搜档网
当前位置:搜档网 › 电化学方法总结

电化学方法总结

电化学方法总结
电化学方法总结

循环伏安法

1 定义:循环伏安法(Cyclic Voltammetry)以等腰三角形的脉冲电压加在工作电极上,控制电极电势以不同的速率,随时间以三角波形一次或多次反复扫描,使电极上能交替发生还原反应和氧化反应,记录电流-

电势曲线。

单圈扫描:电位在初始电位维持一段平衡(静置)时间后,开始匀速变化(扫描速度为v=dE/dt ),扫描到第1个换向电位后,某些仪器可维持在第1个换向电位一段时间,然后电位反向扫描到第2个换向电位,某些仪器也可维持在第2个换向电位一段时间,然后再扫描到最终电位)。

多圈扫描:在初始电位起扫后,在第1、2个换向电位之间循环扫描多圈,最后扫描到最终电位。

2 特点:

Ⅰ:激励信号:施加的电压为三角波电压,双向扫描,分为氧化过程和还原过程,氧化态电势高,还原态电势低。

Ⅱ:参数设置:两个可调参数为电位范围和扫描速度。设置电位范围时需根据溶液的初始条件设置起始电位,起始电位不应破坏溶液的初始条件;若起始电位与溶液初始条件不一致,则在静置几秒内所发生的氧化还原反应未被记录。

Ⅲ:实验条件:进行循环伏安扫描时体系应处于静止状态,若搅拌则记录的图中不会出现峰,相反呈S型。

3 所得信息:

Ⅰ:判断电极反应的可逆程度,依据为峰电流比及峰电势差,对于可逆体系:i pa/i pc≈1;E pa/E pc≈2.3RT/nF。

Ⅱ:判断电极表面的修饰情况,峰电流大说明电极传递电子能力较强。但这只能定性判断,实际循环伏安图中,存在充电电流的影响,因此CV峰电流测量不太容易精确。

Ⅲ:判断其控制步骤和反应机理,若i p∝v,则此过程为表面控制,发生在电极表面;若i p∝v1/2,则此过程为扩散控制,发生在溶液中。

循环伏安法可作用于可逆的电极过程,也可作用于不可逆或准可逆的电极过程以及各种伴随航行反应的过程,不同的电极过程分别阳极峰电势E pa和阴极峰电势E pc,并给出峰电位差△E p和峰电流之比。对于可逆波,E pc=E1/2-1.109RT/nF

E pa=E1/2+1.109RT/nF

△Ep=2.219RT/nF=58/n mV(25℃)

4.应用:

循环伏安法最为重要的应用是定性表征伴随氧化还原反应的前行或后行化学反应。这些化学反应的发生直接影响了电活性组分的表面浓度,出现在许多重要的有机和无机化合物的氧化还原过程中。循环伏安法也能够用于评价电活性化合物的界面行为。基于峰电流的测定,循环伏安法也可应用于定量分析,需要适当的方法确定基线。扣除背景的循环伏安可用于测定较低浓度的物质。

计时电流法

1 定义:计时电流法(chronoamperometry)是在静止的电极上和未搅拌的溶液中,在工作电极上施加一个电位跃,从一个无法拉第反应发生的电位跃至电活性组分的表面浓度有效地趋于零的电位,记录电流随时间的变化。由于在此条件下,传质过程只有扩散,电流-时间曲线反映了在靠近电极表面附近浓度梯度的变化。随着时间的推进,与反应物的消耗相应的扩散层逐渐扩展,浓度梯度减小,于是,电流随时间衰减,并由Cottrell方程描述。

2 特点:

Ⅰ激励信号:电位阶跃,电位突然变化至物质传递极限控制区。Ⅱ实验中i-t行为的实际观测,一定要注意仪器和实验上的限制:

①.恒电势仪的限制

②.记录设备的限制

③.未补偿电阻Ru和双电层电容Cd的限制,电势阶跃时,有非法拉第电流通过,这种电流随电解池时间常数作指数RuCd衰减。

④.对流的限制,在长时间的实验中,浓度梯度和偶尔的振动会对扩散层造成对流扰动。

Ⅲ适用于微电极,此时的物质传递只考虑扩散。

康泰尔方程:①

1/2

1/21/2 ()()O O

d

nFAD C i t i t

t

π

* ==

1/21/2

1/2

2

O O

d

nFAD C t

Q

π

*

=

浓度分布:③

1/2 (,)[]

2() o o

o

x

C x t C erf

D t

*

=

A:几何面积(投影面积)D O:原料的扩散系数O C*:原料的初始浓度前提:平板微电极;半无限条件

康泰尔方程的时间窗口:20μs ~ 200s

3 所得信息:

Ⅰ利用i或i*t1/2与C0成正比的关系,可用于定量分析。

Ⅱ适用于研究遇合化学反应的电极过程,特别是有机电化学的反应机理。

4 应用:

计时电流法常用来测定电活性组分的扩散系数或测定工作电极的表面积。在分析方面主要是在工作电极上施加固定时间间隔内的反复脉冲电位。也能用于研究电极过程的机理,其中特别有吸引力的是反向双电位跃实验。

交流阻抗技术

1 定义:交流阻抗技术(EIS)是一种小幅度交流电压或电流对电极扰动,进行电化学测试,从而获得交流阻抗数据,双电层等效为电容,电化学反应的阻抗等效(电化学反应要消耗电子)为电阻,根据不同模型来确定等效电路,然后用电脑拟合计算相应的电极反应参数。

2 特点

Ⅰ激励信号:小幅度交流电压或电流。

Ⅱ几个重要的关系式

阻抗(impedance) = 电阻(resistance) + 电抗(reactance)

导纳(admittance) = 电导(conductance) + 电纳(susceptance) 导纳= 1/阻抗

Z = R + X Y = G + B Y = 1/Z

Ⅲ BVD等效电路i = if + ic

3 所得信息

Ⅰ对象导电情况,如研究电极的表面修饰

Ⅱ由阻抗测量动力学参数

Ⅲ典型的交流阻抗图

在电化学阻抗中,一般 ηmax <20 mV

ct o RT R nFi =

4 应用: 交流阻抗谱除了应用于基础的电化学研究外,对生物亲和反应得研究是非常有用的,如现代电化学免疫传感器及DNA 生物传感器。

示差脉冲伏安法

1 激励信号如下图所示:

