搜档网
当前位置:搜档网 › 2.限时训练(电磁感应)

2.限时训练(电磁感应)

2.限时训练(电磁感应)
2.限时训练(电磁感应)

限时练习2

班级姓名

1. 如图所示,两轻质闭合金属圆环,穿挂在一根光滑水平绝缘直杆上,原来处于静止状态.当条形磁铁的N极自右向左插入圆环时,两环的运动情况是()

A. 同时向左运动,两环间距变大

B. 同时向左运动,两环间距变小

C. 同时向右运动,两环间距变大

D. 同时向右运动,两环间距变小

2. 如图所示的电路中,一个N极朝下的条形磁铁竖直下落,恰能穿过水平放置的方形导线框,下列判断正确的是()

A. 磁铁经过图中位置1时,线框中感应电流沿abcd方向,经过位置2时沿adcb

方向

B. 磁铁经过图中位置1时,线框中感应电流沿adcb方向,经过位置2时沿abcd

方向

C. 磁铁经过位置1和2时,感应电流都沿abcd方向

D. 磁铁经过位置1和2时,感应电流都沿adcb方向

3. 如图所示,一条形磁铁,从静止开始,穿过采用双线绕成的闭合线圈,条形磁铁在

穿过线圈过程中做()

A. 减速运动

B. 匀速运动

C. 自由落体运动

D. 非匀变速运动

4. 如图所示,在载流直导线近旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两可自由滑动的导体ab和cd.当载流直导线中的电流

逐渐增强时,导体ab和cd的运动情况是( )

A.一起向左运动

B.一起向右运动

C.ab和cd相向运动,相互靠近

D.ab和cd相背运动,相互远离

5. 如右图所示,A、B是两根互相平行的、固定的长直通电导线,二者电流大小和方向都相同.一个矩形闭合金属线圈与A、B在同一平面内,并且ab边保持与通电

导线平行,线圈从图中的位置1匀速向左移动,经过位置2,最后到

位置3,其中位置2恰在A、B的正中间,则下面的说法中正确的是

( )

A.在位置2这一时刻,穿过线圈的磁通量为最大

B.在位置2这一时刻,穿过线圈的磁通量的变化率为零

C.从位置1到位置3的整个过程中,线圈内感应电流的方向发生了变化

D.从位置1到位置3的整个过程中,线圈受到的磁场力的方向保持不变

6. 如图所示,条形磁铁从高h处自由下落,中途穿过一个固定的空心线圈,开

关S断开时,至落地用时t 1,落地时速度为v 1;S闭合时,至落地用时t 2,落

地时速度为v 2,则它们的大小关系正确的是( )

A. t 1>t 2,v 1>v 2

B. t 1=t 2,v 1=v 2

C. t 1<t 2,v 1<v 2

D. t 1<t 2,v 1>v 2

7. 在如图所示的闭合铁芯上绕有一组线圈,与滑动变阻器、电池构成闭合电路,a、b、c为三个闭合金属圆环,假定线圈产生的磁场全部集中在铁芯内,则当滑动变阻器的滑片左、右滑动时,能产生感应电流的金属圆环是()

A. a、b两个环

B. b、c两个环

C. a、c两个环

D. a、b、c三个环

8. 在匀强磁场中,a、b是两条平行金属导轨,而c、d为串有电流表、电

压表的两金属棒,如图所示,两棒以相同的速度向右匀速运动,则以下结论

正确的是()

A. 电压表有读数,电流表没有读数

B. 电压表有读数,电流表也有读数

C. 电压表无读数,电流表有读数

D. 电压表无读数,电流表也无读数

9. 如图电阻R、电容C与一线圈连成闭合电路,条形磁铁静止于线圈的正上方N极朝下,如图所示。现使磁铁自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是()

A. 从a到b,上极板带正电

B. 从a到b,下极板带正电

C. 从b到a,上极板带正电

D. 从b到a,下极板带正电

10. 如图所示,导线框abcd与导线在同一平面内,直导线通恒定电

流I,当线框由左向右匀速通过直导线时,线框中感应电流方向是

()

A. 先abcd,后dcba,再abcd

B. 先abcd,后dcba

C. 始终沿dcba

D. 先dcba ,后abcd ,再dcba

11. (多选)如下图,A. B两回路中各有一开关S 1,S 2,且回路A中接有电源,回路B中接有灵敏电流计(如下图所示),下列操作及相应的结果可能实现的是

()

