搜档网
当前位置:搜档网 › 谐波测试

谐波测试

谐波测试
谐波测试

线路谐波测试试验报告

线路谐波测试试验报告

电能质量测试报告

电能质量测试测试报告 测试人员:xxx 报告撰写:xxx 批准:xxx 单位:xxx 2013年3月

目次 1 测试概况 (3) 2 测试依据 (3) 3 测试仪器 (5) 4 测试参数 (7) 5 测试现场接线图 (7) 6 . 4AA12出线测试结果及其分析 (8) 6.1 4AA12出线电压水平 (8) 6.1.1出线电压有效值 (8) 6.1.2出线电压偏差 (8) 6.1.3出线电压有效值变化趋势 (9) 6.1.4分析结论 (10) 6.2 电压总畸变率 (10) 6.3 电压不平衡度 (12) 6.4 电压闪变 (13) 7、3AA16出线测试结果及其分析 (13) 7.1 3AA16出线电压水平 (13) 7.1.1出线电压有效值 (13) 7.1.2 出线电压偏差 (14) 7.1.3出线电压有效值变化趋势 (14) 7.1.4分析结论 (15) 7.2 电压总畸变率 (15) 7.3 电压不平衡度 (17) 7.4电压闪变 (17) 8 测试结论 (18)

1 测试概况 xxx有两台UPS电源,主要用于给BCS医疗系统供电。该UPS由泰高系统有限公司提供,型号为:RSOAVR 60KVA/380V 在线式,每个电源柜中装载29块(阳光)电池,使用至今电池未发现漏液现象。 近期以来,晚上开启日用灯后,该UPS电源柜偶尔会发生异常报警(三声报警,无信息提示),具体原因不详。为了分析该报警是否与谐波污染有关系,该公司拟对UPS电源380V母线及出线的谐波水平进行测试。 应xxx公司要求,2016年xx月xx日至xx月xx日,xxxxxx有限公司对xxxx有限公司两台UPS供电设备出口母线进行了一次谐波测试。 2 测试依据 该项测试依据GB/T14549-93电能质量公用电网谐波国家标准进行。 GB/T14549-93各级电压等级谐波限值规定如下表1, 公共连接点的全部用户向该点注入的谐波电流允许值见表2。 ???????? 表1:公用电网谐波电压(相电压)限值

高压直流换流站交流侧谐波测试方案

高压直流输电(HVDC,HighVoltageDirectCurrent)技术相比于常规交流输电方式拥有众多的优点,因为直流电不产生振荡,没有感抗,传输过程中电能损失小,适用于远距离或超远距离输电,比交流输电更为经济,在我国已经得到了广泛的应用,宁东—山东、锦屏—苏南、三峡—上海、向家坝—上海、葛洲坝—上海直流输电工程都已投入使用,大大促进了资源节约型、环境友好型社会的建设。 高压直流换流站是高压直流输电系统的核心,其交流侧谐波的测试对整个电力系统的谐波研究非常重要,本文讲述高压直流换流站交流侧谐波测试的整体解决方案,供大家参考。 一、高压直流换流站简介 高压直流换流站是实现直流输电工程中直流和交流相互能量转换的枢纽。高压直流换流站一侧接入交流系统,另一侧与直流电力传输网络相联,按运行方式可分为整流站和逆变站。整流站将交流电力变换为直流电力,逆变站将直流电力变换为交流电力。通过改变换流站内换流器的触发关断,可实现换流器的整流或逆变运行方式,因此换流站既可作为整流站运行,又可作为逆变站运行。 二、高压直流换流站交流侧谐波的产生 高压直流换流站换流器中的晶闸管按照一定规律随时间通断,它是一种非线性的电力电子元件,即使当交流侧为标准正弦供电电压时,换流器也将产生大量的特征谐波电流注入系统,从而引起电压畸变,同时,由于交流三相系统可能存在的不对称性,还会使系统含有大量非特征谐波。 高压直流换流站的电力系统谐波不仅会增加电网损耗,加剧设备的热应力,降低设备寿命,干扰通信、计量、保护和控制装置的正常工作,严重时还会在无功补偿电容器组与系统问引起谐振或谐波电流的放大,扰乱系统的正常运行、引发系统故障和事故。 三、高压直流换流站交流侧谐波测试方案 高压直流换流站作为电力系统的一个谐波源,由于其输电容量巨大,在电力系统中的重要性非常高,因此对高压直流换流站交流侧谐波进行精确测量、科学分析尤为重要,是设计高压直流换流站中电力滤波器的研究基础。 目前市面上的谐波检测设备,大多按照电力系统谐波分析、电能质量分析需要进行设计,遵循国家标准《GB/T 17628.7电磁兼容试验和测量技术供电系统及所连设备谐波、谐间波的测量和测量仪器导则(IEC 61000-4-7)》相关技术要求,用于测量叠加50Hz/60Hz电力系统基波上,频率为9kHz以下的谐波和谐间波。如《DL/T 1028-2006 电能质量测试分析仪检定规程》对电网谐波分析仪进行检定的最高谐波次数为50次。大部分电力系统谐波分析仪的最高谐波阶数为40或50,可以满足电力系统谐波分析的一般需要。