示差脉冲极谱实验几个汞滴的电势程序

激励信号采用小幅度脉冲方式,灵敏度优于常规脉冲。

该方法与常规脉冲极谱有相似之处,但是有几点主要的差别:(a)在大部分汞滴寿命中施加的基底电势对于每一滴都不一样,

而是以小

增量不断地变化着。(b)脉冲高度仅仅是10-100mV,并相对于基底电势来说保持在一恒定值。(c)每个汞滴寿命中两次对电流采样,一次在时间τ',即脉冲前的瞬间,第二次采样在时间τ,即脉冲之后汞滴刚要敲掉之前。(d)实验记录的是电流差i(τ)—i(τ')相对于基底电势的图。

示差脉冲极谱实验中,单个汞滴上的过程

2 响应信号如下图所示:

示差脉冲响应图

差减测量得到的是峰状结果,而不是波状响应。这是因为实验初期,基电势远正或负于Eθ',脉冲前没有法拉第电流通过,脉冲时电势变化也太小,不足以激发法拉第电流;实验后期,基电势移到极限扩散电流区,差减电流仍然很小,因此只有Eθ'附近,才会有显著的

差减电流。

3 基本方程

(18)峰高为

4应用特点

示差方法的灵敏度比常规脉冲极谱的提高了一个数量级,这是因为该法减低了背景电流。利用脉冲极谱法可以判断电极过程的可逆性。示差脉冲极谱中,i p∝△E。即当电极过程受扩散控制时,i p∝△E。而在电极过程受吸附控制时,i p∝△E2。如果是ip∝△E1~2,过程包含电极吸附和扩散两种过程。

EQCM

1 质量效应

石英晶体微天平(Quartz Crystal Microbalance,QCM)是一种以质量变化为依据的生物传感器。当交变激励电压施加于石英晶体两侧电极时,晶体会产生机械变形振荡,当交变激励电压的频率达到晶体的固有频率时,振幅加大,形成压电谐振。在石英晶体表面施以质量负载时,晶体振荡频率发生相应的变化。

:质量改变所引起的频率改变(HZ)

:石英晶体的工作频率(HZ)

:晶片上质量变化(g)

:石英晶体电极的面积(cm 2)

基于石英晶体表面负载与振荡频率的变化可检测石英晶体表面所发生反应的过程,如利用此检测BSA 在金电极上的吸附等等。 2 非质量效应

基于非质量效应的传感理论研究,一般从三个不同角度出发,对研究体系的表面质量负载、表面性状、密度、粘度、电导率、介电常数等因素中的一个或几个考察建立相应理论模型和工具。

△F = - 2.26×10-6nF

3/2 (ρL ηL)1/2 或 △F = - F 3/2(ρL ηL /πρq μq )

1/2 , 其中ρL :液体的密度(g/cm 3);ηL :液体的粘度(g/cm-s);ρq :石英晶体的密

度(g/cm3);μq :接触液体的剪切模数(g/cm-s 2

);n:接触液体的晶体面数。

3 优缺点:

QCM 检测系统具有如下显著特点:

(1)实时性,能够对生物大分子的反应动力过程进行监测;

(2)高效性,般完成一个基本的测试用时在15min 以内;

(3)简便性,生物分子无需标记,设备简单;成本低,电极可以再生和反复使用。

溶出伏安法

1.定义:

溶出伏安法分为阳极溶出伏安法和阴极溶出伏安法。伏安溶出过程由富集和电溶出组成,它把恒电势浓集过程和伏安法结合在一起在同一电极上进行。阴极溶出伏安法的浓集过程是电氧化,溶出过程是电还原;而阳极溶出伏安法则相反。

2.阳极溶出伏安法的浓集过程所加电势往往是在极限电流i l处,浓

集结束后需要在继续保持电压下静止一段时间以使汞内的分布达到均匀。预电解时的电流可看成是不变的,在这种情况下,电极上析出金属的量大致为

M=i l t e/nF

因而它的浓度为 c =M/V=i l t e/nFV

3.阳极溶出伏安法(ASV)是最为广泛使用的溶出分析形式。金

属被电沉积富集进入小体积的贡电极里。沉积电位通常比E负

0.3~0.5V或更负的电位,以致更容易还原被测定的金属离子。金

属离子通过扩散或对流到达汞表面,在那里,金属离子被还原并富集成为汞齐:

Mn++n e-+H g→M(Hg)

4.应用

溶出伏安技术可非常有效地应用于环境、工业、临床样品、食品原材料、饮料、火药残余物、制药过程等多种痕量金属的分析。可用于儿童血铅的跟踪性测定以及各种水样中砷的监测。

该技术也已经非常重要地用于监测金属污染,DNA 与蛋白质的生物亲和性检验等相关检测。

计时电位技术

一:不同类型的控制电流技术

二:Sand 方程

其中i

/mA,

/s, C O * /mM, A/cm 2, D O /cm 2 s -1 三:对于可逆波满足下列关系式

*85.5

O

C ==0'0'/4(0,)ln (0,)ln ln 2ln O R O R C t RT E E nF C t

D RT RT

E n

F D nF RT E nF τ=+=-+=+

电化学基础知识点总结

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 电解质溶液 1.下列变化中,属于原电池反应的是( ) A .在空气中金属铝表面迅速氧化形成保护层 B .镀锌铁表面有划损时,也能阻止铁被氧化 C .红热的铁丝与水接触表面形成蓝黑色保护层 D .铁与稀H 2SO 4反应时,加入少量CuSO 4溶液时,可使反应加速 2.100 mL 浓度为2 mol/L 的盐酸跟过量的锌片反应,为加快反应速率,又不影响生成氢气的量,可采用的方法是( ) A .加入适量的6 mol/L 的盐酸 B .加入数滴氯化铜溶液 C .加入适量的蒸馏水 D .加入适量的氯化钠溶液 3.称取三份锌粉,分别盛于甲、乙、丙三支试管中,按下列要求另加物质后,塞上塞子,定时测定生成氢气的体积。甲加入50 mL pH =3的盐酸,乙加入50 mL pH =3的醋酸,丙加入50 mL pH =3的醋酸及少量胆矾粉末。若反应终了,生成氢气的体积一样多,且没有剩余的锌。请用“>”“=”或“<”回答下列各题。 失e -,沿导线传递,有电流产生 溶解 不断 移 向 阳离 子