A. 先闭合S 2,后闭合S 1的瞬间,电流计指针偏转

B. S 1,S 2闭合后,在断开S 2的瞬间,电流计指针偏转

C. 先闭合S 1,后闭合S 2的瞬间,电流计指针偏转

D. S 1,S 2闭合后,在断开S 1的瞬间,电流计指针偏转

12. (多选)如图所示,光滑固定铜质导轨M、N水平放置,两根导体

棒P、Q平行放置于导轨上,形成一个闭合回路,一条形磁铁N极朝下

从高处下落接近回路时()

A. P、Q将相互靠拢,回路电流方向为P→Q

B. P、Q将相互远离,回路电流方向为Q→P

C. 磁铁的加速度仍为g

D. 磁铁的加速度小于g

13. 在物理学学发展史上,亚里士多德、伽利略和牛顿、奥斯特、法拉第等作用了重要的贡献,以下所列为各自不同的观点,请对号入座,分别填上相应代表人物的名字。

观点一:电流的磁效应(电生磁),代表人物

观点二:电磁感应(磁生电),代表人物

14. 如图所示,矩形线圈abcd左半边放在匀强磁场中,右半边在磁场外,

当线圈以ab边为轴向纸外转过60°过程中,线圈中____________产生感应电

流(填“会”与“不会”),原因是____________.

15.已知电流从正极流入,指针向正极偏转。现将与一个线圈串联,将磁铁从线圈上方插入或拔出。请完成下列填空:

(1)图(a)中灵敏电流计指针的偏转方向为_________。(填“偏向正极”或“偏向负极”)

(2)图(b)中磁铁下方的极性是。(填“N极”或“S极”)

(3)图(c)中磁铁的运动方向是___________。(填“向上”或“向下”)

(4)图(d)中线圈从上向下看的电流方向是。(填“顺时针”或“逆时针”)

16. 如下图所示,一有限范围的匀强磁场,宽度为d,将一边长为l的正方形导线框以速度v匀速地通过磁场区域:

若d>l,则在线框通过磁场区域的过程中不产生感应电流的时间应等于

___________;

若d<l,则在线框通过磁场区域的过程中,线框中不产生感应电流的时

间为___________.

练习2

班级姓名

1. 如图所示,两轻质闭合金属圆环,穿挂在一根光滑水平绝缘直杆上,原来处于静止状态.当条形磁铁的N极自右向左插入圆环时,两环的运动情况是()

A. 同时向左运动,两环间距变大

B. 同时向左运动,两环间距变小

C. 同时向右运动,两环间距变大

D. 同时向右运动,两环间距变小

答案:B

2. 如图所示的电路中,一个N极朝下的条形磁铁竖直下落,恰能穿过水平放置的方形导线框,下列判断正确的是()

A. 磁铁经过图中位置1时,线框中感应电流沿abcd方向,经过位置2时沿adcb

方向

B. 磁铁经过图中位置1时,线框中感应电流沿adcb方向,经过位置2时沿abcd

方向

C. 磁铁经过位置1和2时,感应电流都沿abcd方向

D. 磁铁经过位置1和2时,感应电流都沿adcb方向

答案:A

3. 如图所示,一条形磁铁,从静止开始,穿过采用双线绕成的闭合线圈,条形磁铁在

穿过线圈过程中做()

A. 减速运动

B. 匀速运动

C. 自由落体运动

D. 非匀变速运动

答案:C

4. 如图所示,在载流直导线近旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两可自由滑动的导体ab和cd.当载流直导线中的电流

逐渐增强时,导体ab和cd的运动情况是( )

A.一起向左运动

B.一起向右运动

C.ab和cd相向运动,相互靠近

D.ab和cd相背运动,相互远离

答案: C

5. 如右图所示,A、B是两根互相平行的、固定的长直通电导线,二者电流大小和方向都相同.一个矩形闭合金属线圈与A、B在同一平面内,并且ab边保持与通电

导线平行,线圈从图中的位置1匀速向左移动,经过位置2,最后到

位置3,其中位置2恰在A、B的正中间,则下面的说法中正确的是

( )

A.在位置2这一时刻,穿过线圈的磁通量为最大

B.在位置2这一时刻,穿过线圈的磁通量的变化率为零

C.从位置1到位置3的整个过程中,线圈内感应电流的方向发生了变化

D.从位置1到位置3的整个过程中,线圈受到的磁场力的方向保持不变

答案: D

6. 如图所示,条形磁铁从高h处自由下落,中途穿过一个固定的空心线圈,开关

S断开时,至落地用时t 1,落地时速度为v 1;S闭合时,至落地用时t 2,落地时

速度为v 2,则它们的大小关系正确的是( )