谐波测试报告

谐波测试评估报告一、谐波测试(只测量了AC相) 图一:电压谐波总畸变率曲线 图二:谐波电流频谱图

监测时间: 参数 A相C相 限值95%值结论95%值结论 基波电压(kV)10.512 ------ 10.502 ------ ------- 2至25次谐波电压含有率(%)2 0.03454 合格0.01092 合格 1.60 3 0.19926 合格0.15543 合格 3.20 4 0.03408 合格0.00670 合格 1.60 5 0.16759 合格0.17845 合格 3.20 6 0.02714 合格0.00746 合格 1.60 7 0.25205 合格0.24453 合格 3.20 8 0.03559 合格0.01170 合格 1.60 9 0.05251 合格0.04012 合格 3.20 10 0.03198 合格0.01110 合格 1.60 11 0.25849 合格0.23378 合格 3.20 12 0.03327 合格0.00933 合格 1.60 13 0.16225 合格0.16792 合格 3.20 14 0.02927 合格0.01277 合格 1.60 15 0.06167 合格0.03726 合格 3.20 16 0.02944 合格0.00777 合格 1.60 17 0.46499 合格0.49567 合格 3.20 18 0.02481 合格0.00602 合格 1.60 19 0.70382 合格0.82298 合格 3.20 20 0.02479 合格0.00736 合格 1.60 21 0.04745 合格0.02988 合格 3.20 22 0.02127 合格0.00644 合格 1.60 23 0.06317 合格0.08257 合格 3.20 24 0.02202 合格0.00853 合格 1.60 25 0.06950 合格0.07423 合格 3.20 电压总畸变率(%)0.95432 合格 1.04190 合格 4.00 短时间闪变(l)0.21041 ------ 0.07000 ------ ------ 长时间闪变(l)0.25475 合格0.09240 合格 1.00 三、频率及电压不平衡率评估 监测时间 参数最大值平均值最小值95%值限值结论频率(Hz)50.048 50.003 49.961 ±0.032 ±0.20 合格负序电压不平衡度(%)100.000 0.14991 0.01000 0.11000 2.00 合格

谐波电流计算公式是什么

谐波电流计算公式是什么? 谐波含量计算: 测试时最好测出设备较长时期运行时最大的谐波电流,其和产生谐波电流的负载投入有关,若产生谐波电流的负载全部投入,测试的数据是比较准的。 A、咨询现场工程人员,此时产生谐波的负载是否全部满负荷运行,产生谐波的负载就是非线性负载,变频器,整流设备,中频炉等。测试时现场工程人员应该知道同类的非线性负载投入了多少,所以一定问清楚,自己也可以通过配电盘看一下同类的设备投入了多少,最终目的就是能够知道我们此次测试的谐波电流含量是否为其真正的谐波含量,否则按比例推算。譬如我们测试时同类设备只有一半运行,毫无疑问我们的测试报告要对其进行说明,并且推算出其真实的谐波含量应该乘以2。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大谐波含量,如下图: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其THDA (平均畸变率)为9.4%,Arms为1.119KA,那么其计算的谐波含量为105.186A,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大谐波含量,那么选取1台100A的设备即可满足谐波补偿要求。 无功功率补偿计算: A、咨询现场工程人员,或者调用其原始功率因数数据,因为功率因数是考核指标,主要咨询两个问题,一是功率因数长期基本上是多少,二是在此功率因数时长期负载电流I多大,通过公式计算出P的值,然后计算出需要补偿的无功功率,无功功率计算公式为,——对应cosφ前的正切值,——对应cosφ后的正切值。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大无功补偿量,如下图所示: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其平均功率为P=140KW,补偿前功率因数cosφ前=0.554,若补偿后要求功率因数不低于cosφ后=0.90,那么根据公式其计算的无功补偿容量为142.66KVAR,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大无功补偿容量,那么选取3台100A的设备即可满足谐波补偿要求。