电化学方法总结

电化学方法总结 Prepared on 22 November 2020

循环伏安法 1 定义:循环伏安法(Cyclic Voltammetry)以等腰三角形的脉冲电 压加在工作电极上,控制电极电势以不同的速率,随时间以三角 波形一次或多次反复扫描,使电极上能交替发生还原反应和氧化 反应,记录电流-电势曲线。 单圈扫描:电位在初始电位维持一段平衡(静置)时间后,开始匀 速变化(扫描速度为v=dE/dt),扫描到第1个换向电位后,某些仪 器可维持在第1个换向电位一段时间,然后电位反向扫描到第2个 换向电位,某些仪器也可维持在第2个换向电位一段时间,然后再 扫描到最终电位)。 多圈扫描:在初始电位起扫后,在第1、2个换向电位之间循环扫描 多圈,最后扫描到最终电位。 Initial potential Vertex 1 potential Vertex 2 potential Final potential Delay Potential Time 初始电位、换向电 位、扫描速度等是 非常重要的实验设

2 特点: Ⅰ:激励信号:施加的电压为三角波电压,双向扫描,分为氧化过程和还原过程,氧化态电势高,还原态电势低。 Ⅱ:参数设置:两个可调参数为电位范围和扫描速度。设置电位范围时需根据溶液的初始条件设置起始电位,起始电位不应破坏溶液的初始条件;若起始电位与溶液初始条件不一致,则在静置几秒内所发生的氧化还原反应未被记录。 Ⅲ:实验条件:进行循环伏安扫描时体系应处于静止状态,若搅拌则记录的图中不会出现峰,相反呈S型。 3 所得信息: Ⅰ:判断电极反应的可逆程度,依据为峰电流比及峰电势差,对于可逆体系:i pa/i pc1;E pa/E pc nF。 Ⅱ:判断电极表面的修饰情况,峰电流大说明电极传递电子能力较强。但这只能定性判断,实际循环伏安图中,存在充电电流的影响,因此CV峰电流测量不太容易精确。 Ⅲ:判断其控制步骤和反应机理,若i p∝v,则此过程为表面控制,发生在电极表面;若i p∝v1/2,则此过程为扩散控制,发生在溶液中。 循环伏安法可作用于可逆的电极过程,也可作用于不可逆或准可逆的电极过程以及各种伴随航行反应的过程,不同的电极过程分别阳极峰电势E pa和阴极峰电势E pc,并给出峰电位差△E p和峰电流之比。

电化学基础知识点总结

装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 1.下列变化中,属于原电池反应的是( ) A .在空气中金属铝表面迅速氧化形成保护层 B .镀锌铁表面有划损时,也能阻止铁被氧化 C .红热的铁丝与水接触表面形成蓝黑色保护层 D .铁与稀H 2SO 4反应时,加入少量CuSO 4溶液时,可使反应加速 2.100 mL 浓度为2 mol/L 的盐酸跟过量的锌片反应,为加快反应速率,又不影响生成氢气的量,可采用的方法是( ) A .加入适量的6 mol/L 的盐酸 B .加入数滴氯化铜溶液 C .加入适量的蒸馏水 D .加入适量的氯化钠溶液 3.称取三份锌粉,分别盛于甲、乙、丙三支试管中,按下列要求另加物质后,塞上塞子,定时测定生成氢气的体积。甲加入50 mL pH =3的盐酸,乙加入50 mL pH =3的醋酸,丙加入50 mL pH =3的醋酸及少量胆矾粉末。若反应终了,生成氢气的体积一样多,且没有剩余的锌。请用“>”“=”或“<”回答下列各题。 (1)开始时,反应速率的大小为__________。 (2)三支试管中参加反应的锌的质量为__________。 (3)反应终了,所需时间为__________。 (4)在反应过程中,乙、丙速率不同的理由是(简要说明)__________。 失e -,沿导线传递,有电流产生

人教版高中化学选修4第四章电化学基础知识归纳

电化学基础知识归纳(含部分扩展内容)(珍藏版) 特点:电池总反应一般为自发的氧化还原反应,且为放热反应(△H<0);原电池可将化学能转化为电能 电极负极:一般相对活泼的金属溶解(还原剂失电子,发生氧化反应) 正极:电极本身不参加反应,一般是电解质中的离子得电子(也可能是氧气等氧化剂),发生还原反应 原电池原理电子流向:负极经导线到正极 电流方向:外电路中,正极到负极;内电路中,负极到正极 电解质中离子走向:阴离子移向负极,阳离子移向正极 原电池原理的应用:制成化学电源(实用原电池);金属防腐(被保护金属作正极);提高化学反应速率;判断金属活性强弱 一次电池负极:还原剂失电子生成氧化产物(失电子的氧化反应) 正极:氧化剂得电子生成还原产物(得电子的还原反应) 放电:与一次电池相同 二次电池规则:正极接外接电源正极,作阳极;负极接外接电源负极,作阴极(正接正,负接负) 充电阳极:原来的正极反应式反向书写(失电子的氧化反应) 原电池阴极:原来的负极反应式反向书写(得电子的还原反应) 化学电源电极本身不参与反应(一般用多孔电极吸附反应物),总反应相当于燃烧反应 负极:可燃物(如氢气、甲烷、甲醇等)失电子被氧化(注意电解质的酸碱性) 电极反应正极:O得电子被还原,具体按电解质不同通常可分为4种 2 燃料电池碱性介质:O+4e-+2H O==4OH- 22 酸性介质:O+4e-+4H+==2H O 22 电解质不同时氧气参与的正极反应固体或熔融氧化物(传导氧离子):O+4e-==2O2- 2 第1页质子交换膜(传导氢离子):O+4e-+4H+==2H O 22