A. t 1>t 2,v 1>v 2

B. t 1=t 2,v 1=v 2

C. t 1<t 2,v 1<v 2

D. t 1<t 2,v 1>v 2

答案:D

7. 在如图所示的闭合铁芯上绕有一组线圈,与滑动变阻器、电池构

成闭合电路,a、b、c为三个闭合金属圆环,假定线圈产生的磁场全

部集中在铁芯内,则当滑动变阻器的滑片左、右滑动时,能产生感

应电流的金属圆环是()

A. a、b两个环

B. b、c两个环

C. a、c两个环

D. a、b、c三个环

答案: A

8. 在匀强磁场中,a、b是两条平行金属导轨,而c、d为串有电流表、电压

表的两金属棒,如图所示,两棒以相同的速度向右匀速运动,则以下结论正

确的是()

A. 电压表有读数,电流表没有读数

B. 电压表有读数,电流表也有读数

C. 电压表无读数,电流表有读数

D. 电压表无读数,电流表也无读数

答案: D

9. 如图电阻R、电容C与一线圈连成闭合电路,条形磁铁静止于线圈的正上方N极朝下,如图所示。现使磁铁自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是()

A. 从a到b,上极板带正电

B. 从a到b,下极板带正电

C. 从b到a,上极板带正电

D. 从b到a,下极板带正电

答案: D

10. 如图所示,导线框abcd与导线在同一平面内,直导线通恒定电流I,当线框由左向右匀速通过直导线时,线框中感应电流方向是()

A. 先abcd,后dcba,再abcd

B. 先abcd,后dcba

C. 始终沿dcba

D. 先dcba ,后abcd ,再dcba

答案:D

11. (多选)如下图,A. B两回路中各有一开关S 1,S 2,且回路A中接有电源,回路B中接有灵敏电流计(如下图所示),下列操作及相应的结果可能实现的是()

A. 先闭合S 2,后闭合S 1的瞬间,电流计指针偏转

B. S 1,S 2闭合后,在断开S 2的瞬间,电流计指针偏转

C. 先闭合S 1,后闭合S 2的瞬间,电流计指针偏转

D. S 1,S 2闭合后,在断开S 1的瞬间,电流计指针偏转

答案:AD

12. (多选)如图所示,光滑固定铜质导轨M、N水平放置,两根导体

棒P、Q平行放置于导轨上,形成一个闭合回路,一条形磁铁N极朝下

从高处下落接近回路时()

A. P、Q将相互靠拢,回路电流方向为P→Q

B. P、Q将相互远离,回路电流方向为Q→P

C. 磁铁的加速度仍为g

D. 磁铁的加速度小于g

答案:A,D

13. 在物理学学发展史上,亚里士多德、伽利略和牛顿、奥斯特、法拉第等作用了重要的贡献,以下所列为各自不同的观点,请对号入座,分别填上相应代表人物的名字。

观点一:电流的磁效应(电生磁),代表人物

观点二:电磁感应(磁生电),代表人物

答案:奥斯特法拉第

14. 如图所示,矩形线圈abcd左半边放在匀强磁场中,右半边在磁场外,

当线圈以ab边为轴向纸外转过60°过程中,线圈中____________产生感应电

流(填“会”与“不会”),原因是____________.

答案:不会;穿过闭合线圈中磁通量不变

15. 已知电流从正极流入,指针向正极偏转。现将与一个线圈串联,将磁铁从线圈上方插入或拔出。请完成下列填空:

(1)图(a)中灵敏电流计指针的偏转方向为_________。(填“偏向正极”或“偏向负极”)

(2)图(b)中磁铁下方的极性是。(填“N极”或“S极”)

(3)图(c)中磁铁的运动方向是___________。(填“向上”或“向下”)

(4)图(d)中线圈从上向下看的电流方向是。(填“顺时针”或“逆时针”)

答案:

16. 如下图所示,一有限范围的匀强磁场,宽度为d,将一边长为l的正

方形导线框以速度v匀速地通过磁场区域:

若d>l,则在线框通过磁场区域的过程中不产生感应电流的时间应等于___________;

若d<l,则在线框通过磁场区域的过程中,线框中不产生感应电流的时间为___________.