S参数和谐波平衡仿真分析 实验报告

实验报告 课程名称: ADS射频电路设计基础与典型应用实验项目名称: S参数和谐波平衡仿真分析 学院:工学院 专业班级:11信息工程 姓名: 学号:1195111016 指导教师:唐加能 预习报告

一、实验目的 本节实验课程将通过给出一个放大器S参数仿真历程的原理图与谐波平衡仿真历程的原理图,并将其电路通过仿真来实现,从而帮助大家对这两种模型有进一步的理解与认识。 二、实验仪器 PC,ADS仿真软件 三、实验原理 S参数仿真中各项需要用到的模型介绍 (1)放大器模型Motorola_PA S参数仿真原理图SP1.dsn中的放大器是一个电路模型。Motorola_PA是这个电路模型的符号。 图1 Motorola_PA 电路模型 Motorola_PA符号有子电路,它的特性是由子电路来决定,查看子电路的具体步骤如下:在原理同SP1.dsn中,单击按钮,再单击Motorola_PA电路模型。 其中的Motorola_Mosfet_Model也有子电路,可以通过相同方法进入查看。 图2 Motorola_Mosfet_Model电路模型 (2)终端负载Term

在S参数仿真中,各个端口都要加载终端负载Term。 (在本次S参数仿真中,电路输入端口没有加源,而在输入端口采用终端负载Term。) 图3 Term电路模型 (3)直流电压源 在SP1.dsn原理图中,有两个直流电压源V_DC,他们给放大电路提供静态工作点。 图4 直流电压源的电路模型 (4)S参数仿真控制器 SP1,.dsn原理图中,S参数的仿真控制器S-PARAMETERS用于设置所用到的参数,双击可以进入设置界面 图5 仿真控制器的电路模型

谐波的定义及测试方法

供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics )或分数谐波。谐波实际上是一种 干扰量,使电网受到“污染”。 目前公司常用测试输入电流谐波的仪器有TEK 系列示波器(可采用WAVESTAR 软件进行谐波分析),测试输出电压谐波的仪器有GW GAD-201G (失真仪)和TEK 系列示波器(可采用WAVESTAR 软件进行谐波分析)。 使用下面的方法计算信号的THD : () ++++++=272625242322211A A A A A A A THD 其中A 1是幅频特性中基波的幅值,而A 2 、A 3、A 4、A 5、……分别是2、3、4、5、……次谐波的幅值。选取不同数量的谐波分量,可以计算出对应的THD 值。 采用WAVESTAR 软件进行分析可以得到完整谐波分析数据,下图为分析得出的柱型图,从图中可以针对各次谐波异常的状况采取相应的对策进行改善: Harmonic magnitude as a % of the fundamental amplitude 0.0%0.7% 1.5% 2.2% 3.0% 3.7% 4.4% 5.2% 5.9% 6.6% 7.4% 8.1% Voltage: Current: Ch 1 # Harmonics: 20 Type: Current Magnitude

波峰因数定义为交流信号峰值与有效值之比(峰均比),典型的波峰因数是: 正弦波: 1.414;方波: 1;25%的占空比的脉冲:2 。 波峰因数(CREST FACTOR )的概念在UPS 行业是用来衡量UPS 带非线性负载的能力,对线性负载(R LOAD )而言,正弦波电流峰值Ipeak 与均方根值Irms 之比为1.414:1;在非线性负载(RCD LOAD )时,波峰因数则被认定为:在相同的有功功率条件下,非线性负载的电流峰值与非线性负载电流均方根值之比。 实际测试波形参考如下: 计算公式参考如下: rms peak factor Crest I I = Γ-