特殊原电池:镁、铝、氢氧化钠,铝作负极;铜、铝、浓硝酸,铜作负极;铜、铁、浓硝酸,铜作负极,等 特点:电解总反应一般为不能自发的氧化还原反应;可将电能转化为化学能 活性电极:阳极溶解(优先),金属生成金属阳离子 阳极惰性电极一般为阴离子放电,失电子被氧化,发生氧化反应 (接电源正极)(石墨、铂等)常用放电顺序是:Cl->OH->高价态含氧酸根(还原性顺序), 发生氧化反应,相应产生氯气、氧气 电解原理电极反应 阴极电极本身一般不参加反应,阳离子放电,得电子被还原,发生还原反应 (接电源负极)常用放电顺序是:Ag+>Cu2+>H+>活泼金属阳离子(氧化性顺序), 相应产生银、铜、氢气 电流方向:正极到阳极再到阴极最后到负极 电子流向:负极到阴极,阳极到正极(电解质溶液中无电子流动,是阴阳离子在定向移动) 离子流向:阴离子移向阳极(阴离子放电),阳离子移向阴极(阳离子放电) 常见电极反应式阳极:2Cl--2e-==Cl↑,4OH--4e-==O↑+2H O或2H O-4e-==O↑+4H+(OH-来自水时适用) 22222 电解池阴极:Ag++e-==Ag,Cu2++2e-==Cu,2H++2e-==H↑或2H O+2e-==H↑+2OH-(H+来自水时适用) 222 电解水型:强碱、含氧强酸、活泼金属的含氧酸盐,如:NaOH、KOH、H SO、HNO、Na SO溶液等 24324 电解溶质型:无氧酸、不活泼金属的含氧酸盐,如:HCl、CuCl溶液等 2 常见电解类型电解溶质+水(放氢生碱型):活泼金属的无氧酸盐,如:NaCl、KCl、MgCl溶液等 2 电解溶质+水(放氧生酸盐):不活泼金属的含氧酸盐,如:CuSO、AgNO溶液等 43 氯碱工业的基础:电解饱和食盐水制取氯气、氢气和氢氧化钠 第2页

电化学基础知识点总结最新版本

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 电解质溶液 电极反应: 负极(锌筒)Zn-2e -=Zn 2+ 正极(石墨)2NH 4++2e -=2NH 3+H 2↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+=Zn 2++2NH 3+H 2↑ 干电池: 电解质溶液:糊状的NH 4Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电流增加); 电解液:由中性变为碱性(离子导电性好)。 正极(PbO 2) PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O 负极(Pb ) Pb+SO 42--2e -=PbSO 4 铅蓄电池:总反应:PbO 2+Pb+2H 2SO 4 2PbSO 4+2H 2O 电解液:1.25g/cm 3~1.28g/cm 3的H 2SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni ——Cd )可充电电池; 其它蓄电池 Cd+2NiO(OH)+2H 2O Cd(OH)2+2Ni(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2+2OH --4e -=4H 2O ;正极:O 2+2H 2O+4e -=4OH - ③、氢氧燃料电池: 总反应:O 2 +2H 2 =2H 2O 特点:转化率高,持续使用,无污染。 废旧电池的危害:旧电池中含有重金属(Hg 2+)酸碱等物质;回收金属,防止污染。 失e -,沿导线传递,有电流产生 溶解 不断 移 向 阳离 子 化学电源简介 放电 充电 放电 放电`

电化学基础知识点总结

装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 电极反应: 负极(锌筒)Zn-2e -=Zn 2+ 正极(石墨)2NH 4++2e -=2NH 3+H 2↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+=Zn 2++2NH 3+H 2↑ 干电池: 电解质溶液:糊状的NH 4Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电流增加); 。 正极(PbO 2) PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O 负极(Pb ) Pb+SO 42--2e -=PbSO 4 铅蓄电池:总反应:PbO 2+Pb+2H 2SO 4 2PbSO 4+2H 2O 电解液:1.25g/cm 3~1.28g/cm 3的H 2SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni ——Cd )可充电电池; 其它蓄电池 Cd+2NiO(OH)+2H 2O Cd(OH)2+2Ni(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2+2OH --4e -=4H 2O ;正极:O 2+2H 2O+4e -=4OH - ③、氢氧燃料电池: 总反应:O 2 +2H 2 =2H 2O 特点:转化率高,持续使用,无污染。 废旧电池的危害:旧电池中含有重金属(Hg 2+)酸碱等物质;回收金属,防止污染。 失e -,沿导线传递,有电流产生化学电源简介 放电 充电 放电 放电`

电化学研究方法总结及案例

电化学研究方法总结及案例\

目录1. 交流阻抗法 1.1 交流阻抗法概述 1.2电化学极化下的交流阻抗 1.3 浓差极化下的交流阻抗 1.4复杂体系的交流阻抗 2. 电化学暂态测试方法 2.1 电化学暂态测试方法概述 2.2 电化学极化下的恒电流暂态方法 2.3 浓差极化下的恒电流暂态方法 2.4 电化学极化下的恒电位暂态方法 2.5 浓差极化下的恒电位暂态方法 2.6动电位扫描法 3.原位(in situ)电化学研究方法 4.案例 参考文献