答案:

完整版电磁感应图像问题练习

压U ab 、线框所受安培力 F 、穿过线圈的磁通量 ①随位移x 的变化图像正确的是 B . 电磁感应图像问题 1如图所示,由粗细均匀的电阻丝制成的边长为 I 的正方形线框abed ,其总电阻为 R 现 使线框以水平向右的速度 v 匀速穿过一宽度为 2I 、磁感应强度为 B 的匀强磁场区域,整个 过程中ab 、cd 两边始终保持与磁场边界平行。 令线框的ed 边刚好与磁场左边界重合时 t =o , 电流沿abeda 流动的方向为正,u o =Blv 。线框中a 、b 两点间电势差u ab 随线框cd 边的位移x X X X X X X ; X K X X X X ; X X X X X X ; x \ X X A I X X X X X X ; II ? 为坐标原点建立x 轴.一边长为L 的正方形金属线框 abed ,在外力作用下以速度 v 匀速穿过 匀强磁场.从线框cd 边刚进磁场开始计时,线框中产生的感应电流 i 、线框ab 边两端的电 2.如图所示,空间存在垂直纸面向里的有界匀强磁场,磁场区域宽度为 D 2L ,以磁场左边界 变化的图象正确的是( /减 X X j I £■74 t ) -坯的 K X X I

3.如图所示,两相邻的宽均为0.8m的匀强磁场区域,磁场方向分别垂直纸面向里和垂直纸 面向外。一边长为0.4m的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=0.2m/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。取它刚进入磁场的时刻t=O,规定线框中感应电流逆时针方向为正方向。在下列图线中,正确反映感应电流强 度随时间变化规律的是() 4 .如图所示,为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向 里和向外,磁场宽度均为L,在磁场区域的左侧边界处,有一边长为L的正方形导体线框, 总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度v匀速穿过磁场区域, 以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里 时的磁通量①为正值,外力F向右为正。则以下反映线框中的磁通量①、感应电动势E、 外力F和电功率P随时间变化规律图象错误的是 * ? * 1 ??■V ? ?4 ■ ?■ ? ?■ ------ ?

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳 物理电磁感应知识点的归纳 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右

手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为 E=BLvsin。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。 (2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。 ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势 E=Nbs/t。

备战高考物理电磁感应现象的两类情况-经典压轴题及答案

备战高考物理电磁感应现象的两类情况-经典压轴题及答案 一、电磁感应现象的两类情况 1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰) (1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离; (3)在两根杆相互作用的过程中,求回路中产生的电能. 【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v 设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有 2h x v g =2h x s v g +=根据动量守恒 012mv mv mv =+ 求得: 210m/s v = (2)ab 杆运动距离为d ,对ab 杆应用动量定理 1BIL t BLq mv ==V 设cd 杆运动距离为d x +?

22BL x q r r ?Φ?= = 解得 1 22 2rmv x B L ?= cd 杆运动距离为 1 22 27m rmv d x d B L +?=+ = (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能 222 012111100J 222 Q mv mv mv =--= 2.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求: (1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。 【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】 解:(1)t=2s 内MN 杆上升的距离为 2 1 2 h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为 BLh ?Φ= 产生的平均感应电动势为 E t ?Φ = 产生的平均电流为

电磁感应专题练习

电磁感应专题练习 【四川省成都外国语学校2019-2020学年高二(下)5月物理试题】如图所示,竖直平面 内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与距离为2r、电 阻不计的平行光滑金属导轨ME、NF相接,E、F之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场Ⅰ和Ⅱ,磁感应强度大小均为B。现有质量 为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒 始终保持水平,与半圆形金属环及轨道接触良好,设平行导轨足够长。已知导体棒下落r 2时的速度大小为v1,下落到MN处时的速度大小为v2。 (1)求导体棒ab从A处下落r 2时的加速度大小a; (2)若导体棒ab进入磁场Ⅱ后棒中电流大小始终不变,求磁场Ⅰ和Ⅱ之间的距离h; (3)当ab棒通过MN以后将半圆形金属环断开,同时将磁场Ⅱ的CD边界略微上移,导体棒ab刚进入磁场Ⅱ时的速度大小为v3,设导体棒ab在磁场Ⅱ下落高度H刚好达到匀速,则导体棒ab在磁场Ⅱ下落高度H的过程中电路所产生的热量是多少? 【安徽省舒城中学2019-2020学年高二(下)第三次月考物理试题】如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好。MN两端通过开关S与电阻为R的单匝金属线圈相连,面积为S0,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k。