基波和谐波

什么是谐波? "谐波"一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40 一、1. 何为谐波? 在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。 “谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析 方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。 到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问

谐波的基础知识谐波谐波的种类及谐波频率计算

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 2 (1)什么是基波? 3 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz 4 基波是50 Hz。 5 (2)什么是谐波? 6 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为 7 电网或电路中,电压产生的谐波为电压谐波; 8 电流产生的谐波为电流谐波。 9 (3)谐波有几种? 10 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波 11 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 12 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 13 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 14 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 15 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 16 高频谐波:指频率为圆耀怨kHz的谐波。 17 (4)谐波频率如何计算? 18 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊越猿 19 缘园Hz等。 20 (5)哪些设备或电路容易产生谐波? 21 1)非线性负载,例二极管整流电路(AC/DC)。 22 2)三相电压或电流不对称性负载。 23 3)逆变电路(DC/AC)。 24 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。

谐波测试分析报告参考样本

测试报告委托单位: 检测项目: 谐波测试 报告日期: 温州清华电子工程有限公司测试组 送: 目录 一、测试目的 (2) 二、测试依据 (2) 三、测试内容 (3) 四、测试信号与接线方式 (3) 采样信号 (4) 测试工况 (4) 接线方式 (4) 测试时间 (4) 五、测试结果 (5) 六、结论 (8)

附件测试数据 一、测试目的 XXXXXXX 一家工程用塑料管材制造商,是国内从事 PP-R 管道的龙头企业,目前35KV 变电所共有 3 台主变,1#,2#主变容量为 1250KVA,采用并联运行方式,3 #主变容量为1600KVA,分别供挤出,注塑,波纹管,破碎造粒车间的供电,而大部分的电机都采用直流调速,工作时不同程度的产生谐波注入 35KV 母线,故通过对伟星新型建材有限公司三台主变 0.4KV 侧的谐波测试,了解该变低压母线上的谐波情况,来评估 0.4KV 级别电源的电能质量是否符合国标《GB14549-93 电能质量公用电网谐波》。 二、测试依据 綷◆●? GB14549-93《电能质量公用电网谐波》 表 1 公用电网谐波电压(相电压)限值 电网标称电压电压总谐波畸变各次谐波电压含有率% KV 率% 奇次偶次 0.38 5.0 4.0 2.0 6 10 4.0 3.2 1.6 35 66

3.0 2.4 1.2 110 2.0 1.6 0.8 表 2 1250KVA0.4KV 公用电网谐波电流限值 谐波次数 5 7 11 13 23 25 允许值129 91 58 50 29 25 表 3 1600KVA0.4KV 公用电网谐波电流限值 谐波次数 5 7 11 13 23 25 允许值165 118 75 64 37 32 谐波电流允许值计算见 GB14549-93 中公司(B1),其中变压器 1600KVA,短路容量为 26.7MVA, 1250KVA,短路容量为 20.8MVA。 綷◆●? GB/T 12326-2000 《电能质量电压波动和闪变》 电力系统公共连接点,由波动负荷产生的电压变动限值和变动频度、电压等 级有关,如表 3。 表 4 电压变动限值 频度 r,h-1 电压变动限值d,% LV、MV HV r≤1 4 3 1

