为*3nm;第二种方法,建立晶胞,选择模型为第183型,设置参数为、和,然后将碳原子添加进去,设置坐标为、和,获得厚度为的晶胞,将其扩充为6层,因此它的厚度与第一种一样。 现在要确定两种模型的结点个数,为使体积接近,分别将其扩充为145和128个结点。 如图,显而易见,第一种模型边沿布满结点,而第二种模型边沿没有结点。 为使模型稳定,对它们初步先进行几何结构优化。优化以前,键角都是120°键长均为。 几何结构优化后,键长和键角均发生了一些轻微变化。 (模型一) (模型二) 导入石墨结构后,cleave surface,取石墨的C方向(001),选合适的thickness和position,使之只有一层原子(比如top:,thickness ),得到表面后再build vacuum slab,选thickness (比如20A),slab position可以选负的(比如-10A),这样就得到了,你还可以重新定义二维晶胞的晶格参数(build->symmetry->redefine lattice, 比如选B为-1 2 0,晶格就变成长方形的了,当然也可以在六方晶格的supercell上删掉一些原子得到长方形的supercell),使之更适合你的需要。 选择 Import |Structures| ceramics and import .然后选择 ,Build |Symmetry |Make P1,删除其中一层, 把剩下的一层移到中间,然后选择Build |Symmetry | Find Symmetry…|Find Symmetry |Impose Symmetry .接下来选择Build |Symmetry |Supercell ,创建5*5*1的石墨烯超晶胞 .接下来选择 Build |Crystals |Rebuild Crystal ... .把C

前沿讲座石墨烯研究进展

石墨烯 世界2010年最大的科学笑话? 是“石墨薄片”获2010世界诺贝尔物理学奖? 获奖理由是说:获奖科学家用小学生使用的铅笔,在纸上涂抹下铅笔芯中的石墨粉,再用胶粘纸,进行反复粘贴,石墨粉变薄,而能创造出天下奇迹。也就是石墨粉越薄,强度越大,强得能超过钢铁100倍?越薄越能耐高温?越薄越有超导电性?而没有任何事实根据支持,竟然获奖。 “石墨薄片”获奖,被推荐和评选为2010世界最大笑的理由是:因为在宇宙间,在世界上找不到,永远也找不到,物质越薄,强度越大,越能耐高温,电阻越小的物质和事实存在,诺贝尔奖又是世界上的大事。而宇宙间有数不尽的大自然机器早已作了上百亿年的试验,证据事实数据堆山塞海。人类也进行了数不尽的物质材料验证实验,事实证据也无处不在。无不说明在地球上,人世间绝对没有,物质越薄强度越大……的物质和事实存在。难道宇宙和人类早已进行了千年,万年……. 的辛苦实验,还不如用铅笔在纸上毫无事实根据的胡乱画圈?而世界顶级的科学家们,则对大自然的事实视而不见,就此胡乱的相信和评选.....,还有我们更多无知的吹捧,难道不是天下的大笑话?如果您不相信可以去自作小学生的实验,去看一看变相批评瑞典皇家科学院,2010年物理学评审委员会的建议文章,就会更明白。当

然还有在自由的环境下,用“石墨诺贝尔笑话奖”这个题目就能看到成千上万的科学精英们,对此问题是怎么说的?又是怎么样去看?

科学家将石墨烯聚光能力提高20倍 据美国物理学家组织网8月30日报道,英国科学家表示,他们对石墨烯的最新研究表明,让石墨烯与金属纳米结构结合可将石墨烯的聚光能力提高20倍,改进后的石墨烯设备有望在未来的高速光子通讯中用作光敏器,让速度为现在几十倍的超高速互联网成为现实。相关研究发表于《自然—通讯》杂志上。 2010年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃谢洛夫因在石墨烯研究领域的突出贡献而荣膺诺贝尔奖。现在,他们和剑桥大学科学家做出了这项最新发现,为提高互联网和其他通讯设施的速度铺平了道路。 此前科学家们就发现,将两根紧密排列的金属丝放在石墨烯上方,用光照射于其上会产生电力,这个简单的设备其实是一个基本的太阳能电池。更重要的是,因为石墨烯内的电子拥有高流动性和高速度等独特属性,石墨烯设备处理数据的速度可能是目前最快的互联网光缆的几十倍甚至几百倍。 然而,迄今为止,这些极富应用潜力的设备在实用过程中一直遭遇聚光效率低下这一瓶颈,石墨烯只能吸收照射于其上的3%的光线来产生电力,其余光线全成了“漏网之鱼”。

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

相关主题