图中两根金属棒MN和PQ均处于垂直于导轨平面向下的匀强磁场,磁感应强度大小为B。MN、PQ的质量都为m,金属导轨足够长,电阻忽略不计。 (1)闭合S,若使MN、PQ保持静止,需在其上各加多大的水平恒力F,并指出其方向; (2)断开S,去除MN上的恒力,PQ在上述恒力F作用下,经时间t,PQ的加速度为a, 求此时MN、PQ棒的速度各为多少; (3)断开S,固定MN,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中安 培力做的功为W,求流过PQ的电荷量q。 【重庆市主城区七校2019-2020学年高二(下)期末联考物理试题】如图所示,两条固定 的光滑平行金属导轨,导轨宽度为L=1m,所在平面与水平面夹角为θ=30°,导轨电阻忽略不计。虚线ab、cd均与导轨垂直其间距为l=1.6m,在ab与cd之间的区域存在垂直于 导轨所在平面的匀强磁场B=2T。将两根质量均为m=1kg电阻均为R=2Ω的导体棒PQ、MN先后自导轨上同一位置由静止释放,其时间间隔为Δt=0.1s。两者始终与导轨垂直且 接触良好。已知PQ进入磁场时加速度恰好为0。当MN到达虚线ab处时PQ仍在磁场区 域内。求: (1)导体棒PQ到达虚线ab处的速度v; (2)当导体棒PQ到达虚线cd的过程中导体棒MN上产生的热量Q; (3)当导体棒PQ刚离开虚线cd的瞬间,导体棒PQ两端的电势差U PQ。

电磁感应习题

电磁感应练习 一 选择题 1. 在无限长载流导线附近有一个球形闭合曲面S ,当S 面垂直于导线电流方向向长直导线靠近时,穿过S 面的磁通量Φm 和面上各点的磁感应强度的大小将: (A )Φm 增大,B 也增大; (B )Φm 不变,B 也不变; (C )Φm 增大,B 不变; (D )Φm 不变,B 增大。 [ ] 2. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大. (C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ] 题一(2)图 3. 铜圆盘水平放置在均匀磁场中,B 的方向垂直向上。当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A )铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。 (B )铜盘上有感应电流产生,沿着铜盘转动的方向流动。 (C )铜盘上有感应电动势产生,铜盘边缘处电势高。 (D )铜盘上有感应电动势产生,铜盘中心处电势高。 [ ] B ω 题一(3)图 4.如图,导体棒AB=L 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO`转动(角速度ω与B 同方向),BC 的长度为棒长的1/3。则(1) (A )A 点比B 点电势高. (B )A 点与B 点电势相等. (C )A 点比B 点电势低. (D )无法判断. [ ] (2)求:U A U B B O A B C O` 题一(4)图 a b c d a b c d a b c d v v v ⅠⅢⅡ I

电磁感应 知识点总结

第16章:电磁感应 L 闭合电路中磁通量发生变化时产生感应电流 当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量: $ =BS 如果该面积与磁场夹角为 a,则其投影面积为 Ssin a,则磁通量为 =BSsin a 。磁通量的单位: 韦伯,符号: Wb 、重、难点知识归纳 1. 法拉第电磁感应定律 (1) .产生感应电流的条件:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两 个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过 该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。 这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。 (2) .感应电动势产生的条件:穿过电路的磁通量发生变化。 、知识网络 产生感应电一 闭合电路中的部分导体在做切割磁感线运动 流的方法 闭合电路的磁通量发生变 感应电流方 _ 右手疋则, 向的判定 ? 楞次定律 E=BL v sin 0 感应电动势 A (h 的大小 ■ E - n A t 大小: 方向: 日光 构造 E 2 总是阻碍原电流的变化方向 灯管 镇流器 启动器 日光灯工作原理:自感现象 通电、断电自感实验 实验: 应用 自 感 自感电 动势

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。 这好比一个电源:不论外电路是否闭合, 电动势总是存在的。 但只有当外电路闭合时, 电路 中才会有电流。 (3) .引起某一回路磁通量变化的原因 a 磁感强度的变化 b 线圈面积的变化 c 线圈平面的法线方向与磁场方向夹角 的变化 (4) .电磁感应现象中能的转化 感应电流做功,消耗了电能。消耗的电能是从其它形式的能转化而来的。 在转化和转移中能的总量是保持不变的。 (5) .法拉第电磁感应定律: a 决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢 b 注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量, 一磁通量的变化量, c 定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的 变化率成正比。 (6 )在匀强磁场中, 磁诵量的变化 △① =①t -①o 有多种形式,主要有 ①S 、 a 不变, B 改变,这时 △①= △ B Ssin a ②B 、 a 不变, S 改变,这时 △①= △ S Bsin a ③B 、 S 不变, a 改变,这时 △①=BS(sin a 2-sin a 1) 在非匀强磁场中,磁通量变化比较复杂。有 几种情况需要特别注意: 形磁铁附近移动,穿过上边线圈的磁通量由方向向 上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减 小到零,再变为方向向上增大。 ②如图16-2所示,环形导线 a 中有顺时针方向的电流, a 环外有 两个同心导线圈b 、c ,与环形导线a 在同一平面内。当 a 中的电流增 ①如图16-1所示,矩形线圈沿a T b T c 在条 a be 图 16-1 a 图 16-2