1.交流阻抗法 1.1 交流阻抗法概述 交流阻抗法是指小幅度对称正弦波交流阻抗法。就是控制电极交流电位(或控制电极的交流电流)按小幅度(一般小于10毫伏)正弦波规律变化,然后测量电极的交流阻抗,进而计算电极的电化学参数。由于使用小幅度对称交流电对电极极化,当频率足够高时,以致每半周期所持续的时间很短,不致引起严重的浓差极化及表面状态变化。而且在电极上交替地出现阳极过程的阴极过程,即使测量讯号长时间作用于电解池,也不会导致极化现阶段象的积累性发展。因此这种方法具有暂态法的某些特点,常称为“暂稳态法”。“暂态”是指每半周期内有暂态过程的特点,“稳态”是指电极过程老是进行稳定的周期性的变化。 交流阻抗法适于研究快速电极过程,双电层结构及吸附等,在金属腐蚀和电结晶等电化学研究中也得到广泛应用。研究电化学体系的阻抗图谱,获得电极反应体系的控制步骤和动力学参数、反应机理以及各因素的影响规律,方法有两种: 1)等效电路方法 理论:建立各种典型电化学体系在不同控制步骤下的等效电路,理论推导出其阻抗图谱。 测试方法:由阻抗图谱对照理论画出对应的等效电路。 优缺点:此法直观,但一个等效电路可能对应不止1个等效电路。 2)数据模型方法 理论:建立各种典型电化学体系在不同控制步骤下的理论数据模型,理论计算出其阻抗图谱。 测试方法:由阻抗图谱对照理论获得数据模型。 优缺点:此法准确,但实际电化学体系复杂模型难以建立,正在发展中。 阻抗、导纳与复数平面图 1)阻抗:Z= E / I 而如正弦交流电压E = Emsinωt 等,E 、I 、 Z 均为角频率ω (=2πf )或频率 f 的函数。 2) 导纳:Y Y=1/Z 3) 阻抗的矢量表示与复数平面图 Z 可以表示为实—虚平面的矢量: Z = A + jB Z 可由模数 Z 和相角φ来定义: φ φ sin cos Z B Z A == 2 2B A Z += A B tg = φ 阻抗谱:阻抗随交流信号角频率或频率的变化关系

《电化学基础》知识点归纳

《电化学基础》知识点 归纳 https://www.sodocs.net/doc/cd3748866.html,work Information Technology Company.2020YEAR

第四章电化学基础 第一节原电池 原电池: 1、概念:化学能转化为电能的装置叫做原电池。 2、组成条件:①两个活泼性不同的电极②电解质溶液③电极用导线相连并插入电解液构成闭合回路 3、电子流向:外电路:负极——导线——正极 内电路:盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。 4、电极反应:以锌铜原电池为例: 负极:氧化反应: Zn-2e=Zn2+(较活泼金属) 正极:还原反应: 2H++2e=H2↑(较不活泼金属) 总反应式: Zn+2H+=Zn2++H2↑ 5、正、负极的判断: (1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极。(2)从电子的流动方向负极流入正极 (3)从电流方向正极流入负极 (4)根据电解质溶液内离子的移动方向阳离子流向正极,阴离子流向负极(5)根据实验现象①__溶解的一极为负极②增重或有气泡一极为正极 第二节化学电池 1、电池的分类:化学电池、太阳能电池、原子能电池 2、化学电池:借助于化学能直接转变为电能的装置 3、化学电池的分类:一次电池、二次电池、燃料电池 一、一次电池

1、常见一次电池:碱性锌锰电池、锌银电池、锂电池等 二、二次电池 1、二次电池:放电后可以再充电使活性物质获得再生,可以多次重复使用,又叫充电电池或蓄电池。 2、电极反应:铅蓄电池 放电:负极(铅): Pb +SO 42--2e - =PbSO 4↓ 正极(氧化铅): PbO 2+4H ++SO 42-+2e - =PbSO 4↓+2H 2O 充电:阴极: PbSO 4+2H 2O -2e - =PbO 2+4H ++SO 42- 阳极: PbSO 4+2e - =Pb +SO 42- 两式可以写成一个可逆反应: PbO 2+Pb +2H 2SO 4 2PbSO 4↓+2H 2O 3、目前已开发出新型蓄电池:银锌电池、镉镍电池、氢镍电池、锂离子电池、聚合物锂离子电池 三、燃料电池 1、燃料电池: 是使燃料与氧化剂反应直接产生电流的一种原电池 2、电极反应:一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。,负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性。 当电解质溶液呈酸性时: 负极:2H 2-4e - =4H + 正极:O 2+4e - +4H + =2H 2O 当电解质溶液呈碱性时: 负极: 2H 2+4OH --4e -=4H 2O 正极:O 2+2H 2O +4 e - =4OH - 放电 充电

电化学基础知识点(大全)

【知识点】 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 电解质溶液 电极反应: 负极(锌筒)Zn-2e -=Zn 2+ 正极(石墨)2NH 4++2e -=2NH 3+H 2↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+=Zn 2++2NH 3+H 2↑ 干电池: 电解质溶液:糊状的NH 4Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电流增加); 电解液:由中性变为碱性(离子导电性好)。 正极(PbO 2) PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O 负极(Pb ) Pb+SO 42--2e -=PbSO 4 铅蓄电池:总反应:PbO 2+Pb+2H 2SO 4 2PbSO 4+2H 2O 电解液:1.25g/cm 3~1.28g/cm 3的H 2SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni ——Cd )可充电电池; 其它蓄电池 Cd+2NiO(OH)+2H 2O Cd(OH)2+2Ni(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2+2OH --4e -=4H 2O ;正极:O 2+2H 2O+4e -=4OH - ③、氢氧燃料电池: 总反应:O 2 +2H 2 =2H 2O 特点:转化率高,持续使用,无污染。 废旧电池的危害:旧电池中含有重金属(Hg 2+)酸碱等物质;回收金属,防止污染。 失e -,沿导线传递,有电流产生 溶解 不断 移 向 阳离 子 化 学电源简介 放电 充电 放电 放电`