用示波器对LED谐波初步测试方法

1.谐波标准简要 随着开关电源类电子产品的应用普及,国际电工委员会制定了IEC61000-3-2、欧盟制定了EN60555-2 和我国制定了等法规,对用电设备的电压、电流波形失真作出了具体限制和规定。目前这些法规也适用于LED 灯具及LED 驱动电源。对于输入有功功率大于25W 的LED 照明灯具,谐波电流不应超过表1 限值。 表1. C 类设备的限值 对于输入有功功率不大于25W 的LED 照明灯具,规定符合如下的其中一项: a.谐波电流不应超过表 2 的第 2 栏中与功率相关的限值; 表2 D类设备的限制 用基波电流百分数表示的 3 次谐波电流不应超过86%,5 次谐波不超过61%;而且,假设基波电压过零点为0°,输入电流波形应是60°或之前开始流通,65°或之前有最后一个峰值(如果在半个周期内有几个峰值),在90°前不应停止流通。2.标准LED电源选择 看清电源规格中的谐波标准与分类 图中标准为IEC61000-3-2,分类为A.此种是不符合LED应用标准. 图中标准为IEC61000-3-2,分类为C.此种是不符合LED应用标准,但要注意应用时,负载功率需要大于额定负载60%. 3.产品初步测试方法 示波器要求:有FFT 数学计算模式(快速傅立叶变换) 本例示波器型号:TDS2012C;电源恒压,负载100%灯带. 1.测试出输入电流波形时域(YT) 信号:在电压输入端串5Ω电阻,探头分别接电阻两端, 设置通道耦合为AC,按自动设置(Auto Set)进行自动测试,后调整水平标度,使波形在屏幕上稳定显示一个周期波形,以下图. 2.使用FFT 数学计算模式将时域(YT) 信号转换为它的频率分量(频谱);按示波器 Math 键,操作选择FFT,信源选择当前通道,窗口选择Flattop(各窗口显示特性) 设置好后示波器显示如下图 3.精确读取测试数据:调整水平标度,水平位置,FFT缩放将放大波形显示,后用光标测量精确数据.下图为:基波50HZ与3次谐波150HZ的数据, 下图为:基波50HZ与5次谐波250HZ的数据, 下图为:基波50HZ与7次谐波350HZ的数据, 下图为:基波50HZ与9次谐波450HZ的数据,

高次谐波计算

大功率UPS 6脉冲与12脉冲可控硅整流器的区别 艾默生网络能源有限公司UPS 产品部 温顺理 一、理论推导 1.6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为: (1) 由公式(1)可得以下结论: 电流中含6K ±1(k 为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 2.12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 ...)19sin 19 1 17sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--??? =t t t t t t t I i d A ωωωωωωωπ

12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II 网侧线电压比桥I 超前30?,因网侧线电流比桥I 超前30? (1-3) 故合成的 网侧线电流 (1-4) 可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k ±1(k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 ...)19sin 19 1 17sin 17113sin 13111sin 1117sin 715sin 51(sin 32+--++--??? =t t t t t t t I i d IA ωωωωωωωπ...)19sin 19 1 17sin 17113sin 13111sin 1117sin 715sin 51(sin 32+++++++??? =t t t t t t t I i d IIA ωωωωωωωπ...)13sin 13 1 11sin 111(sin 3 4t t t I i i i d IIA IA A ωωωπ ++ ??? =+=

一文教你读懂谐波测量方法

一文教你读懂谐波测量方法 来源:仪商网 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调

整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法需要用足够高采样率来保证各频率成分的频谱互相影响足够小;而且截断造成的泄漏也不能太大,否则产生的假频率叠加到真实频谱里,导致结果误差更大。 简单对比 基于以上实现原理可知,同步采样法精度取决于PLL的准确度,而后期计算简单。PLL 中用到的滤波器限制了支持的基波频率上限,因此在基波频率较高时,同步采样法一般无法支持;同样是滤波器原因,无法很好滤除低偶次谐波,所以低偶次谐波幅值较大时,PLL 就无法同步基波采样,谐波分析结果也就完全错误。 频率重心法不需要额外滤波器,采样器件可工作在支持的最高采样频率,使有效谱线拉开的同时提高了支持的谐波频率范围,而为了消除泄漏的影响,需要使用更多的数据进行傅里叶变换。所以频率重心法引入了数倍于同步采样法的计算量。另外,重心法需要使用至少两根谱线,而且受窗函数主瓣宽度限制,频率重心法所能支持的频率下限只能达到频率分辨率的三倍以上。由于频率重心法没有反馈过程,不依赖于信号,模拟电路实现简单,理论上只要采样率和使用的数据点足够,就能得到正确的结果。 特别地,因为同步采样需要硬件电路,受限与成本与体积,大部分测量仪器只支持一到两个PLL源,而频率重心法无此限制,甚至可任意定义基波源(对应于PLL源,用于确定基波)。 应用实例

谐波测试分析报告参考样本

测试报告 委托单位: 检测项目: 谐波测试 报告日期: 温州清华电子工程有限公司测试组 送:

目录 一、测试目的 (2) 二、测试依据 (2) 三、测试内容 (3) 四、测试信号与接线方式 (3) 采样信号 (4) 测试工况 (4) 接线方式 (4) 测试时间 (4) 五、测试结果 (5) 六、结论 (8) 附件测试数据