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

天津市静海区物理第十三章 电磁感应与电磁波精选测试卷专题练习

天津市静海区物理第十三章电磁感应与电磁波精选测试卷专题练习 一、第十三章电磁感应与电磁波初步选择题易错题培优(难) 1.分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象认识它,这种方法在科学上叫做“转换法”,下面是小红同学在学习中遇到的四个研究实例,其中采取的方法与刚才研究分子运动的方法相同的是() A.研究电流、电压和电阻关系时,先使电阻不变去研究电流与电压的关系;然后再让电压不变去研究电流与电阻的关系 B.用磁感线去研究磁场问题 C.研究电流时,将它比做水流 D.电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定 【答案】D 【解析】 【分析】 【详解】 A.这种研究方法叫控制变量法,让一个量发生变化,其它量不变,A错误; B.用磁感线去研究磁场问题的方法是建立模型法,使抽象的问题具体化,B错误 C.将电流比做水流,这是类比法,C错误 D.判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定,即将电流的有无转化为灯泡是否发光,故是转化法,D正确。 故选D。 2.如图,在直角三角形ACD区域的C、D两点分别固定着两根垂直纸面的长直导线,导线中通有大小相等、方向相反的恒定电流,∠A=90?,∠C=30?,E是CD边的中点,此时E 点的磁感应强度大小为B,若仅将D处的导线平移至A处,则E点的磁感应强度() A.大小仍为B,方向垂直于AC向上 B.大小为 3 2 B,方向垂直于AC向下 C 3 ,方向垂直于AC向上 D3,方向垂直于AC向下【答案】B 【解析】

【分析】 【详解】 根据对称性C 、D 两点分别固定着两根垂直纸面的长直导线在E 点产生的磁感应强度 02B B = 由几何关系可知 AE =CE =DE 所以若仅将D 处的导线平移至A 处在E 处产生的磁感应强度仍为B 0,如图所示 仅将D 处的导线平移至A 处,则E 点的磁感应强度为 032cos302 B B B '=?= 方向垂直于AC 向下。 A .大小仍为B ,方向垂直于AC 向上 与上述结论不相符,故A 错误; B 3,方向垂直于A C 向下 与上述结论相符,故B 正确; C .大小为32 B ,方向垂直于A C 向上 与上述结论不相符,故C 错误; D 3,方向垂直于AC 向下 与上述结论不相符,故D 错误; 故选B 。 3.正三角形ABC 在纸面内,在顶点B 、C 处分别有垂直纸面的长直导线,通有方向如图所示、大小相等的电流,正方形abcd 也在纸面内,A 点为正方形对角线的交点,ac 连线与BC 平行,要使A 点处的磁感应强度为零,可行的措施是

电磁感应基础练习题

电磁感应基础练习题: 1、面积是0.5m 2的导线环,放在某一匀强磁场中,环面与磁场垂直,穿过导线的磁通量是Wb 2100.1-?,则该磁场的磁感应强度是( ) A、T 2105.0-? B、T 2105.1-? C、T 2101-? D、T 2102-? 2、关于电磁感应现象,下列说法正确的是( ) A、只要磁通量穿过电路,电路中就有感应电流 B、只要穿过闭合导体回路的磁通量足够大,电路中就有感应电流 C、只要闭合导体回路在切割磁感线运动,电路中就有感应电流 D、只要穿过闭合导体回路的磁通量发生变化,电路中就有感应电流 3、如图所示,套在条形磁铁外的三个线圈,其面积321S S S =>,穿过各线圈的磁通量依次为1Φ、2Φ、3Φ,则它们的大小关系是( ) A 、32 1 Φ>Φ>Φ B 、321Φ=Φ>Φ C 、321Φ=Φ<Φ D 、321Φ<Φ<Φ 4、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势就越大 B 、穿过线圈的磁通量为零,感应电动势一定为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 5、如图所示,在《探究产生感应电流的条件》的实验中,开关断开时,条形 磁铁插入或拔出线圈的过程中,电流表指针不动;开关闭合时,磁铁静止在 线圈中,电流表指针也不动;开关闭合时,将磁铁插入或拔出线圈的过程中, 电流表指针发生偏转.由此得出,产生感应电流的条件是:电路必须 , 穿过电路的磁通量发生 . 6、如图所示是探究感应电流与磁通量变化关系的实验.下列操作会产生感应 电流的有 . ①闭合开关的瞬间; ②断开开关的瞬间; ③闭合开关,条形磁铁穿过线圈; ④条形磁铁静止在线圈中 此实验表明:只要穿过闭合导体回路的磁通量发生 闭合导体回路中就有感应电流产生. 1、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势越大 B 、穿过线圈的磁通量为零,感应电动势为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 2、关于感应电动势的大小,下列说法正确的是( ) A 、跟穿过闭合导体回路的磁通量有关 S