电化学分析法(最全)汇总

电化学分析法 [日期:2011-06-24] 来源:作者:[字体:大中小] 电化学分析法(electroanalytical chemistry)是根据电化学原理和物质在溶液中的电化学性质及其变化而建立起来的一类分析方法。这类方法都是将试样溶液以适当的形式作为化学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。 电化学分析法可分为三种类型。第一种类型是最为主要的一种类型,是利用试样溶液的浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,这些电参量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,如电位滴定法、电导滴定法等;第三种类型是将试样溶液中某个待测组分转入第二相,然后用重量法测定其质量,称为电重量分析法,实际上也就是电解分析法。 电化学分析法与其他分析方法相比,所需仪器简单,有很高的灵敏度和准确度,分析速度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。 第一节电势分析法 电势分析法是一种电化学分析方法,它是利用测定原电池的电动势(即用电势计测定两电极间的电势差),以求得物质含量的分析方法。电势分析法又可分为直接电势法(potentiometric analysis)和电势滴定法(potentiometric titration)。 直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度。应用最多的是测定溶液的pH。近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,应用它作为指示电极进行电势分析,具有简便、快速和灵敏的特点,特别是它能适用于其它方法难以测定的离子。因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用。 电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。电势滴定法确定的滴定终点比指示剂确定的滴定终点更为准确,但操作相对麻烦,并且需要仪器,所以电势滴定法一般适用于缺乏合适的指示剂,或者待测液混浊、有色,不能用指示剂指示滴定终点的滴定分析。 基本原理 在电势分析法中,构成原电池的两个电极,其中一个电极的电极电势能够指示被测离子活度(或浓度)的变化,称为指示电极;而另一个电极的电极电势不受试液组成变化的影响,具有恒定的数值,称为参比电极。将指示电极和参比电极共同浸入试液中构成一个原电池,通过测量原电池的电动势,即可求得被测离子的活度(或浓度)。 例如某种金属M与其金属离子Mn+组成的指示电极Mn+/M,根据能斯特公式,其电极电势可表示为:

电化学基础知识点总结

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e =Zn 2+ 2H + +2e =2H 2 ↑ 电解质溶液 电极反应: 负极(锌筒)Zn-2e =Zn 2+ 正极(石墨)2NH 4+ +2e =2NH 3 +H 2 ↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+ =Zn 2+ +2NH 3 +H 2 ↑ 干电池: 电解质溶液:糊状的NH 4 Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电流增加); 电解液:由中性变为碱性(离子导电性好)。 正极(PbO 2 ) PbO 2 +SO 42-+4H + +2e =PbSO 4 +2H 2 O 负极(Pb ) Pb+SO 42--2e =PbSO 4 铅蓄电池:总反应:PbO 2 +Pb+2H 2 SO 4 2PbSO 4 +2H 2 O 失e ,沿导线传递,有电流产生 溶解 不断移 向 阳离 子 放电 充电

电解液:1.25g/cm 3 ~1.28g/cm 3 的H 2 SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni ——Cd )可充电电池; 其它蓄电池 Cd+2NiO(OH)+2H 2 O Cd(OH)2 +2Ni(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4 、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2 +2OH -4e =4H 2 O ;正极:O 2 +2H 2 O+4e =4OH ③、氢氧燃料电池: 总反应:O 2 +2H 2 =2H 2 O 特点:转化率高,持续使用,无污染。 废旧电池的危害:旧电池中含有重金属(Hg 2+ )酸碱等物质;回收金属,防止污染。 腐蚀概念:金属或合金与周围接触到的气体或液体进行化学反应而腐蚀损耗的过程。 概述: 腐蚀危害: 腐蚀的本质:M-ne →M n+ (氧化反应) 分类: 化学腐蚀(金属与接触到的物质直接发生化学反应而引起的腐蚀)、电化腐蚀 定义:因发生原电池反应,而使金属腐蚀的形式。 负极(Fe ):Fe-2e =Fe 2+ ;正极(C ):O 2 +2H 2 O+4e =4OH 电化 吸氧腐蚀: 总反应:2Fe+O 2 +2H 2 O=Fe(OH)2 腐蚀 后继反应:4Fe(OH)2 +O 2 +2H 2O =4Fe(OH)3 钢铁的腐蚀: 2Fe(OH)3 Fe 2 O 3 +3H 2 O 负极(Fe ):Fe-2e =Fe 2+ ; 析氢腐蚀: 正极(C ):2H + +2e =H 2 ↑ 化学电源简介 金属的腐蚀与防护 放电 放电` △

电化学知识规律总结

电化学知识规律总结 【知识要点】 一、原电池、电解池、电镀池的比较 ①若无外电源,可能是原电池,然后依据原电池的形成条件判定,主要思路是三“看” 先看电极:两种活泼性不同的金属(或其中一种非金属导体)作电极 再看溶液:在电解质溶液中能自发地发生氧化还原反应。 后看回路:用导线连接的两电极与 电解质溶液接触并形成闭合回路。 ②若有外接电源,两极插入电解质溶液中,则可能是电解池或电镀池,当阳极金属与电解质溶液中的金属离子相同则为电镀池; ③若为无明显外接电源的串联电路,则应利用题中信息找出能发生自发氧化还原反应的装置为原电池。 2、构成原电池的类型 (1)活泼性不同的导电材料: a. 在金属——金属构成的原电池中,相对活泼的金属作负极,被氧化,生成金属阳离子;相对不活泼 的金属作正极,溶液中的阳离子被还原(一般被还原为单质)。如Cu SO H Zn 42电极反应: 负极:+ - =-22Zn e Zn 正极:↑=+- + 222H e H b. 在金属——非金属构成的原电池中,非金属电极(如石墨),一般只起导电作用,故作正极,金属 电极作负极,如C SO H Fe 42电极反应: 负极:+ -=-22Fe e Fe 正极:↑=+- + 222H e H c. 在金属——金属氧化物构成的原电池中,金属氧化物中的金属元素已是最高(或较高)价态,难被