一、测试目的 XXXXXXX 一家工程用塑料管材制造商,是国内从事 PP-R 管道的龙头企业,目前35KV 变电所共有 3 台主变,1#,2#主变容量为 1250KVA,采用并联运行方式,3#主变容量为1600KVA,分别供挤出,注塑,波纹管,破碎造粒车间的供电,而大部分的电机都采用直流调速,工作时不同程度的产生谐波注入 35KV 母线,故通过对伟星新型建材有限公司三台主变 0.4KV 侧的谐波测试,了解该变低压母线上的谐波情况,来评估 0.4KV 级别电源的电能质量是否符合国标《GB14549-93 电能质量公用电网谐波》。 二、测试依据 綷◆●? GB14549-93《电能质量公用电网谐波》 表 1 公用电网谐波电压(相电压)限值 电网标称电压电压总谐波畸变各次谐波电压含有率% KV 率% 奇次偶次 0.38 5.0 4.0 2.0 6 10 4.0 3.2 1.6 35 66 3.0 2.4 1.2 110 2.0 1.6 0.8 表 2 1250KVA0.4KV 公用电网谐波电流限值 谐波次数 5 7 11 13 23 25 允许值129 91 58 50 29 25 表 3 1600KVA0.4KV 公用电网谐波电流限值 谐波次数 5 7 11 13 23 25 允许值165 118 75 64 37 32 谐波电流允许值计算见 GB14549-93 中公司(B1),其中变压器 1600KVA,短路容量为 26.7MVA, 1250KVA,短路容量为 20.8MVA。 綷◆●? GB/T 12326-2000 《电能质量电压波动和闪变》 电力系统公共连接点,由波动负荷产生的电压变动限值和变动频度、电压等 级有关,如表 3。 表 4 电压变动限值 频度 r,h-1 电压变动限值d,%LV、MV HV r≤1 4 3 1<r≤10 3 2.5 10<r≤100 2 2 1.5 100<r≤1000 1.25 1

频谱分析仪测量谐波的方法

频谱分析仪测量谐波的方法 嘉兆科技 无线电工程应用不仅要对射频信号的谐波进行测量,有时还要确定音频信号的总谐波失真(THD)。射频信号可能是已调信号或连续波信号。这些信号可以由有漂移的压控振荡器(VCO)或稳定的锁相振荡器或合成器产生。现代频谱分析仪能利用本文中所述方法来进行这些测量。本文还将讨论如何断定在分析设备或被测器件(DUT)中是否产生谐波、对不同类型信号的最佳测量方法以及对数平均、电压单位和均方根值(ms)计算的利用。 我们这里所处理的所有信号均假定为周期信号,亦即它们的电压随时间的变化特性是重复的。傅里叶变换分析可以将任何重复信号表示为若干正弦波之和。按一定目的产生的频率最低的正弦波称为基频信号。其它正弦波则称为谐波信号。可以利用频谱分析仪来测量基频信号及其谐波信号的幅度。 谐波常常是人们不希望存在的。在无线电发射机中,它们可能干扰射频频谱的其它用户。例如,在外差接收机的本振(LO)中,谐波可能产生寄生信号。因此,通常应对它们进行监控并将其减小到最低限度。 利用频谱分析仪对信号进行测量时,分析仪的电路也会引入其自身的某种失真。为了进行精确测量,用户需要了解所测得的失真究竟是所考察的信号的一部分还是由于引人分析仪所引起的。 分析仪所产生的失真起因于某些微弱非线性特性(因为它没有理想线性特性)。因此,可以用表明输出电压(O)与输入电压(I)之间的关系的泰勒(Taylor)级数来表示频谱分析仪的信号处理特性: V0=K1V i+K2V i2+K3V3i (1) 式中 V0=输出电压 V i=输入电压 K1、K2和K3均为常数 利用上面的关系式,可以直接证明:输入电压加倍将引起V i2项增加4倍(6dB),因而引起对正弦波的二次谐波响应增加4倍。类似类推,三阶谐波失真随输入电平按三次方规律增加。有两种方法即依靠技术指标或实验能断定分析仪是否对测出的失真有影响。 为了依据分析仪的谐波失真技术指标来判断其影响,利用对失真量级的了解,将相对于分析仪输入混频器上的特定信号以伽给出的那些技术指标变换成针对选择的输入电平给出的dBC。图1示出这个过程的图解实例。从图中可以看出,对频谱分析仪只规定了二阶失真和三阶失真。而更高阶次的失真通常可忽略不计。 图1 频谱分析仪的失真极限可以分别针对二次和三次谐波电平绘出 与技术指标有关的数据点1:1和2:1钭率进行予测