知识讲解电磁感应复习与巩固基础

电磁感应复习与巩固 编稿:张金虎审稿:李勇康 【学习目标】 1.电磁感应现象发生条件的探究与应用。 2.楞次定律的建立过程与应用:感应电流方向决定因素的探究,楞次定律的表述及意义。 3.法拉第电磁感应定律的运用,尤其是导体棒切割磁感线产生感应电动势 sin EBLv??的计算是感应电动势定量计算的重点所在。在应用此公式时要特别注意导体棒的有效切割速度和有效长度。 4.利用法拉第电磁感应定律、电路知识、牛顿运动定律、能的转化和守恒定律进行综合分析与计算。 【知识络】 【要点梳理】 要点一、关于磁通量?,磁通量的变化??、磁通量的变化率t??? 1、磁通量

磁通量cos BSBSBS???????,是一个标量,但有正、负之分。 可以形象地理解为穿过某面积磁感线的净条数。 2、磁通量的变化 磁通量的变化21??????. 要点诠释: ??的值可能是2?、1?绝对值的差,也可能是绝对值的和。例如当一个线圈从与磁感 线垂直的位置转动180?的过程中21??????. 3、磁通量的变化率 磁通量的变化率t???表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。 2121ttt????????, 在回路面积和位置不变时BStt??????(Bt??叫磁感应强度的变化率); 在B均匀不变时SBtt??????,与线圈的匝数无关。 要点二、关于楞次定律 (1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。 (2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。 (3)楞次定律适用范围:适用于所有电磁感应现象。 (4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。 (5)楞次定律是能的转化和守恒定律的必然结果。 要点三、法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即Et????. 要点诠释: 对n匝线圈有Ent????. (1)Ent????是t?时间内的平均感应电动势,当0t??时,Ent????转化为瞬时感应电动势。

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

电磁感应解题技巧及练习

电磁感应专题复习(重要) 基础回顾 (一)法拉弟电磁感应定律 1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比 E=nΔΦ/Δt(普适公式) 当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα 2、E=nΔΦ/Δt与E=BLVsinα的选用 ①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法 ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变 ② E=BLVsinα可计算平均动势,也可计算瞬时电动势。 ③直导线在磁场中转动时,导体上各点速度不一样,可用 V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度, ω为角速度。) (二)电磁感应的综合问题 一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的 电源,求出电源参数E和r。再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。然后进行“力”的分析--------要分析 力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。【常见题型分析】 题型一楞次定律、右手定则的简单应用 例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧 长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为 2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线 框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是 A、金属线框进入磁场时感应电流的方向为a→b→c→d→ B、金属线框离开磁场时感应电流的方向a→d→c→b→ C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等 D、金属线框最终将在磁场内做简谐运动。 题型二法拉第电磁感应定律的简单应用 例题(2000、上海卷)如图所示,固定于水平桌面上的金属框架cdef,处在坚直向下的匀 强磁场中,金属棒ab搁在框架上,可无摩擦滑动,此时abcd构成一个边长为L的正方形,棒的电阻力为r,其余部分电阻不计,开始时磁感强度为B。 (1)若从t=0时刻起,磁感强度均匀增加,每秒增量为K,同时保持棒静止,求棒中的感 应电流,在图上标出感应电流的方向。 (2)在(1)情况中,始终保持棒静止,当t=t1 秒未时需加的垂直于棒的水平拉力为多大?(3)若从t=0时刻起,磁感强度逐渐减小,当棒以速度v向右做匀速运动时,若使棒中不 产生感应电流,则磁感强度怎样随时间变化(写出B与t的关系式)? d a c B0