氧化,故作正极,并直接参与还原反应,金属电极作为负极,如O Ag KOH Zn 2(银锌钮扣电池): 负极:O H ZnO e OH Zn 222+=-+-- 正极:- - +=++OH Ag e O H O Ag 22222 d. 用两个惰性电极作为载体的燃料电池,通有还原性气体的电极作为负极,通有氧化性气体的电极作为正极。如氢氧燃料电池。其电极为可吸附气体的惰性电极,如铂电极,活性炭等,两极分别通入2H 和2O ,以%40的KOH 溶液为电解质溶液: 负极:O H e OH H 224442=-+-- 正极:- - =++OH e O H O 44222 总反应:O H O H 22222=+ 3、化学电源 (1)干电池 电极反应式为:正极(石墨)2NH 4++2e - =2NH 3↑+H 2↑ 负极(锌筒)Zn -2e -= Zn 2+ 总反应式为:2NH 4++ Zn =2NH 3↑+H 2↑+Zn 2+ (2)铅蓄电池 电极反应式为:正极PbO 2+4H ++SO 42-+2e - =PbSO 4+2H 2O 负极Pb +SO 42--2e - =PbSO 4 总反应式为: PbO 2+ Pb +2H 2SO 4 2PbSO 4+2H 2O (3)锂电池 电极反应式为:正极I 2+2e -=2I - 负极2Li -2e -=2Li + 总反应式为:I 2+2Li =2LiI (4)燃料电池:以氢氧燃料电池为例 总反应式为:2H 2+O 2=2H 2O 注意:①电极反应——分别在负极和正极进行的氧化和还原反应叫做电极反应。 ②电池反应——电极反应的总反应叫做总电池反应或电池反应。书写时,将两个电极反应式相加,消去得失电子,即得。 ③书写电极反应时,要确定正负极,弄清正负极上的反应,保证原子守恒、电荷守恒和不忽视介质参与反应,弱电解质、气体、或难溶物以分子形式表示,其余以离子符号表示 举例:原电池(-)CH 4|KOH (aq )|O 2(+) 负极CH 4+10OH --8e -=CO 32- +7H 2O

高中化学选修4电化学知识点总结(最新整理)

第四章电化学基础 一、原电池: 1、概念:化学能转化为电能的装置叫做原电池。 2、组成条件:①两个活泼性不同的电极②电解质溶液③电极用导线相连并插入电解液构成闭合回路 3、电子流向:外电路:负极——导线—— 正极 内电路:盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。 4、电极反应:以锌铜原电池为例: 负极:氧化反应: Zn-2e=Zn2+(较活泼金属) 正极:还原反应: 2H++2e=H2↑(较不活泼金属) 总反应式: Zn+2H+=Zn2++H2↑ 5、正、负极的判断: (1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极。 (2)从电子的流动方向:负极流入正极 (3)从电流方向:正极流入负极 (4)根据电解质溶液内离子的移动方向:阳离子流向正极,阴离子流向负极 (5)根据实验现象:①溶解的一极为负极②增重或有气泡一极为正极 二、化学电池 1、电池的分类:化学电池、太阳能电池、原子能电池 2、化学电池:借助于化学能直接转变为电能的装置 3、化学电池的分类:一次电池、二次电池、燃料电池 (一)一次电池 1、常见一次电池:碱性锌锰电池、锌银电池、锂电池等 (二)二次电池 1、二次电池:放电后可以再充电使活性物质获得再生,可以多次重复使用,又叫充电电池或蓄电池。 2、电极反应:铅蓄电池 放电:负极(铅): Pb-2e- =PbSO4↓ 正极(氧化铅): PbO2+4H++2e- =PbSO4↓+2H2O 充电:阴极: PbSO4+2H2O-2e- =PbO2+4H+ 阳极: PbSO4+2e- =Pb 两式可以写成一个可逆反应: PbO2+Pb+2H2SO4 ? 2PbSO4↓+2H2O 3、目前已开发出新型蓄电池:银锌电池、镉镍电池、氢镍电池、锂离子电池、聚合物锂离子电池 (三)燃料电池 1、燃料电池:是使燃料与氧化剂反应直接产生电流的一种原电池 2、电极反应:一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性。 ①当电解质溶液呈酸性时: 负极:2H2-4e- =4H+ 正极:O2+4e- +4H+ =2H2O

高中选修4-电化学基础知识点总结

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e - =2 H2↑ 电解质溶液 电极反应: 负极(锌筒)Zn -2e-=Zn 2+ 正极(石墨)2NH4++2e -=2NH 3+ H 2↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+=Zn 2+ +2NH 3+H 2↑ 干电池: 电解质溶液:糊状的NH 4Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电 流增加); 电解液:由中性变为碱性(离子导电性好)。 正极(PbO 2) PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O 负极(Pb ) P b+SO 42--2e- =PbSO 4 铅蓄电池:总反应:P bO 2+P b+2H 2SO 4 2P bSO 4+2H 2O 电解液:1.25g/cm 3~1.28g/cm3 的H 2SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni——Cd )可充电电池; 其它蓄电池 Cd +2NiO(O H)+2H 2O Cd(OH)2+2N i(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2+2OH --4e -=4H 2O ;正极:O 2+2H 2O+4e 失e -,沿导线传递,有电流产生 溶解 不断 移 向 阳离 子 化 学 电源 简介 放电 充电 放电 放电`

(完整版)高考电化学知识点总结

2011届高考电化学知识点总结 直击高考考点- 电化学知识是理论部分的一个重要内容,也是历年高考考查的一个重点。电化学知识既可以综合学科内的知识,如联系到:化学实验现象的判断和分析、定量实验的操作要求、离子方程式的书写、氧化还原反应问题分析、化学计算等。也可以涉及到学科间的知识的运用,如联系到物理学的“有关电流强度的计算、有关电量和阿伏加德罗常数的计算”等,还可以与生产生活(如金属的腐蚀和防护、电镀废液的危害与环保)、新科技及新技术(新型电池)等问题相联系,是不可忽视的一个知识点。在《考试大纲》中,它主要涵盖以下基本要求 1.理解原电池原理和电解池原理,能够正确分析和判断电化学中的电极反应,正确书写电极反应式。 2.了解化学腐蚀与电化学腐蚀,联系生产、生活中的金属腐蚀现象,会分析和区别化学腐蚀和电化学腐蚀,了解一般防腐蚀的方法,并能运用原电池的基本原理解释简单的防腐蚀等生产实际问题。。 3.铜的电解精炼、镀铜、氯碱工业等是电解原理的具体应用,要了解和熟悉这些反应原理。 4.电解池中电解质溶液的pH变化的计算。 复习过程中注意以下两点:(1)综合命题的趋势要求宽而不是难,历年的高考试题印证了这一点。对相差基础知识应扎实掌握,如电极反应的方程式的书写、燃料电池的分析、计算等。(2)理科综合考试的一个重要变化是从知识立意向能力立意的转变。对电化学问题、实物图的分析是近几年高考命题的一个热点,对图表类问题的分析处理要灵活掌握。 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原③、形成闭合回路(或在溶液中接触) 电负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。池基本概念:正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。原电极反应方程式:电极反应、总反应。 理 氧化反应负极铜锌原电池正极还原反应反应原理:Zn-2e-=Zn2+2H++2e-=2H2↑ 电解质溶液 失e-,沿导线传递,有电流产生 溶 解 不 断 移 向 阳 离 子