电源可靠性测试报告

开关电源可靠性测试报告 测试电源型号: ------------------------------------------------------------- 测试电源版本: ------------------------------------------------------------- 报告编号: -------------------------------------------------------------------- 测试日期: ------------------------------------------------------------------ 测试结果: ------------------------------------------------------------------

目录 1.输入特性 (3) 1.1输入电压调整率 (3) 1.2效率、功率因数 (3) 1.3浪涌电流 (3) 2.输出特性 (4) 2.1启动延时 (4) 2.2负载调整率 (5) 2.3启动输出电流过冲幅度 (6) 2.4纹波、杂讯测试 (6) 3.保护特性 (7) 3.1短路保护 SCP 短路功耗 (7) 3.2开路电压 (8) 4.环境适应性 (8) 4.1电流漂移 (8) 4.2 ON/OFF测试 (8) 4.3元器件使用余度试验 (9) 4.4温度应力(温升) (10) 4.5高温启动 (11) 4.6高温工作测试 (11) 4.7低温贮存测试 (11) 4.8高压测试 (11) 5.电磁兼容&安规 (11) 5.1谐波测试 (11) 6.备注说明 (12)

二次谐波制动比率差动的原理

二次谐波制动比率差动的原理 摘要:对国内几起微机型主变差动保护误动原因分析,对新建变电站、运行中变电站、改造变电站主变差动保护误动原因,提出了防范措施。 关键词:差动保护;误动;暂态特性;线路纵差保护 电力系统中,主变是承接电能输送主要设备,作为主设备主保护微机型纵联差动(简称纵差或差动)保护,不断改进,还存“原因不明”误动作情况,这将造成主变非正常停运,影响大面积区供电,是造成系统振荡,对电力系统供电稳定运行是很不利。对新建变电站、运行中变电站、改造变电站主变差动保护误动原因进行分析,并提出了防止主变差动误动对策。 1主变差动保护 主变差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动比率差动保护,哪种保护功能差动保护,其差动电流都是主变各侧电流向量和到,主变正常运行保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。 1.1比率差动保护动作特性 比率差动保护动作特性见图1。当变压器轻微故障时,例如匝间短路圈数很少时,不带制动量,使保护变压器轻微故障时具有较高灵敏度。而较严重区外故障时,有较大制动量,提高保护可靠性。 二次谐波制动主要区别是故障电流励磁涌流,主变空载投运时会产生比较大励磁涌流,并伴随有二次谐波分量,使主变不误动,采用谐波制动原理。判断二次谐波分量,是否达到设定值来确定是主变故障主变空载投运,决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。有些大型变压器,增加保护可靠性,也有采用五次谐波制动原理。 1.2差动速断作用 差动速断是较严重区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断定值是按躲过变压器励磁涌流,和最大运行方式下穿越性故障引起不平衡电流,两者中较大者。定值一般取(4~14)Ie。 2主变差动保护误动作原因分析 主变差动保护误动作可能性大小,大致分为新建变电站、运行中变电站、改造变电站三个方面进行说明,这种分类方法并绝对相互区别,便于分析问题时优先考虑现实问题。 2.1新建变电站主变差动保护误动作原因分析