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型) 一、选择题: 1.下面说法正确的是 ( ) A .自感电动势总是阻碍电路中原来电流增加 B .自感电动势总是阻碍电路中原来电流变化 C .电路中的电流越大,自感电动势越大 D .电路中的电流变化量越大,自感电动势越大 【答案】B 2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLv B .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零 C .当两杆以相同的速度v 同向滑动时,伏特表读数为零 D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv 【答案】AC 3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。 如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4 C .a 1 = a 2>a 3>a 4 D .a 4 = a 2>a 3>a 1 【答案】C 4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢 C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断 D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A 图9-2 图9-3 图9-4 图9-1

人教版高中物理选修3-2重点题型巩固练习] 电磁感应基础知识

人教版高中物理选修3-2 知识点梳理 重点题型(常考知识点)巩固练习 【巩固练习】 一、选择题 1.在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是( ) A .奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B .麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C .库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D .安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律 2. 1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在会展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈,此项发明是( ) A .新型直流发电机 B .直流电动机 C .交流电动机 D .交流发电机 3.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”和“磁学”联系起来,在下面几个典型的实验设计思想中,所做的推论后来被实验否定的是( ) A .既然磁铁可以使近旁的铁块带磁,静电荷也可以使近旁的导体表面感应出电荷,那么静止导线中的稳恒电流也可在近旁静止的线圈中感应出电流 B .既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流 C .既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势 D .既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可以在近旁的线圈中感应出电流 4.如图所示,矩形线框abcd 放置在水平面内,磁场方向与水平方向成α角,已知4sin 5 α=,回路面积为S ,磁感应强度为B ,则通过线框的磁通量为 ( ) A .BS B . 45BS C .35BS D .34BS 5.如图所示,ab 是水平面上一个圆的直径,在过ab 的竖直平面内有一根通电导线ef 。已知ef 平行于ab ,当ef 竖直向上平移时,电流磁场穿过圆面积的磁通 量将( )

备战高考物理压轴题专题复习——法拉第电磁感应定律的推断题综合附详细答案

一、法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==?? 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

高中物理专项练习:电磁感应

高中物理专项练习:电磁感应 一.选择题 1. (高三考试大纲调研卷10)如图所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L。一个质量为m、边长也为L的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行。t=0时刻导线框的上边恰好与磁场的下边界重合 (图中位置Ⅰ),导线框的速度为v0。经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零。此后,导线框下落,经过一段时间回到初始位置Ⅰ(不计空气阻力),则 A. 上升过程中合力做的功与下降过程中合力做的功相等 B. 上升过程中线框产生的热量与下降过程中线框产生的热量相等 C. 上升过程中,导线框的加速度逐渐增大 D. 上升过程克服重力做功的平均功率大于下降过程重力的平均功率 【答案】D 【解析】线框运动过程中要产生电能,根据能量守恒定律可知,线框返回原位置时速率减小,则上升过程动能的变化量大小大于下降过程动能的变化量大小,根据动能定理得知,上升过程中合力做功较大,故A错误;线框产生的焦耳热等于克服安培力做功,对应与同一位置,上升过程安培力大于下降过程安培力,上升与下降过程位移相等,则上升过程克服安培力做功等于下降过程克服安培力做功,上升过程中线框产生的热量比下降过程中线框产生的热量的多,故B错误;上升过程中,线框所受的重力和安培力都向下,线框做减速运动。设加速度大小为a,根据牛顿第二定律得:,,由此可知,线框速度v减小时,加速度a也减小, 故C错误;下降过程中,线框做加速运动,则有:,,,由此可知,下降过程加速度小于上升过程加速度,上升过程位移与下降过程位移相等,则上升时间短,下降时

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

巩固练习 电磁感应基础知识

【巩固练习】 一、选择题 1.在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是()A.奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B.麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C.库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D.安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律 2.1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在会展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈,此项发明是()A.新型直流发电机B.直流电动机C.交流电动机D.交流发电机 3.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的“电学”和“磁学”联系起来,在下面几个典型的实验设计思想中,所做的推论后来被实验否定的是()A.既然磁铁可以使近旁的铁块带磁,静电荷也可以使近旁的导体表面感应出电荷,那么静止导线中的稳恒电流也可在近旁静止的线圈中感应出电流 B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流 C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势 D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可以在近旁的线圈中感应出电流 ?角,已知放置在水平面内,磁场方向与水平方向成.如图所示,矩形线框abcd44??sin,回路面积为S,磁感应强度为B,则通过线框的磁通量为5 )(BS33BS4BS.B A C.D..BS 455 。ef是水平面上一个圆的直径,在过ab的竖直平面内有一根通电导线5.如图所示,ab竖直向上平移时,电流磁场穿过圆面积的磁通efab,当已知ef平行于

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

相关主题