电化学基础复习总结

6-3~4电化学原理一、电化学装置——原电池和电解池的联系比较

二、几种特殊的电池 1、蓄电池 又称次电池、充电电池,蓄电池在工作(放电)过程中属于池反应,在充电过程中属于池反应。 放电时——、两极的电极反应式的书写时~分析电解质溶液是否参与电极反应(直接反应或明显发生后继反应);充电时——、两极的电极反应式的书写时~分析电极材料和离子放电顺序。 例析:Ag—Zn高能电池(钮扣电池)由Ag2O、Zn及KOH溶液组成。总反应为:Zn+Ag2O+H2O=Zn(OH)2+2Ag 根据原电池原理可知:Zn做负极,Ag2O做正极,电解质溶液为KOH溶液。负极极失去电子发生氧化反应:Zn–2e-=Zn2+,Zn2+与溶液中的OH-反应Zn2++2OH-=Zn(OH)2,所以负极反应式为:Zn–2e-+2OH-=Zn(OH)2; 正极为Ag2O得到电子发生还原反应,即Ag2O+2e-=2Ag+O2- ,O2-在中性或碱性环境结合H2O生成OH-,所以正极反应式为:Ag2O+2e-+H2O=2Ag+2OH-。 2、燃料电池 燃料电池是一种不经燃烧而将燃料的化学能经过电化学反应直接转变为电能的装置。不发火焰(不转化光能,热能转化很少),化学能直接转化为电能,能量转化程度高达80%以上。 所有的燃料电池的工作原理一样,反应书写有规可循。如果燃料电池发生的电化学反应的最终产物与燃烧产物相同(一般为酸性条件),可根据燃烧反应写出总的电池反应,但不注明反应的条件。负极发生氧化反应,正极发生还原反应,要注意一般电解质溶液要参与电极的后继反应(一般为碱性条件)。 3、盐桥电池 如Cu-Zn原电池中以KCl溶液做电解质 盐桥的作用仅仅是导电,利用了其中的阴阳离子的定向移动将两个烧杯形成闭合回路。 锌铜电池,电解质溶液锌端硫酸锌,铜端硫酸铜,即两端不一样,所以产生电势差,于是,电子从负极Zn失去,沿着导线移向正极Cu,即外面的导线中,电子即负电荷从Zn到Cu,中间有盐桥连接,即盐桥中的负电荷即阴离子应该从CuSO4的一端沿着盐桥移向ZnSO4的一端,或者说,盐桥中的正电荷即阳离子就从ZnSO4的一端沿着盐桥移向CuSO4的一端,总之,要保证两端烧杯中的正负电荷要守恒。 另外以含有离子的琼脂块作盐桥,应用很广泛。 4、其它因介质而不同的电池 (1)镁铝因酸碱而不同的电池··· (2)铜铁因硝酸浓稀而不同的电池··· 5、常见原电池方程式 1.熔融碳酸盐燃料电池 (Li2CO3和Na2CO3熔融盐作电解液,CO作燃料): 正极:O2+2CO2+4e- →2(CO3)2-(持续补充CO2气体)

高考电化学专题复习知识点总结完美版资料

一、原电池的工作原理装置特点:化学能转化为电能。①、两个活泼性不同的电极; ;形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应)③、形成闭合回路(或在溶液中接触)原 ④、建立在自发进行的氧化还原反应基础之上电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。池 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。原基本概念:电极反应方程式:电极反应、总反应。理 正还原反氧化反应负铜锌原电 -2++ =2H+22H反应原理Zn-2e↑=Z 不 解断 电解质溶液 二、常见的电池种类2+ -负极(锌筒)Zn-2e=Zn 电极反应: -+↑=2NH 正极(石墨)2NH+H+2e 2432++ +2NH 总反应:Zn+2NH+H=Zn↑①普通锌——锰干电池243Cl 电解质溶液:糊状的NH 干电池:4特点:电量小,放电过程易发生气涨和溶液 锰干电池②碱性锌——--负极(锌筒)Zn-2e=Zn(OH)+2OH电极反应:22MnOOH ++2HO +2MnO=- 2e 2OH-( 氢氧化氧锰) 正极(石墨) 222MnOOH2 HO+Zn+2MnO=+总反应:Zn(OH) 222电极:负极由锌改锌粉(反应面积增大,放电电流增加);使用寿命提高 。电解液:由中性变为碱性(离子导电性好) -2-+O +4H=PbSOPbO+SO+2e+2H 正极(PbO)22244-2--2e=PbSO Pb+SOPb 负极()44O +Pb+2HSO 2PbSO+2HPbO 铅蓄电池总反应:放电24242充电33溶液的电解液:1.25g/cmH~1.28g/cmSO42特点:电压稳定, 废弃电池污染环境蓄电池 ——Cd)可充电电池;Ⅰ、镍——镉(Ni 可充电电池 KOH溶液负极材料:Cd;正极材料:涂有NiO,电解质:其它2Ni(OH)+ Cd(OH) NiO+Cd+2HO 2222 放电Ⅱ、银锌蓄电池放电` KOH和石墨,负极盖填充锌汞合金,电解质溶液。正极壳填充AgO2 充电 O+H﹦反应式为:2Ag+Zn(OH)Zn+Ag 222电放`充电+2S 6LiCl+LiSO 8Li+3SOCl)(Li-SOCl 锂亚硫酰氯电池:= 32 22电放 `)( 用途:质轻、高能比能量高、高工作效率、高稳定电压、工作温度宽、高使用寿命,锂电池 广泛应用于军事和航空领域。

相关主题