频谱分析仪对射频和音频谐波以及THD的测量方法分析

频谱分析仪对射频和音频谐波以及THD的测量方法分析 无线电工程应用不仅要对射频信号的谐波进行测量,有时还要确定音频信号的总谐波失真(THD)。射频信号可能是已调信号或连续波信号。这些信号可以由有漂移的压控振荡器(VCO)或稳定的锁相振荡器或合成器产生。现代频谱分析仪能利用本文中所述方法来进行这些测量。本文还将讨论如何断定在分析设备或被测器件(DUT)中是否产生谐波、对不同类型信号的最佳测量方法以及对数平均、电压单位和均方根值(ms)计算的利用。我们这里所处理的所有信号均假定为周期信号,亦即它们的电压随时间的变化特性是重复的。傅里叶变换分析可以将任何重复信号表示为若干正弦波之和。按一定目的产生的频率最低的正弦波称为基频信号。其它正弦波则称为谐波信号。可以利用频谱分析仪来测量基频信号及其谐波信号的幅度。谐波常常是人们不希望存在的。在无线电发射机中,它们可能干扰射频频谱的其它用户。例如,在外差接收机的本振(LO)中,谐波可能产生寄生信号。因此,通常应对它们进行监控并将其减小到最低限度。利用频谱分析仪对信号进行测量时,分析仪的电路也会引入其自身的某种失真。为了进行精确测量,用户需要了解所测得的失真究竟是所考察的信号的一部分还是由于引人分析仪所引起的。分析仪所产生的失真起因于某些微弱非线性特性(因为它没有理想线性特性)。因此,可以用表明输出电压(O)与输入电压(I)之间的关系的泰勒(Taylor)级数来表示频谱分析仪的信号处理特性: V0=K1Vi+K2Vi2+K3V3i(1) 式中,V0=输出电压,Vi=输入电压,K1、K2和K3均为常数利用上面的关系式,可以直接证明:输入电压加倍将引起Vi2项增加4倍(6dB),因而引起对正弦波的二次谐波响应增加4倍。类似类推,三阶谐波失真随输入电平按三次方规律增加。有两种方法即依靠技术指标或实验能断定分析仪是否对测出的失真有影响。为了依据分析仪的谐波失真技术指标来判断其影响,利用对失真量级的了解,将相对于分析仪输入混频器上的特定信号以伽给出的那些技术指标变换成针对选择的输入电平给出的dBC。图1示出这个过程的图解实例。从图中可以看出,对频谱分析仪只规定了二阶失真和三阶失真。而更高阶次的失真通常可忽略不计。

谐波的概念及危害分析

什么是谐波?供电系统的谐波是怎么定义的? 电力系统中有非线性(时变或时不变)负载时,即使电源都以工频50HZ供电,当工频电压或电流作用于非线性负载时,就会产生不同于工频的其它频率的正弦电压或电流,这些不同于工频频率的正弦电压或电流,用富氏级数展开,就是人们称的电力谐波。 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40。 Q:谐波有什么危害? 电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 1. 对供配电线路的危害 ( 1)影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对 10%以下

含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 ( 2)影响电网的质量 电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中 3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。 2. 对电力设备的危害 对电力电容器的危害 当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的 1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果 谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,

二次谐波具体公式1.3502596

Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer Ung Hwan Pi, Kee Won Kim, Ji Young Bae, Sung Chul Lee, Young Jin Cho, Kwang Seok Kim, and Sunae Seo Citation: Applied Physics Letters 97, 162507 (2010); doi: 10.1063/1.3502596 View online: https://www.sodocs.net/doc/cb3414533.html,/10.1063/1.3502596 View Table of Contents: https://www.sodocs.net/doc/cb3414533.html,/content/aip/journal/apl/97/16?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Quaternary memory device fabricated from a single layer Fe film J. Appl. Phys. 111, 07C704 (2012); 10.1063/1.3670973 Monitoring magnetization reversal and perpendicular anisotropy by the extraordinary Hall effect and anisotropic magnetoresistance. J. Appl. Phys. 108, 043924 (2010); 10.1063/1.3475690 Tunable quaternary states in ferromagnetic semiconductor GaMnAs single layer for memory devices Appl. Phys. Lett. 90, 152113 (2007); 10.1063/1.2721144 Influence of spin polarization enhancement layer to rare earth–transition metal thin films for perpendicular tunneling magnetoresistance evaluated by ferromagnetic Hall effect J. Appl. Phys. 99, 08C513 (2006); 10.1063/1.2177420 Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga 1 ? x Mn x As films J. Appl. Phys. 98, 063904 (2005); 10.1063/1.2043233 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: https://www.sodocs.net/doc/cb3414533.html,/termsconditions. Downloaded to IP:

相关主题